

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_3 -5-*tert*-butylbenzene-1,3-dicarboxylato)dipyridinecobalt(II)]

Kyungkyou Noh and Jaheon Kim*

Department of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 156-743, Republic of Korea Correspondence e-mail: jaheon@ssu.ac.kr

Received 24 September 2013; accepted 26 September 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 14.6.

In the title compound, $[Co(C_{12}H_{12}O_4)(C_5H_5N)_2]_n$, the Co^{II} cation is coordinated by four O atoms from three 5-*tert*butylbenzene-1,3-dicarboxylate anions and two N atoms from pyridine molecules in a distorted octahedral geometry. One carboxylate group of the anionic ligand chelates a Co^{II} cation while another carboxylate group bridges two Co^{II} cations, resulting in a polymeric layer parallel to (101). Weak C– H···O hydrogen bonds occur between adjacent polymeric layers. In the crystal, one of pyridine molecules is equally disordered over two positions.

Related literature

For metal-organic frameworks composed of cobalt cations and 5-*tert*-butylbenzene-1,3-dicarboxylate ligands without additional bridging ligands, see: Chen *et al.* (2011); Du *et al.* (2009); Ma *et al.* (2009); Qin & Ju (2010). For a copper(II) complex with 5-*tert*-butylbenzene-1,3-dicarboxylate ligand, see: Li & Zhou (2010).

Experimental

Crystal data $[Co(C_{12}H_{12}O_4)(C_5H_5N)_2]$ $M_r = 437.34$

```
Monoclinic, P2_1/n
a = 9.7357 (3) Å
```

b = 15.6699 (6) Åc = 13.0764 (5) Å $\beta = 94.791 (1)^{\circ}$ $V = 1987.93 (12) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.663, T_{max} = 0.775

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.135$ S = 1.114580 reflections 314 parameters

Table 1

Selected bond lengths (Å).

Co1-O1	2.014 (2)	Co1-N1	2.182 (3)
Co1-O2 ⁱ	2.0608 (19)	Co1-N2	2.195 (9)
Co1-O3 ⁱⁱ	2.324 (2)	Co1-N2A	2.117 (11)
Co1-O4 ⁱⁱ	2.103 (2)		

metal-organic compounds

Mo $K\alpha$ radiation

 $0.50 \times 0.40 \times 0.30$ mm

12370 measured reflections

4580 independent reflections

3843 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.90 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.021$

66 restraints

 $\Delta \rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2	
Hydrogen-bond	geometry (Å

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots O4^{iii}$	0.95	2.55	3.287 (5)	134

Symmetry code: (iii) -x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *CrystalMaker* (CrystalMaker Software, 2013); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This research was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5741).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L.-J., Su, J.-B., Huang, R.-B., Lin, S., Yang, M.-X. & Huang, H. (2011). *Dalton Trans.* **40**, 9731–9736.
- CrystalMaker Software (2013). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.
- Du, Z.-X., Wang, L.-Y. & Hou, H.-W. (2009). Z. Anorg. Allg. Chem. 635, 1659–1663.
- Li, J.-R. & Zhou, H.-C. (2010). Nat. Chem. 2, 893-898.

Ma, L.-F., Wang, L.-Y., Lu, D.-H., Batten, S. R. & Wang, J.-G. (2009). Cryst. Growth Des. 9, 1741–1749.
Qin, J.-H. & Ju, F.-Y. (2010). Chin. J. Struct. Chem. 29, 1108–1114.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2013). E69, m579-m580 [doi:10.1107/S1600536813026640]

Poly[(µ₃-5-*tert*-butylbenzene-1,3-dicarboxylato)dipyridinecobalt(II)]

Kyungkyou Noh and Jaheon Kim

S1. 1. Comment

The bent ligand, 5-*tert*-1,3-benzenedicarboxylic acid (H₂BDC_'Bu) can form interesting metal-organic polyhedra (MOPs) through solvothermal reactions with copper ions which frequently give paddle-wheel type clusters (Li & Zhou, 2010). In contrast, the reactions between cobalt ion and H₂BDC_'Bu provide various types of metal-organic frameworks (MOFs) including even a molecular cyclic compound: for examples such as rings, chains, layers, and three-dimensional networks, see Chen *et al.*, 2011; Du *et al.*, 2009; Ma *et al.*, 2009; Qin & Ju, 2010. The combination of a diverse coordination property of cobalt ion, and a bulky tert-butyl groups in the anionic ligand can give a possibility of making interesting MOFs. For example, a reaction between cobalt ions and the ligands in polar solvent, the hydrophobic tertiary butyl groups assembled together, making polar carboxylate groups be exposed to pores to give hydrophilic environment (Ma *et al.*, 2009). In searching for new Co-BDC_'Bu frameworks, we obtained a two-dimensional layered structure of which inter-layer space is filled with hydrophobic and coordinated pyridine molecules and *tert*-butyl groups of the anionic ligands.

