

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis(ethanol)(μ_4 -2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium]

Nakeun Ko and Jaheon Kim*

Department of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 156-743, South Korea Correspondence e-mail: jaheon@ssu.ac.kr

Received 19 September 2013; accepted 23 September 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.020; wR factor = 0.054; data-to-parameter ratio = 12.0.

In the title compound, $[Cd(C_8F_4O_4)(C_2H_5OH)_2]_n$, the Cd^{II} cation sits on an inversion centre and is coordinated by six O atoms from four tetrafluorobenzene-1,4-dicarboxylate anions and two ethanol molecules in a distorted octahedral geometry. The anionic ligand is also located on an inversion centre, and connects four Cd^{II} cations, generating a two-dimensional polymeric layer parallel to the *ab* plane. Within the layer, the ethanol molecule links F and O atoms of the nearest anionic ligands via $O-H \cdots O$ and $O-H \cdots F$ hydrogen bonds. The ethyl group of the ethanol molecule is disordered over two positions with an occupancy ratio of 0.567 (10):0.433 (10).

Related literature

For metal-organic frameworks composed of metal ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate), see: Chen et al. (2006, 2009); Hulvey, Avala et al. (2009); Hulvey, Ayala & Cheetham et al. (2009); Hulvey, Falco et al. (2009); Hulvey et al. (2011); Kitaura et al. (2004); MacNeill et al. (2011); Mikhalyova et al. (2011); Seidel et al. (2011); Seidel et al. (2012); Yoon et al. (2007); Yu et al. (2011); Zheng et al. (2008); Zhu et al. (2009).

 $\gamma = 102.275 (1)^{\circ}$

Z = 1

V = 369.95 (4) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.06 \text{ mm}$

2308 measured reflections

1576 independent reflections

1569 reflections with $I > 2\sigma(I)$

 $\mu = 1.55 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.014$

Experimental

Crystal data

$[Cd(C_8F_4O_4)(C_2H_6O)_2]$	
$M_r = 440.61$	
Triclinic, P1	
a = 4.8367 (3) Å	
b = 9.0903 (6) Å	
c = 9.4078 (6) Å	
$\alpha = 108.091 \ (1)^{\circ}$	
$\beta = 100.637 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.613, T_{\max} = 0.913$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of
$wR(F^2) = 0.054$	independent and constrained
S = 1.11	refinement
1576 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
6 restraints	

Table 1

Selected bond lengths (Å).

Cd1-O1 Cd1-O2 ⁱ	2.2526 (15) 2.3194 (15)	Cd1-O3	2.2929 (18)

Symmetry code: (i) x + 1, y, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3OA···O2 ⁱⁱ	0.85(1)	1.94 (2)	2.719 (2)	152 (4)
$O3-H3OB\cdots F2^{i}$	0.85(1)	2.40 (2)	3.196 (2)	156 (4)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 2.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5740).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, B., Yang, Y., Zapata, F., Qian, G., Luo, Y., Zhang, J. & Lobkovsky, E. B. (2006). *Inorg. Chem.* 45, 8882–8886.
- Chen, S.-C., Zhang, Z.-H., Chen, Q., Gao, H.-B., Liu, Q., He, M.-Y. & Du, M. (2009). *Inorg. Chem. Commun.* **12**, 835–838.
- Hulvey, Z., Ayala, E. & Cheetham, A. K. (2009). Z. Anorg. Allg. Chem. 635, 1753–1757.
- Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765.
- Hulvey, Z., Falco, E. H. L., Eckert, J. & Cheetham, A. K. (2009). J. Mater. Chem. 19, 4307–4309.
- Hulvey, Z., Sava, D. A., Eckert, J. & Cheetham, A. K. (2011). *Inorg. Chem.* 50, 403–405.
- Kitaura, R., Iwahori, F., Matsuda, R., Kitagawa, S., Kubota, Y., Takata, M. & Kobayashi, T. C. (2004). *Inorg. Chem.* 43, 6522–6524.

