metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-methoxyanilinium) hexabromidostannate(IV) dihydrate

Hassen Chouaib,^a* Sahel Karoui,^a Slaheddine Kamoun^a and Francois Michaud^b

^aLaboratoire de Genie des Materiaux et Environnement, Ecole Nationale d'Ingenieurs de Sfax, BP 1173, Sfax, Tunisia, and ^bService commun d'analyse par diffraction des rayons X, Universite de Brest, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France

Correspondence e-mail: chouaib.hassen@yahoo.fr

Received 13 November 2013; accepted 20 November 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.017 Å; R factor = 0.061; wR factor = 0.156; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $(C_7H_{10}NO)_2$ -[SnBr₆]·2H₂O, contains one cation, one half-dianion and one lattice water molecule. The $[SnBr_6]^{2-}$ dianion, located on an inversion center, exhibits a highly distorted octahedral coordination environment, with Sn-Br bond lengths ranging from 2.2426 (9) to 3.0886 (13) Å. In the crystal, $O-H \cdots Br$, $N-H\cdots Br$, $N-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds consolidate the packing, which can be described as consisting of alternating anionic (containing dianions and lattice water molecules) and cationic layers parallel to *ab* plane.

Related literature

For general background to hybrid organic-inorganic compounds, see: Kagan et al. (1999); Raptopoulou et al. (2002). For related structures, see: Tudela & Khan (1991); Chouaib et al. (2013); Benali-Cherif et al. (2007); Karoui et al. (2013); Guelmami et al. (2007); Souissi et al. (2011); Smith et al. (2006).