S2. 2. Experimental

Cobalt(II) nitrate tetrahydrate (40 mg) and 5-*tert*-butylbenzene-1,3-dicarboxylic acid (31 mg) were dissolved in a mixed solvent (*N*,*N*-dimethylformamide, 8.0 ml; ethanol, 0.4 ml; pyridine, 0.4 ml). This reaction mixture was transferred to a Teflon-lined vessel (23 ml), and heated at 378 K and for 2 days. Large violet block crystals were obtained and used for single crystal X-ray diffraction analyses.

S2.1. 3. Refinement

In the asymmetric unit, one of two pyridine molecules is disordered over two positions with a site occupancy factor of 0.5, respectively. The site occupancy factors were converged to 0.50787 and 0.49213 for each disordered portion with isotropic thermal parameters, and thus the factors were fixed to 0.5 respectively at the final stage of refinement; the thermal parameters did not converge when the site occupancy factors were refined together. Due to the disorder, the geometry of disordered pyridine was restrained by FLAT and SAME SHELX instructions. In addition, the anisotropic thermal parameters of N2, N2A, C30, and C30A atoms were treated isotropically using an ISOR instruction. However, the C19A thermal parameters were equaled to those of C19 using an EADP instruction. Hydrogen atoms of the aromatic and methyl groups were placed at calculated positions with C—H = 0.95 Å and 0.98 Å, respectively and allowed to ride with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

(a) An asymmetric unit of the title compound is shown with the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for simplicity. (b) The full coordination environment of the cobalt cluster is shown with ball-and-stick models. The atoms in the asymmetric unit are highlited with empty balls.

Figure 2

A two-dimensional layer approximately parallel to the (101) plane is represented.

Figure 3

(a) The layer in Figure 2 is drawn with the lattice lines along the b axis. (b) A packing view is shown with three layers represented with different colors.

Poly[(µ₃-5-tert-butylbenzene-1,3-dicarboxylato)dipyridinecobalt(II)]

$[Co(C_{12}H_{12}O_4)(C_5H_5N)_2]$
$M_r = 437.34$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 9.7357(3) Å
b = 15.6699 (6) Å
c = 13.0764 (5) Å
$\beta = 94.791 (1)^{\circ}$
$V = 1987.93 (12) Å^3$
<i>Z</i> = 4
Data collection
Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)

 $T_{\rm min} = 0.663, T_{\rm max} = 0.775$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.135$ F(000) = 908 $D_x = 1.461 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6406 reflections $\theta = 2.5-28.2^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 173 KBlock, violet $0.50 \times 0.40 \times 0.30 \text{ mm}$

12370 measured reflections 4580 independent reflections 3843 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 20$ $l = -17 \rightarrow 13$

