

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[5-(Diphenylphosphorylmethyl)-4-(4-fluorophenyl)-6-isopropylpyrimidin-2-yl]-N-methylmethanesulfonamide

Ya-Ming Wu

Department of Applied Chemistry, Nanjing College of Chemical Technology, No. 625 Geguan Road, Dachang, Nanjing 210048, People's Republic of China Correspondence e-mail: adsony05@163.com

Received 29 September 2013; accepted 15 October 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.136; data-to-parameter ratio = 14.7.

In the title compound, C₂₈H₂₉FN₃O₃PS, the pyrimidine ring is oriented at a dihedral angle of 50.9 (2) $^{\circ}$ with respect to the florobenzene ring, while the two phenyl rings bonding to the same P atom are twisted with respect to each other, making a dihedral angle of $62.2 (2)^{\circ}$. In the crystal, molecules are linked by weak $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds into a three-dimensional supramolecular architecture.

Related literature

For the synthesis of the title compound, an intermediate for the preparation of the statin rosuvastation {systematic name: (3R,5S,6E)-7-[4-(4-fluorophenyl)-2-(N-methylmethanesulfonamido)-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6enoic acid}, see: Brieden & Veith (2000).

Experimental

Crystal data

C ₂₈ H ₂₉ FN ₃ O ₃ PS
$M_r = 537.57$
Monoclinic, $P2_1/n$
a = 14.023 (3) Å
b = 6.3830 (13)Å
c = 30.493 (6) Å
$\beta = 102.79 \ (3)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.957, \ T_{\max} = 0.978$ 5109 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.136$ S = 1.004898 reflections

Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$

V = 2661.7 (9) Å³

Z = 4

4898 independent reflections 2568 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.092$ 3 standard reflections every 200 reflections intensity decay: 1%

334 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.26$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1B \cdots O1^{i}$	0.96	2.56	3.363 (5)	141
$C2-H2C\cdots F^{ii}$	0.96	2.52	3.202 (6)	128
$C13-H13A\cdots O2^{iii}$	0.93	2.53	3.350 (6)	148
	£ 1	1		

Symmetry codes: (i) $-x + \frac{5}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y, -z; (iii) x - 1, y, z.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks the Center of Testing and Analysis of Nanjing University for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5743).

References

Brieden, W. & Veith, U. (2000). Eur. Patent EP1035127.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1673 [doi:10.1107/S1600536813028286]

N-[5-(Diphenylphosphorylmethyl)-4-(4-fluorophenyl)-6-isopropylpyrimidin-2yl]-*N*-methylmethanesulfonamide

Ya-Ming Wu

S1. Comment

The title compound is an intermediate for the preparation of rosuvastation (Brieden & Veith, 2000). We herein report its molecular and crystal structure (Fig. 1). The dihedral angles between the aromatic rings are: $30.7 (2)^{\circ} (A/B)$, $65.76 (1)^{\circ} (A/D)$, $50.9 (2)^{\circ} (A/E)$, and $62.2 (2)^{\circ} (B/D)$ [with the rings defined as: A =C3/N2/C4—C6/N3, B=C11—C16, D=C17—C22 and E=C23—C28]. In the crystal structure, no classic hydrogen bond was observed and molecules were stacked to form three-dimensional framework by weak C—H···O and C—H···F interactions (Table 1) (Fig. 2).

S2. Experimental

The title compound was synthesized according to a procedure published by Brieden & Veith (2000). Colorless crystals suitable for X-ray analysis were obtained by dissolving the compound (0.5 g) in ethanol (80 ml) and evaporating the solvent slowly at room temperature for about 5 d.

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93-0.98 Å and constrained to ride on their parent atoms, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram of (I).

