organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(Quinolin-8-yloxy)methyl]-1Hbenzimidazole monohvdrate

Lin Tang, Yue Zhang and Yonghong Wen*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: yonghwen@163.com

Received 31 October 2013; accepted 15 November 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.001 Å; R factor = 0.039; wR factor = 0.087; data-to-parameter ratio = 9.4.

In the title hydrate, $C_{17}H_{13}N_3O \cdot H_2O$, the dihedral angle between the quinoline and benzimidazole ring systems is $6.22 (7)^{\circ}$. The water molecule is linked to the main molecule by $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds. Further O-H···N hydrogen bonds link the organic molecules into C(6)chains running parallel to the b axis.

Related literature

For background to the properties and applications of benzimidazole and 8-hydroxyquinoline and their derivatives, see: Hanna & Moawad (2002); Patel & Patel (1999); Pierre et al. (2003); Liu et al. (2005); Wang et al. (2006); Wen et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_{17}H_{13}N_3O \cdot H_2O$ $M_r = 293.32$ Orthorhombic, $P2_12_12_1$ a = 6.1679 (12) Åb = 11.094 (2) Å c = 20.502 (4) Å

V = 1402.9 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.12 \times 0.10 \times 0.06 \; \text{mm}$


```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.989, T_{\max} = 0.994
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.087$	independent and constrained
S = 1.06	refinement
1947 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
207 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
18 restraints	

10881 measured reflections

 $R_{\rm int} = 0.048$

1947 independent reflections

1808 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	H···A	$D \cdots A$	$D - H \cdots A$
$02 - H2WB \cdots N1$ $N2 - H2A \cdots O2$ $O2 - H2WA \cdots N3^{i}$	0.87(1)	2.03 (1)	2.8892 (10)	170 (1)
	0.86	1.95	2.7880 (9)	163
	0.86(1)	2.05 (1)	2.9046 (9)	174 (1)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported financially by the Science and Technology Project of Shandong Province, China (No. 2012 G0020221).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2452).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem. 55, 43-60.
- Liu, Q.-D., Jia, W.-L. & Wang, S. (2005). Inorg. Chem. 44, 1332-1343.
- Patel, A. K. & Patel, V. M. (1999). Synth. React. Inorg. Met.-Org. Chem. 29, 193-197
- Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077-1084.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y., Xu, H.-B., Su, Z.-M., Shao, K.-Z., Zhao, Y.-H., Cui, H.-P., Lan, Y.-Q. & Hao, X.-R. (2006). Inorg. Chem. Commun. 9, 1207-1211.
- Wen, Y.-H., Xie, X.-L. & Wang, L. (2011). J. Coord. Chem. 64, 459-472.

supporting information

Acta Cryst. (2013). E69, o1838 [doi:10.1107/S1600536813031322]

2-[(Quinolin-8-yloxy)methyl]-1*H*-benzimidazole monohydrate

Lin Tang, Yue Zhang and Yonghong Wen

S1. Comment

Benzimidazole and 8-hydroxyquinoline and their derivatives find wide application in coordination chemistry (Hanna *et al.*, 2002), pharmaceutical chemistry (Patel *et al.*, 1999; Pierre *et al.*, 2003), and materials chemistry (Liu *et al.*, 2005; Wang *et al.*, 2006). 2-((Quinolin-8-yloxy)methyl)benzimidazole is a tridentate ligand with N₂O donor set, and its copper complex exhibited a predominantly ferromagnetic interaction, while its cadmium complex has good fluorescence property (Wen *et al.*, 2011). Here, we report the crystal structure of the title compound.

The title compound consists of a 2-((quinolin-8-yloxy)methyl)benzimidazole molecule and a crystal water molecule (Fig. 1). The whole molecule is essentially planar, with a dihedral angle of 6.22 (7)° between quinoline and benzimidazole ring. The water molecule as donor is hydrogen bonded to N1 atom in quinoline ring and also as acceptor is hydrogen bonded to H2A atom in benzimidazole ring. These two hydrogen bonds (Table 2) *viz*. O2—H2WB···N1 and N2 —H2A···O2 are helpful to the planar structure of the whole molecule. Meanwhile, the water molecule as donor is hydrogen bonded to N3 atom in benzimidazole ring of the neighbouring molecule to form intermolecular hydrogen bond O2—H2WA···N3 [symmetry-code: -x + 1, y + 1/2, -z + 1/2]. So, the crystal structure is stabilized by two intra and and one intermolecular N—H···O ; O—H···N and O—H···N hydrogen bonds respectively, which link the molecules into *C*(6) chains running parallel to the *b* axis (Bernstein *et al.*, 1995) (Fig. 2), Table 2.