S = 1.114580 reflections 314 parameters 66 restraints

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 3.5707P]$	$\Delta \rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F² are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Col	0.44382 (4)	0.12814 (2)	0.54417 (3)	0.02396 (13)	
01	0.4499 (3)	0.01260 (13)	0.61177 (17)	0.0394 (5)	
O2	0.4464 (2)	-0.12667 (11)	0.58392 (15)	0.0263 (4)	
O3	0.1852 (2)	-0.30891 (12)	0.83448 (16)	0.0342 (5)	
O4	0.1101 (2)	-0.24206 (13)	0.96689 (15)	0.0305 (4)	
C1	0.3528 (3)	-0.07399 (16)	0.73420 (19)	0.0207 (5)	
C2	0.3038 (3)	-0.15329 (16)	0.76379 (19)	0.0210 (5)	
H2	0.3153	-0.2024	0.7228	0.025*	
C3	0.2379 (3)	-0.15960 (17)	0.8543 (2)	0.0234 (5)	
C4	0.2262 (3)	-0.08775 (18)	0.9164 (2)	0.0261 (5)	
H4	0.1828	-0.0932	0.9785	0.031*	
C5	0.2770 (3)	-0.00814 (17)	0.8893 (2)	0.0244 (5)	
C6	0.3373 (3)	-0.00254 (16)	0.7962 (2)	0.0236 (5)	
H6	0.3687	0.0514	0.7744	0.028*	
C7	0.4206 (3)	-0.06185 (16)	0.63520 (19)	0.0203 (5)	
C8	0.1748 (3)	-0.24228 (17)	0.8864 (2)	0.0257 (5)	
C9	0.2610 (3)	0.07170 (19)	0.9557 (2)	0.0326 (6)	
C10	0.3841 (5)	0.1310 (3)	0.9510 (4)	0.0771 (17)	
H10A	0.3773	0.1777	1.0001	0.116*	
H10B	0.3850	0.1544	0.8816	0.116*	
H10C	0.4694	0.0990	0.9683	0.116*	
C11	0.1368 (5)	0.1215 (3)	0.9076 (5)	0.0868 (19)	
H11A	0.0537	0.0863	0.9085	0.130*	
H11B	0.1520	0.1362	0.8365	0.130*	
H11C	0.1252	0.1739	0.9469	0.130*	
C12	0.2442 (10)	0.0500 (3)	1.0652 (3)	0.127 (3)	
H12A	0.3234	0.0162	1.0930	0.190*	
H12B	0.1595	0.0168	1.0693	0.190*	
H12C	0.2386	0.1026	1.1051	0.190*	
N1	0.6310 (3)	0.16214 (15)	0.63878 (19)	0.0302 (5)	
C13	0.6260 (4)	0.1716 (3)	0.7395 (3)	0.0621 (12)	
H13	0.5418	0.1585	0.7678	0.074*	

C14	0.7352 (5)	0.1993 (4)	0.8058 (3)	0.0688 (13)	
H14	0.7255	0.2045	0.8772	0.083*	
C15	0.8549 (4)	0.2186 (3)	0.7673 (3)	0.0533 (10)	
H15	0.9311	0.2387	0.8108	0.064*	
C16	0.8649 (5)	0.2088 (4)	0.6645 (4)	0.0734 (15)	
H16	0.9488	0.2211	0.6353	0.088*	
C17	0.7502 (4)	0.1806 (3)	0.6033 (3)	0.0550 (10)	
H17	0.7583	0.1743	0.5318	0.066*	
N2	0.2472 (9)	0.1037 (5)	0.4542 (7)	0.0300 (18)	0.5
C18	0.2420 (11)	0.0415 (5)	0.3860 (6)	0.055 (3)	0.5
H18	0.3222	0.0071	0.3851	0.066*	0.5
C19	0.1310 (12)	0.0203 (7)	0.3143 (8)	0.091 (3)	0.5
H19	0.1370	-0.0260	0.2679	0.109*	0.5
C20	0.0168 (10)	0.0680 (5)	0.3141 (7)	0.067 (2)	0.5
H20	-0.0607	0.0562	0.2671	0.080*	0.5
C21	0.0130 (8)	0.1349 (5)	0.3834 (7)	0.082 (4)	0.5
H21	-0.0664	0.1699	0.3855	0.098*	0.5
C22	0.1299 (8)	0.1485 (5)	0.4496 (7)	0.068 (3)	0.5
H22	0.1262	0.1945	0.4967	0.082*	0.5
N2A	0.2579 (10)	0.0868 (5)	0.4638 (8)	0.038 (2)	0.5
C18A	0.2377 (10)	0.0736 (5)	0.3620 (8)	0.074 (4)	0.5
H18A	0.3156	0.0820	0.3239	0.089*	0.5
C19A	0.1159 (12)	0.0489 (5)	0.3055 (10)	0.091 (3)	0.5
H19A	0.1105	0.0410	0.2332	0.109*	0.5
C20A	0.0078 (12)	0.0374 (6)	0.3605 (8)	0.079 (3)	0.5
H20A	-0.0778	0.0206	0.3263	0.094*	0.5
C21A	0.0159 (9)	0.0488 (6)	0.4613 (7)	0.109 (6)	0.5
H21A	-0.0621	0.0404	0.4991	0.131*	0.5
C22A	0.1429 (8)	0.0734 (5)	0.5102 (7)	0.072 (3)	0.5
H22A	0.1477	0.0811	0.5824	0.086*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0331 (2)	0.01763 (19)	0.0226 (2)	-0.00231 (14)	0.01078 (14)	-0.00066 (13)
O1	0.0653 (16)	0.0189 (10)	0.0373 (12)	-0.0033 (10)	0.0248 (11)	0.0037 (8)
O2	0.0347 (10)	0.0209 (9)	0.0248 (9)	-0.0011 (8)	0.0112 (8)	-0.0027 (7)
O3	0.0502 (13)	0.0207 (10)	0.0335 (11)	-0.0038 (9)	0.0152 (9)	0.0009 (8)
O4	0.0393 (11)	0.0279 (10)	0.0258 (10)	-0.0057 (8)	0.0123 (8)	0.0022 (8)
C1	0.0210 (11)	0.0217 (12)	0.0195 (11)	0.0009 (9)	0.0027 (9)	0.0011 (9)
C2	0.0230 (12)	0.0188 (11)	0.0213 (12)	0.0006 (9)	0.0034 (10)	-0.0010 (9)
C3	0.0245 (12)	0.0228 (12)	0.0234 (13)	-0.0011 (10)	0.0039 (10)	0.0021 (10)
C4	0.0285 (13)	0.0279 (14)	0.0226 (13)	0.0004 (11)	0.0070 (10)	0.0005 (10)
C5	0.0267 (13)	0.0238 (13)	0.0229 (12)	0.0016 (10)	0.0031 (10)	-0.0027 (10)
C6	0.0271 (13)	0.0197 (12)	0.0242 (13)	-0.0006 (10)	0.0035 (10)	0.0008 (10)
C7	0.0199 (11)	0.0198 (12)	0.0213 (12)	0.0009 (9)	0.0035 (9)	0.0011 (9)
C8	0.0302 (14)	0.0231 (13)	0.0243 (13)	-0.0022 (10)	0.0046 (11)	0.0044 (10)
C9	0.0412 (17)	0.0268 (14)	0.0315 (15)	-0.0020 (12)	0.0128 (12)	-0.0084 (11)