N-[5-(Diphenylphosphorylmethyl)-4-(4-fluorophenyl)-6-isopropylpyrimidin-2-yl]-N-methylmethanesulfonamide

Crystal data	
$C_{28}H_{29}FN_{3}O_{3}PS$ $M_{r} = 537.57$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 14.023 (3) Å b = 6.3830 (13) Å c = 30.493 (6) Å $\beta = 102.79$ (3)° V = 2661.7 (9) Å ³ Z = 4	F(000) = 1128 $D_x = 1.342 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.20 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$T_{\min} = 0.957, T_{\max} = 0.978$ 5109 measured reflections 4898 independent reflections 2568 reflections with $I > 2\sigma(I)$ $R_{int} = 0.092$ $\theta_{\max} = 25.5^{\circ}, \ \theta_{\min} = 1.4^{\circ}$ $h = 0 \rightarrow 16$

$k = 0 \rightarrow 7$ $l = -36 \rightarrow 35$	3 standard reflections every 200 reflections intensity decay: 1%		
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier		
Least-squares matrix: full	map		
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from		
$wR(F^2) = 0.136$	neighbouring sites		
S = 1.00	H-atom parameters constrained		
4898 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0378P)^2]$		
334 parameters	where $P = (F_o^2 + 2F_c^2)/3$		
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$		
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$		
direct methods	$\Delta \rho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$		

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Р	0.66722 (7)	0.42516 (17)	0.11070 (4)	0.0362 (3)
S	1.18096 (8)	0.76834 (19)	0.19108 (4)	0.0487 (3)
F	0.8413 (2)	-0.3088 (5)	-0.02311 (10)	0.0980 (11)
01	1.1845 (2)	0.6427 (5)	0.22969 (10)	0.0686 (10)
N1	1.1193 (2)	0.6413 (5)	0.14580 (11)	0.0482 (9)
C1	1.1139 (3)	0.9950 (7)	0.19474 (16)	0.0659 (14)
H1B	1.1459	1.0751	0.2204	0.099*
H1C	1.0494	0.9576	0.1978	0.099*
H1D	1.1094	1.0771	0.1680	0.099*
N2	0.9853 (2)	0.5871 (5)	0.17771 (10)	0.0398 (8)
O2	1.2701 (2)	0.8296 (5)	0.17934 (11)	0.0700 (10)
C2	1.1635 (4)	0.6142 (9)	0.10687 (15)	0.0852 (18)
H2C	1.1191	0.5392	0.0837	0.128*
H2D	1.2233	0.5365	0.1157	0.128*
H2E	1.1771	0.7490	0.0957	0.128*
03	0.69197 (19)	0.6503 (4)	0.11812 (9)	0.0459 (7)
N3	1.0068 (2)	0.3895 (5)	0.11488 (11)	0.0397 (8)
C3	1.0327 (3)	0.5313 (6)	0.14613 (14)	0.0399 (10)
C4	0.9008 (3)	0.4874 (6)	0.17684 (13)	0.0361 (10)
C5	0.8634 (3)	0.3368 (6)	0.14377 (12)	0.0339 (9)
C6	0.9213 (3)	0.2883 (6)	0.11349 (12)	0.0341 (9)
C7	0.8527 (3)	0.5433 (7)	0.21492 (13)	0.0439 (11)

