Structure Reports

Online
ISSN 1600-5368

Bis[(dimethylphosphoryl)methanaminium] tetrachloridopalladate(II)

Guido J. Reiss

Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D40225 Düsseldorf, Germany
Correspondence e-mail: reissg@hhu.de

Received 6 October 2013; accepted 12 October 2013

Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$; R factor $=0.022 ; w R$ factor $=0.051$; data-to-parameter ratio $=38.2$.

In the crystal structure of the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NOP}\right)_{2^{-}}$ [$\left.\mathrm{PdCl}_{4}\right]$, (dimethylphosphoryl)methanaminium (dpmaH ${ }^{+}$) cations are connected head-to-tail by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion-related cyclic dimers. The square-planar $\left[\mathrm{PdCl}_{4}\right]^{2-}$ counter-dianion is located about a center of inversion. The dications and the $\left[\mathrm{PdCl}_{4}\right]^{2-}$ dianions are connected by medium-strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming zigzag chains parallel to [001]. Somewhat weaker N$\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds connect the chains into a threedimensional network.

Related literature

For transition metal complexes built by the neutral dpma ligand, see: Kochel (2009). For simple dpmaH ${ }^{+}$salts, see: Reiss \& Jörgens (2012); Buhl et al. (2013); Lambertz et al. (2013); Reiss (2013a). For dpmaH^{+}metal complexes, see: Reiss (2013b,c,d). For some structures and applications of tetrachloridopalladate(II) salts, see: Willett \& Willett (1977); Hardacre et al. (2001); Lee et al. (2004); Song et al. (2012); Vranec et al. (2012); Serpell et al. (2013). For graph-set analysis, see: Grell et al. (2002).

Experimental

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NOP}\right)_{2}\left[\mathrm{PdCl}_{4}\right]$
$a=9.3600(3) \AA$
$M_{r}=464.39$
Monoclinic, $P 2_{1} / n$
$\beta=110.110(3)^{\circ}$
$V=823.21$ (4) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction Xcalibur CCD diffractometer
Absorption correction: analytical [using a multifaceted crystal model (Clark \& Reid, 1995)] $T_{\text {min }}=0.764, T_{\text {max }}=0.850$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.051$
$S=1.09$
3595 reflections
94 parameters

$$
\begin{aligned}
& \mu=1.96 \mathrm{~mm}^{-1} \\
& T=290 \mathrm{~K} \\
& 0.18 \times 0.12 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

26379 measured reflections
3595 independent reflections 3077 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 12 \cdots \mathrm{Cl} 1$	$0.88(2)$	$2.40(2)$	$3.2220(15)$	$155(2)$
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.86(2)$	$1.89(2)$	$2.7425(17)$	$172(2)$
$\mathrm{N} 1-\mathrm{H} 13 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.84(2)$	$2.73(2)$	$3.3752(15)$	$135.1(18)$
$\mathrm{N} 1-\mathrm{H} 13 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.84(2)$	$2.82(2)$	$3.5241(16)$	$143.4(18)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO); data reduction: CrysAlis PRO); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

This publication was funded by the German Research Foundation (DFG) and the Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2775).

References

Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Buhl, D., Gün, H., Jablonka, A. \& Reiss, G. J. (2013). Crystals, 3, 350-362. Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Grell, J., Bernstein, J. \& Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56
Hardacre, C., Holbrey, J. D., McCormac, P. B., McMath, S. E. J., Nieuwenhuyzen, M. \& Seddon, K. R. (2001). J. Mater. Chem. 11, 346-350. Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.
Lambertz, C., Luppa, A. \& Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227-228.
Lee, C. K., Peng, H. H. \& Lin, I. J. B. (2004). Chem. Mater. 16, 530-536.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Reiss, G. J. (2013a). Acta Cryst. E69, o1253-o1254.
Reiss, G. J. (2013b). Acta Cryst. E69, m248-m249.
Reiss, G. J. (2013c). Acta Cryst. E69, m250-m251.
Reiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431-433.
Reiss, G. J. \& Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.
Serpell, C. J., Cookson, J., Thompson, A. L., Brown, C. M. \& Beer, P. D. (2013). Dalton Trans. 42, 1385-1393.

metal-organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, H., Yan, N., Fei, Z., Kilpin, K. J., Scopelliti, R., Li, X. \& Dyson, P. J. (2012). Catal. Today, 183, 172-177.