C10	0.079 (3)	0.058 (3)	0.100 (4)	-0.031 (2)	0.045 (3)	-0.053 (3)
C11	0.067 (3)	0.070 (3)	0.121 (5)	0.031 (2)	-0.005 (3)	-0.051 (3)
C12	0.307 (11)	0.044 (3)	0.036 (2)	-0.032 (4)	0.056 (4)	-0.018 (2)
N1	0.0379 (13)	0.0244 (11)	0.0284 (12)	-0.0031 (10)	0.0042 (10)	0.0017 (9)
C13	0.052 (2)	0.102 (4)	0.0326 (19)	-0.022 (2)	0.0082 (16)	-0.013 (2)
C14	0.069 (3)	0.100 (4)	0.036 (2)	-0.016 (3)	-0.0039 (19)	-0.017 (2)
C15	0.056 (2)	0.048 (2)	0.052 (2)	-0.0120 (17)	-0.0178 (18)	0.0064 (17)
C16	0.048 (2)	0.112 (4)	0.059 (3)	-0.029 (3)	-0.005 (2)	0.024 (3)
C17	0.043 (2)	0.086 (3)	0.0362 (19)	-0.014 (2)	0.0033 (15)	0.0108 (19)
N2	0.023 (3)	0.025 (3)	0.042 (3)	0.007 (2)	0.006 (2)	0.002 (3)
C18	0.052 (5)	0.043 (4)	0.066 (7)	-0.020 (4)	-0.020 (5)	0.018 (4)
C19	0.054 (4)	0.151 (10)	0.065 (4)	-0.018 (5)	-0.006 (3)	0.000 (5)
C20	0.056 (4)	0.067 (4)	0.075 (4)	0.009 (3)	-0.015 (4)	-0.004 (4)
C21	0.040 (4)	0.076 (6)	0.123 (9)	0.027 (4)	-0.037 (5)	-0.056 (6)
C22	0.057 (5)	0.061 (5)	0.084 (7)	0.016 (4)	-0.008 (5)	-0.033 (5)
N2A	0.032 (4)	0.030 (4)	0.054 (4)	0.009 (3)	0.011 (3)	0.005 (3)
C18A	0.032 (4)	0.144 (13)	0.046 (5)	-0.005 (7)	0.003 (4)	-0.023 (8)
C19A	0.054 (4)	0.151 (10)	0.065 (4)	-0.018 (5)	-0.006 (3)	0.000 (5)
C20A	0.083 (5)	0.081 (5)	0.073 (5)	0.009 (4)	0.015 (4)	0.013 (4)
C21A	0.051 (5)	0.203 (16)	0.078 (7)	-0.065 (8)	0.030 (5)	-0.050 (9)
C22A	0.053 (5)	0.103 (8)	0.061 (5)	-0.022 (5)	0.016 (4)	-0.012 (5)