Н7А	0 7824	0 5165	0 2050	0.053*
C8	0.8664 (4)	0.7705 (7)	0.22873 (16)	0.033
H8A	0.8392	0.8583	0.2035	0.107*
H8B	0.9350	0.8000	0.2387	0.107*
HSC	0.8340	0.7977	0.2527	0.107*
	0.8030 (4)	0.7977	0.2527 0.25420(14)	0.107 0.0732(16)
Нол	0.8930 (4)	0.3984 (8)	0.23420 (14)	0.0732 (10)
HOR	0.8601	0.2555	0.2781	0.110*
	0.001	0.4231	0.2781	0.110*
C10	0.3018 0.7621 (2)	0.4230 0.2477 (6)	0.2047 0.14028 (12)	0.110° 0.0378 (10)
	0.7021 (2)	0.2477 (0)	0.14028 (12)	0.0378 (10)
	0.7520	0.2213	0.1705	0.045*
	0.7509	0.1149	0.1243 0.12002 (12)	0.043°
C12	0.5001(5)	0.5550(0)	0.15092(15) 0.15190(14)	0.0309(10)
	0.5178 (5)	0.5088 (7)	0.15160 (14)	0.0311(12)
HIZA C12	0.3440	0.0432	0.1542	0.061°
	0.4366 (3)	0.4668 (8)	0.16934 (16)	0.0672 (15)
HI3A	0.4086	0.5722	0.1834	0.081*
C14	0.3980 (3)	0.2691 (9)	0.165 / / (16)	0.0622 (14)
HI4A	0.3441	0.2395	0.1778	0.075*
C15	0.4384 (3)	0.1138 (8)	0.14443 (15)	0.0628 (14)
HI5A	0.4108	-0.0193	0.1415	0.075*
C16	0.5201 (3)	0.1545 (7)	0.12736 (14)	0.0513 (12)
H16A	0.5482	0.0484	0.1135	0.062*
C17	0.6458 (3)	0.3547 (6)	0.05202 (13)	0.0346 (9)
C18	0.6367 (3)	0.1505 (7)	0.03646 (14)	0.0485 (11)
H18A	0.6428	0.0402	0.0568	0.058*
C19	0.6186 (3)	0.1096 (7)	-0.00913 (15)	0.0580 (13)
H19A	0.6121	-0.0280	-0.0194	0.070*
C20	0.6103 (3)	0.2717 (8)	-0.03926 (15)	0.0582 (13)
H20A	0.5986	0.2443	-0.0699	0.070*
C21	0.6194 (3)	0.4743 (8)	-0.02397 (15)	0.0603 (13)
H21A	0.6144	0.5841	-0.0444	0.072*
C22	0.6357 (3)	0.5165 (7)	0.02123 (15)	0.0512 (12)
H22A	0.6401	0.6546	0.0312	0.061*
C23	0.8973 (3)	0.1289 (6)	0.07731 (14)	0.0376 (10)
C24	0.8742 (3)	-0.0748 (6)	0.08606 (14)	0.0451 (11)
H24A	0.8713	-0.1126	0.1152	0.054*
C25	0.8553 (3)	-0.2243 (7)	0.05210 (16)	0.0528 (12)
H25A	0.8401	-0.3618	0.0580	0.063*
C26	0.8598 (3)	-0.1626 (8)	0.00999 (17)	0.0594 (13)
C27	0.8826 (4)	0.0346 (8)	-0.00001 (16)	0.0632 (14)
H27A	0.8848	0.0706	-0.0293	0.076*
C28	0.9028 (3)	0.1825 (7)	0.03403 (16)	0.0545 (12)
H28A	0.9200	0.3181	0.0277	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Р	0.0343 (6)	0.0324 (6)	0.0427 (7)	-0.0038 (5)	0.0105 (5)	-0.0012 (5)
S	0.0338 (6)	0.0486 (7)	0.0621 (8)	-0.0049 (5)	0.0072 (5)	-0.0026 (6)
F	0.137 (3)	0.075 (2)	0.091 (2)	-0.028 (2)	0.044 (2)	-0.0440 (19)
01	0.063 (2)	0.074 (2)	0.060 (2)	-0.0055 (18)	-0.0063 (16)	0.0205 (19)