- MacNeill, C. M., Day, C. S., Marts, A., Lachgar, A. & Noftle, R. E. (2011). Inorg. Chim. Acta, 365, 196–203.
- Mikhalyova, E. A., Kolotilov, S. V., Zeller, M., Thompson, L. K., Addison, A. W., Pavlishchuk, V. V. & Hunter, A. D. (2011). *Dalton Trans.* 40, 10989– 10996.
- Seidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053– 5063.
- Seidel, C., Lorbeer, C., Cybinska, J., Mudring, A.-V. & Ruschewitz, U. (2012). *Inorg. Chem.* 51, 4679–4688.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yoon, J. H., Choi, S. B., Oh, Y. J., Seo, M. J., Jhon, Y. H., Lee, T.-B., Kim, D., Choi, S. H. & Kim, J. (2007). *Catal. Today*, **120**, 324–329.
- Yu, J., Zhang, Y.-F., Sun, F.-A. & Chen, Q. (2011). Acta Cryst. E67, m527m528.
- Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879.
- Zhu, E., Liu, Q., Chen, Q., He, M., Chen, S., Zhang, Z. & Huang, H. (2009). J. Coord. Chem. 62, 2449–2456.

supporting information

Acta Cryst. (2013). E69, m577-m578 [doi:10.1107/S1600536813026287]

Poly[bis(ethanol)(μ_4 -2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium]

Nakeun Ko and Jaheon Kim

S1. Comment

We reported previously a metal-organic framework (MOF) composed of iron ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate) linkers (Yoon *et al.*, 2007). The title compound in this work was obtained in the course of making a new MOF using cadmium ion with the same organic linker. However, unlike other MOFs prepared through solvothermal reactions in common amine solvent such as *N*,*N*-dimethylformamide, the title compound could be obtained as single crystals in hot ethanol.

S2. Experimental

The title compound was obtained as colorless plate crystals by a solvothermal reaction between cadmium(II) nitrate tetrahydrate (25 mg) and tetrafluorobenzene-1,4-dicarboxylic acid (12 mg) in ethanol (8 ml)in a Teflon-lined vessel (23 ml) at 353 K and for 2 days.

S3. Refinement

The ethyl group in ethanol is disordered over two sites with site occupancy factors, 0.56709 (C5 and C6) and 0.43291 (C5A and C6A), respectively. Hydrogen atoms of the ethanol molecule were placed at calculated positions with C—H = 0.99 Å (methylene), C—H = 0.98 Å (methyl) or O—H = 0.85 Å (alcohol) and allowed to ride, with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C,O)$ for the others.

Figure 1

An asymmetric unit of the title compound is shown with the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level.

Figure 2

The coordination environment of the title compound is shown with H-bonds (dotted lines).

Figure 3

A packing diagram of the title compound is displayed along the c axis. Hydrogen bonds are shown with light blue dotted lines.

Figure 4

A packing diagram of the title compound is displayed along the *a* axis. Hydrogen bonds are shown with light blue dotted lines.

Poly[bis(ethanol)(μ_4 -2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium]

Crystal data	
$[Cd(C_8F_4O_4)(C_2H_6O_2)]$	Z = 1
$M_r = 440.61$	F(000) = 216
Triclinic, P1	$D_{\rm x} = 1.978 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 4.8367 (3) Å	Cell parameters from 2269 reflections
b = 9.0903 (6) Å	$\theta = 2.4 - 28.2^{\circ}$
c = 9.4078 (6) Å	$\mu = 1.55 \text{ mm}^{-1}$
$\alpha = 108.091 \ (1)^{\circ}$	T = 173 K
$\beta = 100.637 (1)^{\circ}$	Plate, colorless
$\gamma = 102.275 (1)^{\circ}$	$0.35 \times 0.20 \times 0.06 \text{ mm}$
V = 369.95 (4) Å ³	
Data collection	
Bruker SMART APEX CCD	2308 measured reflections
diffractometer	1576 independent reflections
Radiation source: fine-focus sealed tube	1569 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.014$