Geometric parameters (Å, °)

Col—Ol	2.014 (2)	C12—H12B	0.9800
Co1-O2 ⁱ	2.0608 (19)	C12—H12C	0.9800
Co1—O3 ⁱⁱ	2.324 (2)	N1—C17	1.317 (4)
Co1—O4 ⁱⁱ	2.103 (2)	N1—C13	1.330 (4)
Co1—N1	2.182 (3)	C13—C14	1.384 (5)
Co1—N2	2.195 (9)	C13—H13	0.9500
Co1—N2A	2.117 (11)	C14—C15	1.342 (6)
O1—C7	1.245 (3)	C14—H14	0.9500
O2—C7	1.254 (3)	C15—C16	1.365 (6)
O2—Co1 ⁱ	2.0608 (19)	C15—H15	0.9500
O3—C8	1.254 (3)	C16—C17	1.391 (5)
O3—Co1 ⁱⁱⁱ	2.324 (2)	C16—H16	0.9500
O4—C8	1.271 (3)	C17—H17	0.9500
O4—Co1 ⁱⁱⁱ	2.102 (2)	N2—C22	1.337 (10)
C1—C6	1.398 (4)	N2	1.320 (10)
C1—C2	1.397 (3)	C18—C19	1.410 (11)
C1—C7	1.513 (3)	C18—H18	0.9500
С2—С3	1.396 (4)	C19—C20	1.340 (12)
С2—Н2	0.9500	C19—H19	0.9500
C3—C4	1.398 (4)	C20—C21	1.388 (10)
C3—C8	1.508 (4)	C20—H20	0.9500
C4—C5	1.398 (4)	C21—C22	1.388 (10)
C4—H4	0.9500	C21—H21	0.9500
С5—С6	1.399 (4)	C22—H22	0.9500