N1	0.043 (2)	0.052 (2)	0.055 (2)	-0.0140 (18)	0.0212 (17)	-0.008 (2)
C1	0.054 (3)	0.050 (3)	0.091 (4)	0.008 (3)	0.011 (3)	-0.011 (3)
N2	0.0345 (19)	0.042 (2)	0.043 (2)	-0.0065 (17)	0.0085 (16)	-0.0027 (17)
O2	0.0371 (17)	0.066 (2)	0.113 (3)	-0.0235 (17)	0.0294 (17)	-0.023 (2)
C2	0.084 (4)	0.117 (5)	0.068 (4)	-0.044 (4)	0.045 (3)	-0.015 (4)
O3	0.0514 (17)	0.0305 (16)	0.0556 (19)	-0.0095 (14)	0.0112 (14)	-0.0055 (15)
N3	0.0356 (18)	0.037 (2)	0.049 (2)	-0.0030 (16)	0.0144 (16)	-0.0024 (18)
C3	0.035 (2)	0.041 (3)	0.045 (3)	-0.003 (2)	0.013 (2)	0.003 (2)
C4	0.030 (2)	0.040 (2)	0.038 (2)	0.0020 (19)	0.0060 (18)	0.002 (2)
C5	0.030 (2)	0.034 (2)	0.037 (2)	-0.0008 (19)	0.0076 (17)	0.001 (2)
C6	0.034 (2)	0.025 (2)	0.041 (2)	0.0005 (18)	0.0052 (18)	0.0013 (19)
C7	0.039 (2)	0.053 (3)	0.040 (2)	-0.003 (2)	0.010 (2)	-0.005 (2)
C8	0.085 (4)	0.060 (3)	0.083 (4)	0.004 (3)	0.048 (3)	-0.017 (3)
C9	0.091 (4)	0.088 (4)	0.044 (3)	-0.001 (3)	0.022 (3)	0.007 (3)
C10	0.038 (2)	0.036 (2)	0.040 (2)	-0.002 (2)	0.0104 (18)	0.001 (2)
C11	0.035 (2)	0.036 (2)	0.039 (2)	0.0038 (19)	0.0073 (18)	0.007 (2)
C12	0.054 (3)	0.043 (3)	0.060 (3)	0.000 (2)	0.019 (2)	-0.001 (2)
C13	0.056 (3)	0.071 (4)	0.085 (4)	0.010 (3)	0.037 (3)	-0.001 (3)
C14	0.041 (3)	0.081 (4)	0.071 (4)	-0.004 (3)	0.027 (2)	0.002 (3)
C15	0.049 (3)	0.065 (4)	0.081 (4)	-0.022 (3)	0.028 (3)	-0.003 (3)
C16	0.049 (3)	0.049 (3)	0.062 (3)	-0.008 (2)	0.026 (2)	-0.003 (2)
C17	0.030 (2)	0.033 (2)	0.041 (2)	-0.0037 (18)	0.0115 (18)	-0.005 (2)
C18	0.057 (3)	0.043 (3)	0.045 (3)	-0.003 (2)	0.013 (2)	0.001 (2)
C19	0.073 (3)	0.046 (3)	0.050 (3)	0.000 (3)	0.004 (2)	-0.007 (3)
C20	0.076 (3)	0.060 (3)	0.036 (3)	-0.002 (3)	0.007 (2)	-0.005 (3)
C21	0.080 (4)	0.053 (3)	0.044 (3)	-0.008 (3)	0.007 (3)	0.011 (3)
C22	0.060 (3)	0.035 (3)	0.056 (3)	-0.001 (2)	0.010 (2)	0.006 (2)
C23	0.033 (2)	0.037 (3)	0.045 (3)	0.0035 (19)	0.0113 (19)	-0.002 (2)
C24	0.053 (3)	0.037 (3)	0.048 (3)	0.005 (2)	0.015 (2)	0.005 (2)
C25	0.056 (3)	0.033 (3)	0.072 (3)	-0.002 (2)	0.019 (3)	-0.010 (3)
C26	0.070 (3)	0.047 (3)	0.069 (4)	-0.011 (3)	0.032 (3)	-0.023 (3)
C27	0.088 (4)	0.057 (3)	0.053 (3)	-0.012 (3)	0.031 (3)	-0.008 (3)
C28	0.064 (3)	0.038 (3)	0.068 (3)	-0.008 (2)	0.029 (3)	-0.005 (3)