Experimental

Crystal data (C7H10NO)2[SnBr6]·2H2O $M_{\rm r} = 882.50$ Monoclinic, $P2_1/a$

a = 10.8728 (7) Å b = 13.4403 (10) Åc = 9.0695 (6) Å

 $\beta = 103.680 \ (5)^{\circ}$ V = 1287.76 (15) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

```
Agilent Xcalibur (Sapphire2)
  diffractometer
Absorption correction: multi-scan
  (CrysAlis RED; Agilent, 2012)
  T_{\min} = 0.356, T_{\max} = 0.371
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.156$ S = 1.072188 reflections 133 parameters 9 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdot \cdot \cdot Br2^i$	0.89	2.82	3.557 (9)	141
$N1-H1C \cdot \cdot \cdot OW^{ii}$	0.89	2.63	3.151 (15)	119
$OW-H1W\cdots Br2^{i}$	0.88 (9)	2.64 (9)	3.457 (9)	154 (11)
OW−H2W···Br1 ⁱⁱⁱ	0.88 (9)	2.42 (9)	3.296 (8)	171 (16)
$C7-H7A\cdots Br1^{iii}$	0.96	2.71	3.459 (15)	135
$N1-H1A\cdots Br1^{ii}$	0.89	2.75	3.154 (9)	109
$C5-H5\cdots Br2^{iv}$	0.93	2.52	3.289 (12)	140
Symmetry codes:	(i) $-r+1 =$	-v + 1 - 7 + 1	(ii) $r + \frac{1}{2} - \frac{1}{2}$	$v \pm \frac{1}{2}$ 7: (iii)

 $\mu = 10.32 \text{ mm}^{-1}$

 $0.10 \times 0.10 \times 0.10$ mm

7762 measured reflections

2188 independent reflections

1854 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 293 K

 $R_{\rm int} = 0.052$

refinement $\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.44 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) $-x + 1, -y + 1, -z + \frac{1}{2}, y - \frac{1}{2}, -z + 1;$ (iv) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5437).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.
- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Chouaib, H., Kamoun, S. & Ayedi, H. F. (2013). Acta Cryst. E69, m311.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Guelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446-455. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945-947.

Karoui, S., Kamoun, S. & Michaud, F. (2013). Acta Cryst. E69, m187-m188.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645–650.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, 02313–02315.

Souissi, S., Smirani Sta, W. S., Al-Deyab, S. & Rzaigui, M. (2011). Acta Cryst. E67, m754.

Tudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003-1006.

supporting information

Acta Cryst. (2013). E69, m678-m679 [doi:10.1107/S1600536813031681]

Bis(2-methoxyanilinium) hexabromidostannate(IV) dihydrate

Hassen Chouaib, Sahel Karoui, Slaheddine Kamoun and Francois Michaud

S1. Comment

Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Kagan *et al.*, 1999; Raptopoulou *et al.*, 2002). As a continuation of our structural study of such hydrid compounds containing 2-methoxyanilinium cation (Karoui *et al.*, 2013), we report herein the crystal structure of the title compound (I).

The asymmetric unit of (I) contains one 2-methoxyanilinium cation, one-half dianion and one crystalline water molecule (Fig. 1). The $[SnBr_6]^{2-}$ dianion located on an inversion center exhibits a highly distorted octahedral coordination environment with Sn—Br bond lengths ranging from 2.2426 (9) Å to 3.0886 (13) Å. The Br—Sn—Br angles for the Br atoms in *cis* positions with respect to each other fall in the range of 83.74 (4) to 96.26 (4)°. The $[SnBr_6]^{2-}$ dianions interact with water molecules *via* O—H···Br hydrogen bonds (Table 1) thus forming anionic layers parallel to the *ab* plane (Fig. 2). Bond lengths and angles within the cations and dianions are as expected and comparable with those observed in the related compounds (Benali-Cherif *et al.*, 2007; Karoui *et al.*, 2013; Guelmami *et al.*, 2007; Souissi *et al.*, 2011; Smith *et al.*, 2006; Tudela & Khan, 1991; Chouaib *et al.*, 2013). The phenyl ring is practically planar with the greatest deviation from the six-atoms least squares plane being 0.0156 Å. The torsion angle O1—C1—C2—N1 is 2 (2)° indicating that the N1—C2 and C1—O1 groups deviate from the phenyl ring plane. The methoxy group of the organic cation makes an angle of 0(2)° with the plane of the phenyl ring and is in short intramolecular contact with O1 (N···O =2.824 (14) Å). The benzene ring is regular with C—C—C angles in agreement with the expected sp2 hybridation.