С5—С9	1.538 (4)	N2A—C22A	1.333 (11)
С6—Н6	0.9500	N2A—C18A	1.346 (11)
C9—C12	1.494 (5)	C18A—C19A	1.398 (11)
C9—C10	1.522 (5)	C18A—H18A	0.9500
C9—C11	1.529 (6)	C19A—C20A	1.336 (12)
C10—H10A	0.9800	С19А—Н19А	0.9500
C10—H10B	0.9800	C20A—C21A	1.325 (11)
C10—H10C	0.9800	C20A—H20A	0.9500
C11—H11A	0.9800	C21A—C22A	1.398 (10)
C11—H11B	0.9800	C21A—H21A	0.9500
C11—H11C	0.9800	C22A—H22A	0.9500
C12—H12A	0.9800		
O1—Co1—O2 ⁱ	110.40 (8)	H11A—C11—H11C	109.5
O1—Co1—O4 ⁱⁱ	153.91 (8)	H11B—C11—H11C	109.5
O2 ⁱ —Co1—O4 ⁱⁱ	95.64 (7)	C9—C12—H12A	109.5
O1—Co1—N2A	86.3 (2)	C9—C12—H12B	109.5
$O2^{i}$ —Co1—N2A	94.2 (3)	H12A—C12—H12B	109.5
O4 ⁱⁱ —Co1—N2A	93.6 (2)	C9—C12—H12C	109.5
01-Co1-N1	88.74 (10)	H12A—C12—H12C	109.5
$O2^{i}$ —Co1—N1	89.90 (9)	H12B—C12—H12C	109.5
O4 ⁱⁱ —Co1—N1	89.70 (9)	C17 - N1 - C13	115.5 (3)
N2A—Co1—N1	174.4 (2)	C17 - N1 - Co1	124.9 (2)
01-Co1-N2	94.1 (2)	C13 - N1 - Co1	119.4(2)
$O2^{i}$ —Co1—N2	92.9 (2)	N1—C13—C14	124.4 (4)
O4 ⁱⁱ —Co1—N2	86.0 (2)	N1—C13—H13	117.8
N1—Co1—N2	175.1 (2)	С14—С13—Н13	117.8
01–Co1–O3 ⁱⁱ	94.57 (8)	C15-C14-C13	118.8 (4)
$O2^{i}$ —Co1—O3 ⁱⁱ	154.98 (7)	C15—C14—H14	120.6
O4 ⁱⁱ —Co1—O3 ⁱⁱ	59.36 (7)	C13—C14—H14	120.6
N2A—Co1—O3 ⁱⁱ	88.9 (3)	C14—C15—C16	118.7 (4)
N1—Co1—O3 ⁱⁱ	89.01 (9)	C14—C15—H15	120.7
N2—Co1—O3 ⁱⁱ	86.7 (2)	С16—С15—Н15	120.7
C7—O1—Co1	162.0 (2)	C15—C16—C17	118.8 (4)
C7-O2-Co1 ⁱ	125.77 (16)	C15—C16—H16	120.6
C8—O3—Co1 ⁱⁱⁱ	84.88 (16)	C17—C16—H16	120.6
C8—O4—Co1 ⁱⁱⁱ	94.51 (17)	N1—C17—C16	123.8 (4)
C6-C1-C2	119.7 (2)	N1—C17—H17	118.1
C6—C1—C7	118.1 (2)	С16—С17—Н17	118.1
C2—C1—C7	122.1 (2)	C22—N2—C18	111.9 (8)
C3—C2—C1	119.3 (2)	C22—N2—Co1	129.5 (6)
C3—C2—H2	120.3	C18 - N2 - Co1	118.3 (7)
C1—C2—H2	120.3	N2—C18—C19	127.5 (10)
C2—C3—C4	120.0 (2)	N2—C18—H18	116.3
С2—С3—С8	121.6 (2)	C19—C18—H18	116.3
C4—C3—C8	118.4 (2)	C20—C19—C18	117.4 (11)
C5—C4—C3	121.6 (2)	С20—С19—Н19	121.3
С5—С4—Н4	119.2	С18—С19—Н19	121.3