Vranec, P., Potočňák, I. \& Repovský, P. (2012). Acta Cryst. C68, m370-m376. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Willett, R. D. \& Willett, J. J. (1977). Acta Cryst. B33, 1639-1641.

supporting information

Acta Cryst. (2013). E69, m614-m615 [doi:10.1107/S1600536813028067]

Bis[(dimethylphosphoryl)methanaminium] tetrachloridopalladate(II)

Guido J. Reiss

S1. Comment

The synthesis of (dimethylphosphoryl)methanamine (dmpa) and its use as a bidentate N, O-ligand has been proved (Kochel, 2009 and literature therein). Furthermore, two transition metal complexes are reported in which the dpmaH ${ }^{+}$ cation acts as a monodentate ligand (Reiss, 2013b,c). Recently, a series of dmpaH ${ }^{+}$salts have been synthesized and structurally characterized. In all cases hydrogen bonds strongly affect the set-up of the crystal structures. In many cases the head-to-tail connection of two and more dpmaH^{+}tectons leads to hydrogen-bonded polymeric structures with the counter anions only very weakly attached (Buhl et al., 2013; Lambertz et al. 2013; Reiss, 2013a), but there are structures which show the ability of the dpmaH^{+}tecton to form medium-strong hydrogen bonds with the surrounding cations and anions as well (Reiss \& Jörgens, 2012; Reiss, 2013d).

For many decades, alkylaminium tetrachloridopalladate salts are of general interest (e.g. Willett \& Willett, 1977). Imidazolium tetrachloridopalladate(II) salts have recently attracted much attention as potent precursors for preparation of catalytic metal nanoparticles (Serpell et al., 2013), as solids that show thermochromism (Hardacre et al., 2001) and may form liquid crystalline phases (Lee et al., 2004). Furthermore, it should be mentioned that corresponding tetrachloridopalladate(II) salts have recently been used as pre-catalyst for the Suzuki reaction (Song et al. 2012).
The asymmetric unit of the structure of the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NOP}\right)_{2}\left[\mathrm{PdCl}_{4}\right]$, consists of one dpmaH${ }^{+}$cation and one half $\left[\mathrm{PdCl}_{4}\right]^{2-}$ anion with the $\mathrm{Pd}(\mathrm{II})$ atom located on an inversion center (Wyckoff site: $2 a$). The bond lengths and angles of both ions are all in the expected ranges. Pairs of dpmaH ${ }^{+}$cations are connected head-to-tail around centers of inversion (Wyckoff site: $2 d$) forming cyclic dimers (Fig. 1). The cyclic dimers and the centrosymmetric $\left[\mathrm{PdCl}_{4}\right]^{2-}$ anions are connected by medium-strong and charge-supported $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds $(\mathrm{H} \cdots \mathrm{Cl}=2.41$ (2) \AA; Table 1), forming chains along [001]. The hydrogen bonding connection of the dicationic cycle can be classified by the first level graph-set descriptor $R^{2}{ }_{2}(10)$ (Grell et al. 2002), whereas the connection along the chain is represented by the second level graph-set descriptor $C_{3}^{3}{ }_{3}(11)$ (Fig. 1). Taking into account also weak bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds ($\mathrm{H} \cdots \mathrm{Cl}: 2.73$ (2) and 2.83 (2) \AA), a three-dimensional network is obtained.