In the crystal, intermolecular O—H···Br, N—H···Br, N—H···O and C—H···Br hydrogen bonds (Table 1) consolidate the packing (Fig. 3), which can be described as consisting of alternating anionic (containing dianions and crystalline water molecules) and cationic layers parallel to *ab* plane.

S2. Experimental

 $(C_7H_{10}NO)_2SnBr_6\cdot 2H_2O$ was prepared by refluxing during 5 h a solution of metallic tin (3 g, 25 mmol) in 40 ml an aqueous solution of hydrobromic acid, HBr 47%. To this solution, 9.5 ml (75 mmol) of a solution of 2-methoxyanilin was added at reflux temperature. After a slow solvent evaporation yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over P₂O₅.

S3. Refinement

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the phenyl, 0.96 Å for the methyl and N—H= 0.89 Å with $U_{iso}(H)$ = 1.2 $U_{eq}(C$ -phenyl, N) or 1.5 $U_{eq}(C$ -methyl). The water H atoms were located in a difference Fourier map and refined using *DFIX* restraints (O—H 0.88 (7) Å). and a riding model, with $U_{iso}(H)$ = 1.5 $U_{eq}(O)$.

Figure 1

A view of the asymmetric unit of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) -x + 1, -y + 1, -z + 1].

Figure 2

An anionic layer in (I) viewed along the c axis. Intermolecular hydrogen bonds are shown as red dashed lines.

Figure 3

A portion of the crystal packing showing the hydrogen bonds as red dashed lines.

Bis(2-methoxyanilinium) hexabromidostannate(IV) dihydrate

Crystal data

 $(C_7H_{10}NO)_2[SnBr_6]\cdot 2H_2O$ $M_r = 882.50$ Monoclinic, $P2_1/a$ Hall symbol: -P 2yab a = 10.8728 (7) Å b = 13.4403 (10) Å c = 9.0695 (6) Å $\beta = 103.680$ (5)° V = 1287.76 (15) Å³ Z = 2F(000) = 828

Data collection

Agilent Xcalibur (Sapphire2) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*CrysAlis RED*; Agilent, 2012) $T_{\min} = 0.356, T_{\max} = 0.371$ 7762 measured reflections $D_{\rm x} = 2.276 \text{ Mg m}^{-3}$ $D_{\rm m} = 2.276 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo K\$\alpha\$ radiation, \$\lambda\$ = 0.71073 Å Cell parameters from 5970 reflections \$\theta\$ = 3.6-24.7\$\circ\$ \$\mu\$ = 10.32 mm}^{-1}T = 293 KPrism, yellow 0.10 \times 0.10 \times 0.10 mm

2188 independent reflections 1854 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 24.7^\circ, \ \theta_{min} = 3.6^\circ$ $h = -12 \rightarrow 12$ $k = -11 \rightarrow 15$ $l = -10 \rightarrow 10$ 2 standard reflections every 120 min Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of independent
$wR(F^2) = 0.156$	and constrained refinement
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0686P)^2 + 18.8968P]$
2188 reflections	where $P = (F_o^2 + 2F_c^2)/3$
133 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
9 restraints	$\Delta \rho_{\rm max} = 1.51 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -1.44 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0039 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	11	~	II */II	
	л	y	2	U _{iso} / U _{eq}	
Sn1	0.5000	0.5000	0.5000	0.0316 (4)	
Br2	0.42826 (15)	0.67591 (9)	0.41106 (12)	0.0609 (5)	
Br3	0.56362 (12)	0.57192 (8)	0.72849 (10)	0.0444 (4)	
Br1	0.22150 (13)	0.46965 (11)	0.51438 (14)	0.0582 (5)	
OW	0.3159 (10)	0.1977 (7)	0.3700 (8)	0.056 (2)	
N1	0.5673 (10)	0.1749 (8)	0.2638 (9)	0.047 (2)	
H1A	0.5324	0.1285	0.3109	0.071*	
H1B	0.5596	0.2341	0.3048	0.071*	
H1C	0.6489	0.1611	0.2738	0.071*	
O1	0.3632 (11)	0.0449 (7)	0.1485 (10)	0.068 (3)	
C1	0.5131 (11)	0.1763 (8)	0.1279 (11)	0.043 (3)	
C2	0.4114 (12)	0.1068 (9)	0.0787 (10)	0.050 (3)	
C6	0.5699 (11)	0.2478 (9)	0.0605 (10)	0.052 (3)	
H6	0.6399	0.2847	0.1101	0.063*	