Geometric parameters (Å, °)

P03	1.484 (3)	C10—H10A	0.9700	
P-C11	1.802 (4)	C10—H10B	0.9700	
P—C17	1.805 (4)	C11—C12	1.374 (5)	
PC10	1.826 (4)	C11—C16	1.391 (5)	
S—01	1.416 (3)	C12—C13	1.387 (5)	

S-02	1.428 (3)	C12—H12A	0.9300
S—N1	1.668 (3)	C13—C14	1.368 (6)
S—C1	1.743 (4)	C13—H13A	0.9300
F—C26	1.357 (5)	C14—C15	1.375 (6)
N1—C3	1.404 (5)	C14—H14A	0.9300
N1—C2	1.467 (5)	C15—C16	1.384 (5)
C1—H1B	0.9600	C15—H15A	0.9300
C1—H1C	0.9600	C16—H16A	0.9300
C1—H1D	0.9600	C17—C22	1.381 (5)
N2-C3	1 334 (4)	C17 - C18	1.383(5)
$N_2 - C_4$	1.331(1) 1 341(4)	C18 - C19	1.382(5)
$C_2 = H_2C$	0.0600		1.382(3)
	0.9000	C_{10} C_{20}	0.9300
C2—H2D	0.9000	C19 - C20	1.572 (0)
C2—H2E	0.9600	C19—H19A	0.9300
N3—C3	1.306 (5)	C20—C21	1.371 (6)
N3—C6	1.354 (4)	C20—H20A	0.9300
C4—C5	1.408 (5)	C21—C22	1.373 (6)
C4—C7	1.509 (5)	C21—H21A	0.9300
C5—C6	1.393 (5)	C22—H22A	0.9300
C5—C10	1.512 (5)	C23—C24	1.380 (5)
C6—C23	1.484 (5)	C23—C28	1.382 (5)
C7—C8	1.511 (5)	C24—C25	1.390 (5)
С7—С9	1.520 (6)	C24—H24A	0.9300
С7—Н7А	0.9800	C25—C26	1.358 (6)
C8—H8A	0.9600	C25—H25A	0.9300
C8—H8B	0.9600	C26—C27	1 350 (6)
C8—H8C	0.9600	C_{27} C_{28}	1 385 (6)
	0.9600	C_{27} U_{27}	0.0300
	0.9600	$C_2 = H_2 A$	0.9300
	0.9000	C28—1128A	0.9300
С9—п9С	0.9000		
O3—P—C11	111.91 (18)	C5-C10-H10A	109.3
O3—P—C17	111.99 (18)	P	109.3
C11—P—C17	107.99 (17)	C5-C10-H10B	109.3
O3—P—C10	113.90 (17)	P	109.3
C11—P—C10	104.36 (17)	H10A—C10—H10B	107.9
C17—P—C10	106.17 (18)	C12—C11—C16	119.0 (4)
01-8-02	119.5 (2)	C12—C11—P	117.3 (3)
01 - S - N1	109.22(19)	C16-C11-P	123.6(3)
02 = S = N1	104.34(18)	C_{11} C_{12} C_{13}	123.0(3) 121.1(4)
$O_1 \otimes C_1$	109.7(2)	C_{11} C_{12} H_{12A}	110.5
$O_1 = S = C_1$	107.7(2)	$C_{11} = C_{12} = H_{12} \Lambda$	119.5
$V_2 - S - C_1$	107.7(2) 105.6(2)	C_{13} $-C_{12}$ $-I_{112}$ C_{14} C_{12} C_{12} C_{12}	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.0(2) 117.0(2)	C14 - C13 - C12	117.3 (4)
$C_3 = N_1 = C_2$	117.9(3)	C_{12} C_{12} H_{12A}	120.3
$C_3 = N_1 = S$	121.9 (3)	C12—C13—H13A	120.3
C2—NI—S	119.5 (3)	C13 - C14 - C15	120.3 (4)
S—CI—HIB	109.5	C13—C14—H14A	119.8
S-C1-H1C	109.5	C15—C14—H14A	119.8