According to the occupation of two different centers of inversion by cyclic dimers and $\left[\mathrm{PdCl}_{4}\right]^{2-}$ anions, respectively, the arrangement of each of them can be described as a body-centered sublattice (Fig. 2). Secondary $\mathrm{Pd} \cdots \mathrm{Cl}$ interactions perpendicular to the plane of the $\left[\mathrm{PdCl}_{4}\right]^{2-}$ anion, known for related salt structures (e.g. Willett \& Willett, 1977; Vranec et al., 2012) are ruled out by the afore discussed packing scheme. In the title structure two methyl groups of two different $(\mathrm{dpmaH}) 2^{2+}$ dications roughly occupy and block these axial positions at the $\mathrm{Pd}(\mathrm{II})$ atom (Fig. 1).

S2. Experimental

In a typical experiment $0.25 \mathrm{~g} \mathrm{PdCl}_{2}(1.4 \mathrm{mmol})$ were dissolved in 4 ml concentrated hydrochloric acid (37%) and 0.3 g (2.8) dpma was added to this yellow solution. Within a few days yellow crystals grow at the bottom of the vessel.

S3. Refinement

All hydrogen atoms were identified in difference Fourier syntheses. The methyl groups were idealized and refined using rigid groups allowed to rotate about the P-C bond (AFIX 137 option of the SHELXL-2013 program (Sheldrick, 2008)) with the $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The hydrogen atoms at the CH_{2}-group were idealized and treated as riding with $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{e q}(\mathrm{C})$. The coordinates of the hydrogen atoms at the NH_{3}-group were refined freely simultaneously with individual $U_{\text {iso }}$ values.

Figure 1

The cyclic dimer, built up from two dpmaH ${ }^{+}$cations, is hydrogen-bonded to neighbouring $\left[\mathrm{PdCl}_{4}\right]^{2-}$ anions. Ellipsoids are drawn at the 50% probability level. The graph-set descriptors $R^{2}(10)$ and $C^{3}(11)$ are indicated by green and red numbers. [Symmetry codes: (') -x, -y, -z; (") -x, -y, 1-z.]

Figure 2

In the packing of the title structure the cations and anions occupy different centers of inversion. Therefore, the arrangement of cations and anions, respectively, represent body-centered sublattices. Ellipsoids are drawn at the 40% probability level; the methyl groups are omitted and the methylene group is shown in a wireframe style for clarity.

Bis[(dimethylphosphoryl)methanaminium] tetrachloridopalladate(II)

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NOP}\right)_{2}\left[\mathrm{PdCl}_{4}\right]$
$M_{r}=464.39$
Monoclinic, $P 2_{1} / n$
$a=9.3600$ (3) \AA
$b=7.81198$ (19) \AA
$c=11.9892(3) \AA$
$\beta=110.110(3)^{\circ}$
$V=823.21$ (4) \AA^{3}
$Z=2$