C4	0.4156 (15)	0.1880 (12)	-0.1337 (13)	0.072 (4)	
H4	0.3809	0.1929	-0.2375	0.086*	
C7	0.2509 (19)	-0.0282 (12)	0.0978 (18)	0.081 (5)	
H7A	0.2398	-0.0658	0.1838	0.122*	
H7B	0.2682	-0.0728	0.0225	0.122*	
H7C	0.1751	0.0086	0.0557	0.122*	
C3	0.3580 (13)	0.1144 (11)	-0.0702 (11)	0.077 (5)	
H3	0.2914	0.0753	-0.1227	0.092*	
C5	0.5122 (16)	0.2580 (13)	-0.0858 (11)	0.081 (5)	

supporting information

Н5	0.5338	0.3061	-0.1489	0.097*
H1W	0.360 (10)	0.238 (7)	0.439 (10)	0.08 (5)*
H2W	0.297 (16)	0.139 (6)	0.402 (14)	0.10 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0520 (7)	0.0323 (6)	0.0091 (5)	0.0004 (4)	0.0045 (4)	-0.0037 (3)
Br2	0.1150 (12)	0.0381 (7)	0.0191 (6)	0.0070 (6)	-0.0052 (6)	0.0030 (4)
Br3	0.0776 (9)	0.0429 (7)	0.0101 (5)	-0.0015 (5)	0.0054 (5)	-0.0050 (4)
Br1	0.0642 (8)	0.0749 (9)	0.0411 (7)	-0.0200 (7)	0.0237 (6)	-0.0303 (6)
OW	0.099 (7)	0.055 (5)	0.015 (3)	-0.019 (5)	0.015 (4)	0.005 (3)
N1	0.065 (6)	0.057 (6)	0.018 (4)	0.006 (5)	0.005 (4)	0.007 (4)
01	0.106 (8)	0.061 (6)	0.038 (5)	-0.027 (5)	0.021 (5)	-0.010 (4)
C1	0.060 (7)	0.048 (6)	0.020 (5)	0.007 (5)	0.010 (5)	0.004 (4)
C2	0.066 (8)	0.059 (8)	0.031 (6)	-0.001 (6)	0.021 (5)	-0.016 (5)
C6	0.066 (8)	0.063 (8)	0.023 (5)	0.001 (6)	0.000 (5)	0.000 (5)
C4	0.088 (10)	0.113 (13)	0.016 (5)	0.000 (9)	0.015 (6)	0.020 (7)
C7	0.131 (15)	0.061 (9)	0.057 (9)	-0.034 (9)	0.035 (9)	-0.032 (7)
C3	0.068 (9)	0.113 (13)	0.041 (7)	0.001 (9)	-0.004 (6)	-0.048 (8)
C5	0.104 (12)	0.100 (12)	0.035 (7)	-0.003 (10)	0.010 (7)	-0.012 (8)

Geometric parameters (Å, °)

Sn1—Br3	2.2426 (9)	O1—C7	1.550 (18)	
Sn1—Br3 ⁱ	2.2426 (9)	C1—C6	1.363 (9)	
Sn1—Br2	2.5595 (11)	C1—C2	1.437 (16)	
Sn1—Br2 ⁱ	2.5595 (11)	C2—C3	1.341 (9)	
Sn1—Br2 ⁱ	2.5595 (11)	C6—C5	1.333 (9)	
Sn1—Br1	3.0886 (13)	С6—Н6	0.9300	
Sn1—Br1 ⁱ	3.0886 (13)	C4—C3	1.368 (9)	
OW—H1W	0.88 (9)	C4—C5	1.40 (2)	
OW—H2W	0.88 (9)	C4—H4	0.9300	
N1C1	1.234 (13)	С7—Н7А	0.9600	
N1—H1A	0.8900	С7—Н7В	0.9600	
N1—H1B	0.8900	С7—Н7С	0.9600	
N1—H1C	0.8900	С3—Н3	0.9300	
O1—C2	1.235 (14)	С5—Н5	0.9300	
Br3—Sn1—Br3 ⁱ	180.0	H1B—N1—H1C	109.5	
Br3—Sn1—Br2	84.12 (4)	C2—O1—C7	132.4 (11)	
Br3 ⁱ —Sn1—Br2	95.88 (4)	N1—C1—C6	107.4 (10)	
Br3—Sn1—Br2 ⁱ	95.88 (4)	N1—C1—C2	116.8 (9)	
Br3 ⁱ —Sn1—Br2 ⁱ	84.12 (4)	C6—C1—C2	135.8 (9)	
Br2—Sn1—Br2 ⁱ	180.0	O1—C2—C3	115.7 (12)	
Br3—Sn1—Br2 ⁱ	95.88 (4)	O1—C2—C1	131.9 (9)	
$Br3^{i}$ — $Sn1$ — $Br2^{i}$	84.12 (4)	C3—C2—C1	112.4 (10)	
Br2—Sn1—Br2 ⁱ	180.0	C5—C6—C1	111.2 (11)	

Br2 ⁱ —Sn1—Br2 ⁱ	0.00 (5)	С5—С6—Н6	124.4
Br3—Sn1—Br1	96.26 (4)	С1—С6—Н6	124.4
Br3 ⁱ —Sn1—Br1	83.74 (4)	C3—C4—C5	137.6 (11)
Br2—Sn1—Br1	84.64 (5)	C3—C4—H4	111.2
Br2 ⁱ —Sn1—Br1	95.36 (5)	С5—С4—Н4	111.2
Br2 ⁱ —Sn1—Br1	95.36 (5)	O1—C7—H7A	109.5
Br3—Sn1—Br1 ⁱ	83.74 (4)	O1—C7—H7B	109.5
Br3 ⁱ —Sn1—Br1 ⁱ	96.26 (4)	H7A—C7—H7B	109.5
Br2—Sn1—Br1 ⁱ	95.36 (5)	O1—C7—H7C	109.5
$Br2^{i}$ — $Sn1$ — $Br1^{i}$	84.64 (5)	H7A—C7—H7C	109.5
Br2 ⁱ —Sn1—Br1 ⁱ	84.64 (5)	H7B—C7—H7C	109.5
Br1—Sn1—Br1 ⁱ	180.00 (5)	C2—C3—C4	110.3 (10)
H1W—OW—H2W	116.9 (4)	С2—С3—Н3	124.8
C1—N1—H1A	109.5	С4—С3—Н3	124.8
C1—N1—H1B	109.5	C6—C5—C4	112.5 (12)
H1A—N1—H1B	109.5	С6—С5—Н5	123.8
C1—N1—H1C	109.5	С4—С5—Н5	123.8
H1A—N1—H1C	109.5		
C7—O1—C2—C3	0(2)	C2C1C6C5	4 (2)
C7C1C1	177.8 (14)	O1—C2—C3—C4	177.3 (13)
N1-C1-C2-O1	2 (2)	C1—C2—C3—C4	-0.6 (17)
C6—C1—C2—O1	-178.2 (15)	C5—C4—C3—C2	-2 (3)
N1—C1—C2—C3	179.6 (12)	C1—C6—C5—C4	-4.5 (19)
C6—C1—C2—C3	-1 (2)	C3—C4—C5—C6	5 (3)
N1-C1-C6-C5	-176.6 (13)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
N1—H1 <i>B</i> ···Br2 ⁱ	0.89	2.82	3.557 (9)	141
N1—H1 <i>C</i> ···O <i>W</i> ⁱⁱ	0.89	2.63	3.151 (15)	119
OW—H1W····Br2 ⁱ	0.88 (9)	2.64 (9)	3.457 (9)	154 (11)
OW—H2W····Br1 ⁱⁱⁱ	0.88 (9)	2.42 (9)	3.296 (8)	171 (16)
C7—H7A····Br1 ⁱⁱⁱ	0.96	2.71	3.459 (15)	135
N1—H1A····Br1 ⁱⁱ	0.89	2.75	3.154 (9)	109
C5—H5····Br2 ^{iv}	0.93	2.52	3.289 (12)	140

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+1/2, z; (iii) -x+1/2, y-1/2, -z+1; (iv) -x+1, -y+1, -z.