H1B—C1—H1C	109.5	C14—C15—C16	120.3 (4)
S—C1—H1D	109.5	C14—C15—H15A	119.8
H1B—C1—H1D	109.5	C16—C15—H15A	119.8
H1C—C1—H1D	109.5	C15—C16—C11	119.7 (4)
C3—N2—C4	116.0 (3)	C15—C16—H16A	120.1
N1—C2—H2C	109.5	C11—C16—H16A	120.1
N1—C2—H2D	109.5	C22—C17—C18	118.9 (4)
H2C—C2—H2D	109.5	С22—С17—Р	117.2 (3)
N1—C2—H2E	109.5	C18—C17—P	123.9(3)
$H_2C-C_2-H_2E$	109.5	C19 - C18 - C17	120.4 (4)
H^2D — C^2 — H^2E	109.5	C19—C18—H18A	119.8
$C_3 - N_3 - C_6$	117.0(3)	C17—C18—H18A	119.8
N3-C3-N2	127 5 (4)	C_{20} C_{19} C_{18}	1201(4)
N3-C3-N1	116 3 (3)	C_{20} C_{19} H_{19A}	120.1 (1)
N2_C3_N1	116.2(4)	C_{18} C_{19} H_{19A}	120.0
$N_2 = C_3 = N_1$	110.2 (4) 121 7 (3)	$C_{10} = C_{10} = C_{10}$	120.0 110 7 (4)
N2 C4 C7	121.7(3) 114.6(3)	$C_{21} = C_{20} = C_{19}$	119.7 (4)
12 - 04 - 07	114.0(3) 123.6(3)	$C_{21} = C_{20} = H_{20A}$	120.1
$C_{5} = C_{4} = C_{7}$	125.0(3) 116.6(2)	$C_{19} = C_{20} = H_{20} A$	120.1
$C_{0} - C_{3} - C_{4}$	110.0(3)	$C_{20} = C_{21} = C_{22}$	120.0 (4)
C6 - C5 - C10	123.1(3)	C_{20} C_{21} H_{21A}	119.7
C4 - C5 - C10	120.1(3)	C_{22} — C_{21} — H_{21A}	119.7
N3-C6-C5	121.0 (3)	$C_{21} = C_{22} = C_{17}$	120.3 (4)
N3—C6—C23	113.8 (3)	C21—C22—H22A	119.8
C5—C6—C23	125.2 (3)	С17—С22—Н22А	119.8
C4—C7—C8	113.0 (3)	C24—C23—C28	118.9 (4)
C4—C7—C9	108.1 (3)	C24—C23—C6	121.8 (4)
C8—C7—C9	111.3 (4)	C28—C23—C6	119.3 (4)
С4—С7—Н7А	108.1	C23—C24—C25	121.1 (4)
С8—С7—Н7А	108.1	C23—C24—H24A	119.4
С9—С7—Н7А	108.1	C25—C24—H24A	119.4
С7—С8—Н8А	109.5	C26—C25—C24	117.6 (4)
С7—С8—Н8В	109.5	C26—C25—H25A	121.2
H8A—C8—H8B	109.5	C24—C25—H25A	121.2
С7—С8—Н8С	109.5	C27—C26—F	119.3 (5)
H8A—C8—H8C	109.5	C27—C26—C25	123.2 (4)
H8B—C8—H8C	109.5	FC26C25	117.5 (4)
С7—С9—Н9А	109.5	C26—C27—C28	119.0 (4)
С7—С9—Н9В	109.5	С26—С27—Н27А	120.5
H9A—C9—H9B	109.5	С28—С27—Н27А	120.5
С7—С9—Н9С	109.5	C23—C28—C27	120.1 (4)
Н9А—С9—Н9С	109.5	C23—C28—H28A	119.9
Н9В—С9—Н9С	109.5	C27—C28—H28A	119.9
С5—С10—Р	111.8 (3)		
01—S—N1—C3	42.5 (4)	C17—P—C11—C16	55.1 (4)
O2—S—N1—C3	171.3 (3)	C10—P—C11—C16	-57.6 (4)
C1—S—N1—C3	-75.4 (4)	C16—C11—C12—C13	0.2 (6)
O1—S—N1—C2	-127.5 (4)	P-C11-C12-C13	-178.4 (3)
	× /		~ /