S2. Experimental

2-((Quinolin-8-yloxy)methyl)benzimidazole was prepared according to the literature method (Wen *et al.*, 2011). Colourless single crystals of the title compound suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 15 d.

S3. Refinement

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 times U_{eq} of the carrier atoms.

Figure 1

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. The dashed lines represent hydrogen bonds.

Figure 2

The packing diagram of the title compound, showing C(6) chains running parallel to the *b* axis.

2-[(Quinolin-8-yloxy)methyl]-1H-benzimidazole monohydrate

Crystal data

C₁₇H₁₃N₃O·H₂O $M_r = 293.32$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.1679 (12) Å b = 11.094 (2) Å c = 20.502 (4) Å V = 1402.9 (5) Å³ Z = 4 F(000) = 616 $D_x = 1.389 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 3957 reflections $\theta = 3.0-27.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.12 \times 0.10 \times 0.06 \text{ mm}$ Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.989, T_{max} = 0.994$ <i>Refinement</i>	10881 measured reflections 1947 independent reflections 1808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -8 \rightarrow 7$ $k = -14 \rightarrow 13$ $l = -20 \rightarrow 26$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.087$ S = 1.06 1947 reflections 207 parameters 18 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 0.4303P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.013$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.70538 (9)	0.86768 (5)	0.14109 (3)	0.01892 (14)	
N1	0.82709 (12)	1.03042 (6)	0.05135 (3)	0.01977 (14)	
N2	0.34077 (11)	0.92882 (6)	0.20550 (3)	0.01772 (16)	
H2A	0.3746	0.9764	0.1740	0.021*	
N3	0.36377 (12)	0.77363 (6)	0.27537 (3)	0.01932 (14)	
C1	0.88756 (16)	1.10840 (7)	0.00577 (4)	0.0235 (2)	
H1B	0.7980	1.1743	-0.0021	0.028*	
C2	1.07849 (16)	1.09794 (8)	-0.03150 (4)	0.0242 (2)	
H2B	1.1122	1.1549	-0.0632	0.029*	
C3	1.21293 (15)	1.00257 (8)	-0.02022 (4)	0.0235 (2)	
H3B	1.3415	0.9949	-0.0436	0.028*	
C4	1.15598 (14)	0.91521 (7)	0.02721 (4)	0.01900 (19)	
C5	1.28526 (14)	0.81205 (8)	0.03975 (4)	0.0201 (2)	
H5A	1.4166	0.8017	0.0182	0.024*	
C6	1.21598 (14)	0.72833 (7)	0.08357 (4)	0.0197 (2)	

	1 2000	0.6506	0.0007	0.004*
H6A	1.2990	0.6596	0.0907	0.024*
C7	1.01976 (13)	0.74376 (7)	0.11856 (4)	0.01837 (19)
H7A	0.9755	0.6855	0.1484	0.022*
C8	0.89491 (13)	0.84444 (7)	0.10856 (4)	0.01745 (19)
C9	0.95816 (14)	0.93301 (7)	0.06158 (4)	0.01845 (15)
C10	0.65019 (14)	0.78507 (7)	0.19152 (4)	0.01846 (19)
H10A	0.7684	0.7789	0.2225	0.022*
H10B	0.6240	0.7058	0.1732	0.022*
C11	0.45163 (14)	0.82967 (7)	0.22478 (4)	0.01850 (15)
C12	0.16288 (13)	0.93884 (7)	0.24609 (4)	0.01765 (19)