1569 reflections with $I >$
$R_{\rm int} = 0.014$
$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
$h = -5 \rightarrow 6$
$k = -11 \rightarrow 11$
$l = -12 \rightarrow 8$

Absorption correction: multi-scan

(*SADABS*; Bruker, 2001) $T_{\min} = 0.613, T_{\max} = 0.913$

phi and ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.054$	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0317P)^2 + 0.1686P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
1576 reflections	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
6 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F² are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	1.0000	0.5000	1.0000	0.02063 (9)	
F1	0.1389 (4)	0.24768 (17)	1.27515 (16)	0.0358 (3)	
F2	0.2660 (3)	0.01945 (17)	0.77434 (17)	0.0349 (3)	
01	0.6687 (3)	0.28942 (19)	1.0084 (2)	0.0271 (3)	
O2	0.3899 (3)	0.43185 (17)	1.12102 (18)	0.0227 (3)	
C1	0.4446 (4)	0.3017 (2)	1.0543 (2)	0.0205 (4)	
C2	0.2191 (4)	0.1450 (2)	1.0267 (2)	0.0194 (4)	
C3	0.0738 (5)	0.1268 (3)	1.1375 (2)	0.0226 (4)	
C4	0.1397 (5)	0.0137 (3)	0.8888 (3)	0.0219 (4)	
03	1.0823 (4)	0.3384 (2)	0.7802 (2)	0.0327 (4)	
H3OA	1.249 (5)	0.393 (5)	0.781 (5)	0.039*	0.567 (10)
H3OB	1.137 (15)	0.267 (5)	0.809 (5)	0.039*	0.433 (10)
C5	0.8671 (16)	0.2366 (7)	0.6350(7)	0.055 (2)	0.567 (10)
H5A	0.6914	0.1769	0.6553	0.065*	0.567 (10)
H5B	0.9502	0.1568	0.5726	0.065*	0.567 (10)
C6	0.783 (2)	0.3392 (10)	0.5484 (8)	0.094 (4)	0.567 (10)
H6A	0.6335	0.2711	0.4509	0.141*	0.567 (10)
H6B	0.9566	0.3951	0.5257	0.141*	0.567 (10)
H6C	0.7039	0.4190	0.6115	0.141*	0.567 (10)
C5A	0.9372 (18)	0.3012 (15)	0.6188 (7)	0.064 (3)	0.433 (10)
H5AA	0.9215	0.4015	0.6017	0.076*	0.433 (10)
H5AB	1.0524	0.2508	0.5514	0.076*	0.433 (10)
C6A	0.6405 (16)	0.1883 (14)	0.5801 (9)	0.077 (4)	0.433 (10)
H6AA	0.5410	0.1599	0.4705	0.116*	0.433 (10)
H6AB	0.5261	0.2403	0.6452	0.116*	0.433 (10)
H6AC	0.6579	0.0902	0.5990	0.116*	0.433 (10)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01309 (12)	0.01499 (12)	0.03701 (14)	0.00397 (8)	0.01226 (8)	0.01066 (9)