O2—S—N1—C2	1.3 (4)	C11—C12—C13—C14	0.0(7)
C1 - S - N1 - C2	114.6 (4)	C12—C13—C14—C15	-0.9(8)
C6—N3—C3—N2	1.1 (6)	C13—C14—C15—C16	1.6 (8)
C6—N3—C3—N1	-177.2 (3)	C14—C15—C16—C11	-1.5 (7)
C4—N2—C3—N3	-0.8 (6)	C12—C11—C16—C15	0.5 (6)
C4—N2—C3—N1	177.5 (3)	P-C11-C16-C15	179.0 (3)
C2—N1—C3—N3	10.0 (6)	O3—P—C17—C22	-12.2 (4)
S—N1—C3—N3	-160.2(3)	C11—P—C17—C22	111.5 (3)
C2—N1—C3—N2	-168.5 (4)	C10—P—C17—C22	-137.1 (3)
S—N1—C3—N2	21.3 (5)	O3—P—C17—C18	169.4 (3)
C3—N2—C4—C5	-1.6 (5)	C11—P—C17—C18	-66.9 (4)
C3—N2—C4—C7	175.9 (3)	C10—P—C17—C18	44.5 (4)
N2-C4-C5-C6	3.4 (5)	C22—C17—C18—C19	0.5 (6)
C7—C4—C5—C6	-173.8 (4)	P-C17-C18-C19	178.9 (3)
N2-C4-C5-C10	-172.3 (3)	C17—C18—C19—C20	0.5 (7)
C7—C4—C5—C10	10.5 (6)	C18—C19—C20—C21	-0.4 (7)
C3—N3—C6—C5	1.0 (5)	C19—C20—C21—C22	-0.7 (7)
C3—N3—C6—C23	-179.6 (3)	C20-C21-C22-C17	1.7 (7)
C4—C5—C6—N3	-3.1 (5)	C18—C17—C22—C21	-1.6 (6)
C10-C5-C6-N3	172.5 (3)	P-C17-C22-C21	179.9 (3)
C4—C5—C6—C23	177.6 (3)	N3—C6—C23—C24	127.6 (4)
C10—C5—C6—C23	-6.8 (6)	C5—C6—C23—C24	-53.0 (6)
N2—C4—C7—C8	35.5 (5)	N3—C6—C23—C28	-49.2 (5)
C5—C4—C7—C8	-147.1 (4)	C5—C6—C23—C28	130.2 (4)
N2—C4—C7—C9	-88.1 (4)	C28—C23—C24—C25	-0.9 (6)
C5—C4—C7—C9	89.3 (5)	C6—C23—C24—C25	-177.7 (3)
C6—C5—C10—P	-95.6 (4)	C23—C24—C25—C26	-0.4 (6)
C4—C5—C10—P	79.9 (4)	C24—C25—C26—C27	0.8 (7)
O3—P—C10—C5	-33.2 (3)	C24—C25—C26—F	180.0 (4)
C11—P—C10—C5	-155.6 (3)	F-C26-C27-C28	-179.1 (4)
C17—P—C10—C5	90.5 (3)	C25—C26—C27—C28	0.1 (8)
O3—P—C11—C12	-2.7 (4)	C24—C23—C28—C27	1.8 (6)
C17—P—C11—C12	-126.4 (3)	C6—C23—C28—C27	178.6 (4)
C10—P—C11—C12	120.9 (3)	C26—C27—C28—C23	-1.4 (7)
O3—P—C11—C16	178.8 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1B···O1 ⁱ	0.96	2.56	3.363 (5)	141
C2—H2 <i>C</i> ···F ⁱⁱ	0.96	2.52	3.202 (6)	128
C13—H13 <i>A</i> ···O2 ⁱⁱⁱ	0.93	2.53	3.350 (6)	148

Symmetry codes: (i) -*x*+5/2, *y*+1/2, -*z*+1/2; (ii) -*x*+2, -*y*, -*z*; (iii) *x*-1, *y*, *z*.