C13	-0.01106 (15)	1.01856 (7)	0.24679 (4)	0.0214 (2)
H13A	-0.0209	1.0820	0.2173	0.026*
C14	-0.16961 (15)	0.99854 (7)	0.29382 (4)	0.0239 (2)
H14A	-0.2892	1.0495	0.2956	0.029*
C15	-0.15352 (15)	0.90322 (8)	0.33867 (4)	0.0249 (2)
H15A	-0.2616	0.8931	0.3698	0.030*
C16	0.02011 (15)	0.82397 (8)	0.33743 (4)	0.0223 (2)
H16A	0.0301	0.7611	0.3673	0.027*
C17	0.17982 (14)	0.84134 (7)	0.28990 (4)	0.01820 (19)
O2	0.45798 (10)	1.11879 (5)	0.12375 (3)	0.02338 (15)
H2WA	0.5052 (13)	1.1686 (4)	0.1525 (2)	0.053 (3)*
H2WB	0.5604 (8)	1.0836 (5)	0.1021 (3)	0.047 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0167 (3)	0.0218 (3)	0.0183 (2)	0.0025 (2)	0.0034 (2)	0.0034 (2)
N1	0.0224 (3)	0.0198 (2)	0.0171 (2)	0.0001 (2)	0.0005 (2)	-0.0011 (2)
N2	0.0172 (3)	0.0179 (3)	0.0180 (3)	-0.0017 (3)	0.0009 (3)	0.0006 (3)
N3	0.0177 (3)	0.0228 (2)	0.0175 (2)	-0.0019 (2)	0.0002 (2)	0.0011 (2)
C1	0.0309 (5)	0.0189 (3)	0.0207 (4)	0.0007 (4)	-0.0001 (4)	0.0000 (3)
C2	0.0298 (5)	0.0236 (4)	0.0192 (4)	-0.0066 (4)	0.0023 (3)	0.0007 (3)
C3	0.0238 (4)	0.0275 (4)	0.0191 (4)	-0.0059 (4)	0.0020 (4)	-0.0018 (3)
C4	0.0182 (4)	0.0230 (4)	0.0159 (3)	-0.0042 (4)	-0.0020(3)	-0.0037 (3)
C5	0.0140 (4)	0.0289 (4)	0.0175 (3)	-0.0006 (4)	0.0003 (3)	-0.0048 (3)
C6	0.0179 (4)	0.0228 (4)	0.0184 (4)	0.0035 (4)	-0.0024 (3)	-0.0025 (3)
C7	0.0173 (4)	0.0208 (3)	0.0169 (3)	-0.0005 (3)	-0.0018 (3)	-0.0001 (3)
C8	0.0159 (4)	0.0210 (3)	0.0154 (3)	-0.0013 (3)	-0.0006 (3)	-0.0028 (3)
C9	0.0202 (3)	0.0185 (2)	0.0167 (3)	-0.0009(2)	-0.0010 (3)	-0.0021 (2)
C10	0.0180 (4)	0.0189 (3)	0.0184 (3)	-0.0028 (4)	0.0023 (3)	0.0019 (3)
C11	0.0174 (3)	0.0211 (3)	0.0170 (3)	-0.0024 (3)	-0.0014 (2)	0.0000 (2)
C12	0.0164 (4)	0.0198 (3)	0.0168 (3)	-0.0039 (3)	0.0003 (3)	-0.0042 (3)
C13	0.0221 (4)	0.0188 (3)	0.0234 (4)	-0.0007 (4)	-0.0013 (3)	-0.0046 (3)
C14	0.0202 (4)	0.0244 (4)	0.0272 (4)	-0.0010 (4)	-0.0003 (4)	-0.0096 (3)
C15	0.0204 (4)	0.0338 (4)	0.0206 (4)	-0.0048 (4)	0.0046 (3)	-0.0091 (3)
C16	0.0209 (4)	0.0269 (4)	0.0190 (4)	-0.0046 (4)	0.0007 (3)	-0.0009 (3)
C17	0.0155 (4)	0.0215 (4)	0.0176 (3)	-0.0036 (3)	-0.0012 (3)	-0.0027 (3)
O2	0.0240 (3)	0.0216 (3)	0.0246 (3)	-0.0012(3)	0.0020 (3)	-0.0029(2)

Geometric parameters (Å, °)

01—C8	1.3703 (10)	С6—Н6А	0.9300
O1—C10	1.4230 (9)	C7—C8	1.3721 (11)
N1—C1	1.3268 (11)	C7—H7A	0.9300
N1—C9	1.3658 (11)	C8—C9	1.4303 (11)
N2	1.3541 (11)	C10—C11	1.4864 (12)
N2	1.3816 (11)	C10—H10A	0.9700
N2—H2A	0.8600	C10—H10B	0.9700
N3—C11	1.3253 (10)	C12—C13	1.3905 (12)
N3—C17	1.3930 (11)	C12—C17	1.4099 (11)
C1—C2	1.4087 (13)	C13—C14	1.3911 (13)
C1—H1B	0.9300	C13—H13A	0.9300
C2—C3	1.3640 (13)	C14—C15	1.4049 (12)
C2—H2B	0.9300	C14—H14A	0.9300
C3—C4	1.4172 (11)	C15—C16	1.3858 (13)
C3—H3B	0.9300	C15—H15A	0.9300