F1	0.0477 (9)	0.0235 (7)	0.0292 (7)	-0.0016 (6)	0.0166 (6)	0.0042 (6)
F2	0.0434 (8)	0.0268 (7)	0.0387 (7)	0.0039 (6)	0.0284 (6)	0.0117 (6)
O1	0.0160 (7)	0.0204 (8)	0.0512 (10)	0.0062 (6)	0.0155 (7)	0.0174 (7)
O2	0.0184 (7)	0.0165 (7)	0.0331 (8)	0.0035 (6)	0.0083 (6)	0.0094 (6)
C1	0.0137 (9)	0.0186 (10)	0.0310 (10)	0.0029 (7)	0.0061 (7)	0.0127 (8)
C2	0.0128 (8)	0.0175 (9)	0.0320 (10)	0.0050 (7)	0.0081 (7)	0.0131 (8)
C3	0.0214 (10)	0.0188 (10)	0.0273 (10)	0.0045 (8)	0.0079 (8)	0.0079 (8)
C4	0.0196 (10)	0.0219 (10)	0.0302 (10)	0.0063 (8)	0.0140 (8)	0.0132 (8)
O3	0.0258 (8)	0.0301 (9)	0.0332 (9)	0.0046 (7)	0.0055 (7)	0.0032 (7)
C5	0.051 (5)	0.033 (3)	0.049 (3)	-0.001 (3)	-0.009 (3)	-0.005 (3)
C6	0.109 (7)	0.128 (8)	0.040 (4)	0.079 (7)	0.002 (4)	0.004 (4)
C5A	0.053 (5)	0.072 (7)	0.033 (4)	-0.028 (5)	-0.004 (3)	0.015 (4)
C6A	0.033 (4)	0.124 (9)	0.036 (4)	-0.017 (5)	0.000 (3)	0.009 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cd1—O1 ⁱ	2.2526 (15)	O3—C5	1.444 (4)	
Cd101	2.2526 (15)	O3—C5A	1.449 (5)	
Cd1—O2 ⁱⁱ	2.3194 (15)	O3—H3OA	0.850 (5)	
Cd1—O2 ⁱⁱⁱ	2.3194 (15)	O3—H3OB	0.849 (5)	
Cd1—O3 ⁱ	2.2929 (18)	C5—C6	1.487 (5)	
Cd1—O3	2.2929 (18)	С5—Н5А	0.9900	
F1—C3	1.343 (3)	С5—Н5В	0.9900	
F2—C4	1.342 (2)	С6—Н6А	0.9800	
01—C1	1.252 (3)	C6—H6B	0.9800	
O2—C1	1.264 (3)	С6—Н6С	0.9800	
O2—Cd1 ^{iv}	2.3194 (15)	C5A—C6A	1.481 (5)	
C1—C2	1.513 (3)	С5А—Н5АА	0.9900	
C2—C4	1.384 (3)	C5A—H5AB	0.9900	
C2—C3	1.391 (3)	С6А—Н6АА	0.9800	
C3—C4 ^v	1.382 (3)	С6А—Н6АВ	0.9800	
C4—C3 ^v	1.382 (3)	С6А—Н6АС	0.9800	
01 ⁱ -Cd1-01	180.0	С5—О3—НЗОА	120 (3)	
$O1^i$ —Cd1— $O3^i$	91.52 (7)	С5А—О3—НЗОА	97 (3)	
$01-Cd1-03^{i}$	88.48 (6)	Cd1—O3—H3OA	103 (3)	
O1 ⁱ —Cd1—O3	88.48 (6)	С5—О3—НЗОВ	100 (4)	
01—Cd1—O3	91.52 (7)	С5А—О3—НЗОВ	120 (3)	
O3 ⁱ —Cd1—O3	180.0	Cd1—O3—H3OB	103 (3)	
$O1^i$ —Cd1— $O2^{ii}$	87.93 (6)	НЗОА—ОЗ—НЗОВ	98 (6)	
01—Cd1—O2 ⁱⁱ	92.07 (6)	O3—C5—C6	109.1 (5)	
O3 ⁱ —Cd1—O2 ⁱⁱ	97.63 (6)	O3—C5—H5A	109.9	
O3—Cd1—O2 ⁱⁱ	82.37 (6)	C6—C5—H5A	109.9	
O1 ⁱ —Cd1—O2 ⁱⁱⁱ	92.07 (5)	O3—C5—H5B	109.9	