C3—C4—H4	119.2	C19—C20—C21	119.1 (9)
C4—C5—C6	117.4 (2)	С19—С20—Н20	120.4
C4—C5—C9	121.9 (2)	C21—C20—H20	120.4
C6—C5—C9	120.7 (2)	C20—C21—C22	117.3 (7)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	120.7(2) 121.9(2)	C_{20} C_{21} H_{21}	121.4
C1 $C6$ $H6$	110.1	$C_{20} = C_{21} = H_{21}$	121.4
$C_1 = C_0 = H_0$	119.1	N2 C22 C21	121.4
$C_{3} = C_{0} = H_{0}$	119.1	$N_2 = C_{22} = C_{21}$	120.9 (8)
01 - 02	124.5 (2)	$N_2 = C_{22} = H_{22}$	116.6
	117.0 (2)	C21—C22—H22	116.6
O2—C7—C1	118.5 (2)	C22A—N2A—C18A	111.5 (9)
03—C8—O4	121.2 (2)	C22A—N2A—Co1	122.6 (8)
O3—C8—C3	120.7 (2)	C18A—N2A—Co1	125.9 (7)
O4—C8—C3	118.0 (2)	N2A—C18A—C19A	127.8 (9)
C12—C9—C10	109.1 (4)	N2A—C18A—H18A	116.1
C12—C9—C11	111.4 (5)	C19A—C18A—H18A	116.1
C10—C9—C11	105.7 (4)	C20A—C19A—C18A	115.1 (11)
C12—C9—C5	112.3 (3)	C20A—C19A—H19A	122.5
C10—C9—C5	110.9 (3)	C18A—C19A—H19A	122.5
C11—C9—C5	107.3 (3)	C19A—C20A—C21A	122.3 (11)
C9-C10-H10A	109.5	C19A—C20A—H20A	118.9
C9-C10-H10B	109.5	C_{21A} C_{20A} H_{20A}	118.9
H10A - C10 - H10B	109.5	C_{20A} C_{21A} C_{22A}	117.9 (9)
C_{0}	109.5	$C_{20}A = C_{21}A = C_{21}A^{iv}$	117.9(5)
	109.5	$C_{20A} = C_{21A} = C_{21A}$	113.4 (7)
H10R C10 H10C	109.5	$C_{20A} = C_{21A} = H_{21A}$	121.0
	109.5	$C_{22A} = C_{21A} = H_{21A}$	121.0
C9—CII—HIIA	109.5	N2A = C22A = C21A	125.4 (9)
C9—CII—HIIB	109.5	N2A—C22A—H22A	117.3
HIIA—CII—HIIB	109.5	C21A—C22A—H22A	117.3
C9—C11—H11C	109.5		
C6-C1-C2-C3	1 1 (4)	C6-C5-C9-C12	-1590(5)
C7-C1-C2-C3	-177.7(2)	C4-C5-C9-C10	146 6 (4)
$C_1 - C_2 - C_3 - C_4$	-26(4)	C6-C5-C9-C10	-367(4)
C1 $C2$ $C3$ $C4$	175.9(2)	C_{4} C_{5} C_{9} C_{11}	-98.4(4)
$C_1 - C_2 - C_3 - C_6$	175.9(2) 1.2(4)	$C_{4} = C_{5} = C_{9} = C_{11}$	78 2 (4)
$C_2 = C_3 = C_4 = C_5$	1.3(4) -177.2(2)	$C_{17} = 0.000 = 0.000 = 0.000000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000000$	78.3(4)
C_{0}	-1/7.5(5)	$C_{1} = N_{1} = C_{1} = C_{1} = C_{1}$	0.4(7)
C_{3} C_{4} C_{5} C_{6}	1.4 (4)	Col-Nl-Cl3-Cl4	-1/4.9 (4)
C3-C4-C5-C9	1/8.2 (3)	NI-CI3-CI4-CI5	0.3 (9)
C2-C1-C6-C5	1.7 (4)	C13—C14—C15—C16	-1.0 (8)
C7—C1—C6—C5	-179.4 (2)	C14—C15—C16—C17	1.0 (8)
C4—C5—C6—C1	-2.9 (4)	C13—N1—C17—C16	-0.4 (7)
C9—C5—C6—C1	-179.8 (3)	Co1—N1—C17—C16	174.5 (4)
Co1—O1—C7—O2	79.6 (7)	C15—C16—C17—N1	-0.3 (8)
Co1-01-C7-C1	-102.2 (6)	C22—N2—C18—C19	-0.02 (6)
Co1 ⁱ —O2—C7—O1	5.1 (4)	Co1—N2—C18—C19	-173.7 (5)
Co1 ⁱ —O2—C7—C1	-172.99 (16)	N2-C18-C19-C20	0.03 (7)
C6—C1—C7—O1	-4.8 (4)	C18—C19—C20—C21	-0.09 (15)
C2-C1-C7-O1	174.1 (3)	C19—C20—C21—C22	0.14 (19)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.5 (2)	C18—N2—C22—C21	0.08 (16)
	-7.7 (4)	Co1—N2—C22—C21	172.8 (6)
	0.3 (3)	C20—C21—C22—N2	-0.1 (2)
	-179.1 (2)	C22A—N2A—C18A—C19A	0.04 (6)
	-0.3 (3)	Co1—N2A—C18A—C19A	-177.9 (5)
	179.0 (2)	N2A—C18A—C19A—C20A	-0.02 (7)
	3.1 (4)	C18A—C19A—C20A—C21A	0.09 (15)
	-178.4 (3)	C19A—C20A—C21A—C22A	-0.2 (2)
	-176.3 (3)	C18A—N2A—C22A—C21A	-0.12 (15)
C4-C3-C8-O3	-178.4 (3)	C19A—C20A—C21A—C22A	$\begin{array}{c} -0.2 (2) \\ -0.12 (15) \\ 177.9 (5) \\ 0.2 (2) \end{array}$
C2-C3-C8-O4	-176.3 (3)	C18A—N2A—C22A—C21A	
C4-C3-C8-O4	2.2 (4)	Co1—N2A—C22A—C21A	
C4-C5-C9-C12	24.3 (5)	C20A—C21A—C22A—N2A	

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x+1/2, y-1/2, -z+3/2; (iv) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C14—H14…O4 ^v	0.95	2.55	3.287 (5)	134

Symmetry code: (v) -x+1, -y, -z+2.