C4—C5	1.4183 (12)	C16—C17	1.3988 (12)
C4—C9	1.4227 (12)	C16—H16A	0.9300
C5—C6	1.3609 (11)	O2—H2WA	0.860 (5)
С5—Н5А	0.9300	O2—H2WB	0.866 (5)
C6—C7	1.4173 (12)		
C8—O1—C10	115.89 (6)	N1—C9—C8	119.05 (7)
C1—N1—C9	117.23 (8)	C4—C9—C8	118.17 (7)
C11—N2—C12	106.89 (6)	O1—C10—C11	108.42 (6)
C11—N2—H2A	126.6	O1—C10—H10A	110.0
C12—N2—H2A	126.6	C11—C10—H10A	110.0
C11—N3—C17	104.33 (7)	O1—C10—H10B	110.0
N1—C1—C2	124.28 (8)	C11—C10—H10B	110.0
N1—C1—H1B	117.9	H10A—C10—H10B	108.4
C2—C1—H1B	117.9	N3—C11—N2	113.77 (7)
C3—C2—C1	118.69 (8)	N3—C11—C10	122.66 (7)
C3—C2—H2B	120.7	N2-C11-C10	123.54 (7)
C1—C2—H2B	120.7	N2—C12—C13	132.08 (7)
C2—C3—C4	119.75 (8)	N2—C12—C17	105.26 (7)
С2—С3—Н3В	120.1	C13—C12—C17	122.58 (8)
C4—C3—H3B	120.1	C12—C13—C14	116.62 (8)
C3—C4—C5	122.47 (8)	C12—C13—H13A	121.7
C3—C4—C9	117.22 (7)	C14—C13—H13A	121.7
C5—C4—C9	120.29 (7)	C13—C14—C15	121.61 (8)
C6—C5—C4	119.59 (8)	C13—C14—H14A	119.2
C6—C5—H5A	120.2	C15—C14—H14A	119.2
C4—C5—H5A	120.2	C16—C15—C14	121.34 (8)
C5—C6—C7	121.32 (8)	C16—C15—H15A	119.3
С5—С6—Н6А	119.3	C14—C15—H15A	119.3
С7—С6—Н6А	119.3	C15—C16—C17	118.01 (8)
C8—C7—C6	120.13 (7)	C15—C16—H16A	121.0

С8—С7—Н7А	119.9	C17—C16—H16A	121.0
С6—С7—Н7А	119.9	N3—C17—C16	130.41 (7)
O1—C8—C7	124.00 (7)	N3—C17—C12	109.74 (7)
O1—C8—C9	115.55 (7)	C16—C17—C12	119.82 (8)
C7—C8—C9	120.45 (7)	H2WA—O2—H2WB	113.3 (6)
N1—C9—C4	122.78 (7)		
C9—N1—C1—C2	-1.10 (12)	C8-01-C10-C11	175.34 (6)
N1—C1—C2—C3	-0.66 (13)	C17—N3—C11—N2	0.46 (9)
C1—C2—C3—C4	1.48 (12)	C17—N3—C11—C10	-177.96 (7)
C2—C3—C4—C5	177.95 (8)	C12—N2—C11—N3	-0.79 (9)
C2—C3—C4—C9	-0.58 (12)	C12—N2—C11—C10	177.61 (7)
C3—C4—C5—C6	-176.63 (8)	O1—C10—C11—N3	-177.95 (7)
C9—C4—C5—C6	1.85 (12)	O1—C10—C11—N2	3.80 (10)
C4—C5—C6—C7	-1.94 (12)	C11—N2—C12—C13	-176.09 (9)
C5—C6—C7—C8	0.15 (12)	C11—N2—C12—C17	0.74 (8)
C10—O1—C8—C7	5.26 (11)	N2-C12-C13-C14	177.02 (8)
C10—O1—C8—C9	-175.18 (7)	C17—C12—C13—C14	0.64 (12)
C6—C7—C8—O1	-178.74 (7)	C12-C13-C14-C15	0.56 (12)
C6—C7—C8—C9	1.72 (12)	C13—C14—C15—C16	-0.82 (13)
C1—N1—C9—C4	2.06 (11)	C14—C15—C16—C17	-0.15 (13)
C1—N1—C9—C8	-177.72 (7)	C11—N3—C17—C16	178.14 (9)
C3—C4—C9—N1	-1.25 (12)	C11—N3—C17—C12	0.05 (9)
C5-C4-C9-N1	-179.81 (7)	C15-C16-C17-N3	-176.62 (8)
C3—C4—C9—C8	178.52 (7)	C15-C16-C17-C12	1.31 (12)
C5—C4—C9—C8	-0.03 (11)	N2-C12-C17-N3	-0.50 (9)
O1-C8-C9-N1	-1.54 (11)	C13—C12—C17—N3	176.71 (7)
C7—C8—C9—N1	178.04 (7)	N2-C12-C17-C16	-178.82 (7)
O1—C8—C9—C4	178.67 (7)	C13—C12—C17—C16	-1.61 (12)
C7—C8—C9—C4	-1.75 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2 <i>WB</i> …N1	0.87 (1)	2.03 (1)	2.8892 (10)	170 (1)
N2—H2A···O2	0.86	1.95	2.7880 (9)	163
$O2$ — $H2WA$ ··· $N3^{i}$	0.86 (1)	2.05 (1)	2.9046 (9)	174 (1)

Symmetry code: (i) -x+1, y+1/2, -z+1/2.