87.93 (6)	C6—C5—H5B	109.9
82.37 (6)	H5A—C5—H5B	108.3
97.63 (6)	С5—С6—Н6А	109.5
180.0	С5—С6—Н6В	109.5
123.39 (14)	H6A—C6—H6B	109.5
120.48 (13)	С5—С6—Н6С	109.5
126.19 (19)	H6A—C6—H6C	109.5
116.46 (19)	H6B—C6—H6C	109.5
117.36 (18)	C6A—C5A—O3	108.5 (5)
116.23 (19)	С6А—С5А—Н5АА	110.0
122.13 (19)	O3—C5A—H5AA	110.0
121.62 (19)	С6А—С5А—Н5АВ	110.0
117.7 (2)	O3—C5A—H5AB	110.0
120.24 (19)	Н5АА—С5А—Н5АВ	108.4
122.0 (2)	С5А—С6А—Н6АА	109.5
117.5 (2)	С5А—С6А—Н6АВ	109.5
120.81 (19)	Н6АА—С6А—Н6АВ	109.5
121.7 (2)	С5А—С6А—Н6АС	109.5
127.3 (4)	Н6АА—С6А—Н6АС	109.5
129.2 (6)	Н6АВ—С6А—Н6АС	109.5
-10.2 (3)	C4—C2—C3—C4 ^v	-0.6 (3)
169.78 (13)	C1—C2—C3—C4 ^v	177.71 (19)
113.9 (2)	C3—C2—C4—F2	179.70 (19)
-66.1 (2)	C1—C2—C4—F2	1.4 (3)
-41.9 (3)	C3—C2—C4—C3 ^v	0.6 (3)
138.0 (2)	C1—C2—C4—C3 ^v	-177.70 (19)
139.9 (2)	C5A—O3—C5—C6	-28.4 (13)
-40.1 (3)	Cd1—O3—C5—C6	76.5 (7)
179.42 (19)	C5—O3—C5A—C6A	23.6 (10)
-2.3 (3)	Cd1	-73.7 (11)
	87.93 (6) 82.37 (6) 97.63 (6) 180.0 123.39 (14) 120.48 (13) 126.19 (19) 116.46 (19) 117.36 (18) 116.23 (19) 122.13 (19) 122.13 (19) 121.62 (19) 117.7 (2) 120.24 (19) 122.0 (2) 117.5 (2) 120.81 (19) 121.7 (2) 127.3 (4) 129.2 (6) -10.2 (3) 169.78 (13) 113.9 (2) -66.1 (2) -41.9 (3) 138.0 (2) 139.9 (2) -40.1 (3) 179.42 (19) -2.3 (3)	87.93 (6) $C6-C5-H5B$ 82.37 (6) $H5A-C5-H5B$ 97.63 (6) $C5-C6-H6A$ 180.0 $C5-C6-H6B$ 123.39 (14) $H6A-C6-H6B$ 123.39 (14) $H6A-C6-H6C$ 126.19 (19) $H6A-C6-H6C$ 126.19 (19) $H6A-C6-H6C$ 117.36 (18) $C6A-C5A-O3$ 116.23 (19) $C6A-C5A-H5AA$ 122.13 (19) $C6A-C5A-H5AA$ 122.13 (19) $C6A-C5A-H5AB$ 117.7 (2) $O3-C5A-H5AB$ 120.24 (19) $L6A-C6A-H6AB$ 122.0 (2) $C5A-C6A-H6AB$ 121.7 (2) $C5A-C6A-H6AB$ 121.7 (2) $C5A-C6A-H6AC$ 129.2 (6) $H6AB-C6A-H6AC$ 129.2 (6) $H6AB-C6A-H6AC$ 129.2 (6) $H6AB-C6A-H6AC$ 129.2 (6) $L6AB-C6A-H6AC$ 129.2 (13) $C1-C2-C4-F2$ <

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) *x*-1, *y*, *z*; (v) -*x*, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H…A
O3—H3 <i>OA</i> ···O2 ⁱ	0.85 (1)	1.94 (2)	2.719 (2)	152 (4)
O3—H3 <i>OB</i> ···F2 ⁱⁱ	0.85 (1)	2.40 (2)	3.196 (2)	156 (4)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*+1, *y*, *z*.