Data collection

Oxford Diffraction Xcalibur CCD
diffractometer
Radiation source: (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.2711 pixels mm^{-1}
ω scans
Absorption correction: analytical
[using a multifaceted crystal model (Clark \& Reid, 1995)]
$F(000)=464$
$D_{\mathrm{x}}=1.874 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12224 reflections
$\theta=3.2-35.4^{\circ}$
$\mu=1.96 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Block, yellow
$0.18 \times 0.12 \times 0.11 \mathrm{~mm}$
$T_{\text {min }}=0.764, T_{\text {max }}=0.850$
26379 measured reflections
3595 independent reflections
3077 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=35.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-15 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.051$
$S=1.09$
3595 reflections
94 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0178 P)^{2}+0.217 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=0.46$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$
Extinction correction: SHELXL2013 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0040 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Pd1	0.0000	0.0000	0.0000	$0.02259(4)$
C11	$0.22877(4)$	$0.04262(5)$	$0.15119(3)$	$0.03461(8)$
C12	$0.07205(5)$	$0.20056(5)$	$-0.1116(4)$	$0.03905(9)$
O1	$0.13229(12)$	$-0.01272(13)$	$0.62240(10)$	$0.0298(2)$
P1	$0.21946(4)$	$0.12971(5)$	$0.59240(3)$	$0.02481(7)$
N1	$0.15898(16)$	$-0.05812(19)$	$0.38798(13)$	$0.0316(3)$
H11	$0.066(3)$	$-0.046(3)$	$0.384(2)$	$0.056(6)^{*}$
H12	$0.167(2)$	$-0.064(3)$	$0.317(2)$	$0.055(6)^{*}$
H13	$0.193(2)$	$-0.151(3)$	$0.421(2)$	$0.049(6)^{*}$
C1	$0.1204(2)$	$0.3284(2)$	$0.57050(18)$	$0.0448(4)$
H1A	0.0251	0.3174	0.5064	0.067^{*}
H1B	0.1807	0.4155	0.5515	0.067^{*}
H1C	0.1019	0.3595	0.6418	0.067^{*}
C2	$0.40239(19)$	$0.1665(2)$	$0.69942(15)$	$0.0422(4)$
H2A	0.3919	0.2038	0.7725	0.063^{*}
H2B	0.4538	0.2533	0.6708	0.063^{*}
H2C	0.4604	0.0625	0.7128	0.063^{*}
C3	$0.25318(18)$	$0.0838(2)$	$0.45344(14)$	$0.0348(3)$
H3A	0.2311	0.1854	0.4039	0.042^{*}
H3B	0.3596	0.0555	0.4713	0.042^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.02378(7)$	$0.02169(7)$	$0.02289(7)$	$-0.00035(5)$	$0.00878(5)$	$-0.00143(5)$
C11	$0.02834(16)$	$0.0438(2)$	$0.02818(16)$	$-0.00517(14)$	$0.00520(13)$	$-0.00045(14)$
C12	$0.0447(2)$	$0.0374(2)$	$0.03567(19)$	$-0.00905(16)$	$0.01464(16)$	$0.00673(15)$

O1	$0.0301(5)$	$0.0308(5)$	$0.0315(5)$	$-0.0009(4)$	$0.0142(4)$	$0.0028(4)$
P1	$0.02492(16)$	$0.02507(16)$	$0.02430(15)$	$0.00067(12)$	$0.00827(12)$	$0.00136(12)$
N1	$0.0337(7)$	$0.0324(6)$	$0.0328(6)$	$-0.0007(5)$	$0.0170(5)$	$-0.0036(5)$
C1	$0.0529(10)$	$0.0314(8)$	$0.0572(11)$	$0.0111(7)$	$0.0280(9)$	$0.0087(7)$
C2	$0.0354(8)$	$0.0466(10)$	$0.0369(8)$	$-0.0086(7)$	$0.0027(6)$	$0.0016(7)$
C3	$0.0358(8)$	$0.0404(8)$	$0.0336(7)$	$-0.0094(6)$	$0.0190(6)$	$-0.0037(6)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Pd} 1-\mathrm{Cl2}{ }^{\text {i }}$	2.3030 (4)	N1-H12	0.88 (2)
$\mathrm{Pd} 1-\mathrm{Cl} 2$	2.3030 (4)	N1—H13	0.84 (2)
Pd1- $\mathrm{Cl1}^{\text {i }}$	2.3049 (4)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600
$\mathrm{Pd} 1-\mathrm{Cl1}$	2.3049 (4)	C1-H1B	0.9600
O1-P1	1.4951 (10)	C1-H1C	0.9600
P1-C2	1.7749 (16)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
P1-C1	1.7809 (17)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
P1-C3	1.8345 (15)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
N1-C3	1.465 (2)	C3-H3A	0.9700
N1-H11	0.86 (2)	C3-H3B	0.9700
$\mathrm{Cl2}-\mathrm{Pd} 1-\mathrm{Cl} 2$	180.0	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{Cl2}-\mathrm{Pd} 1-\mathrm{Cl}^{\mathrm{i}}$	88.803 (14)	P1-C1-H1B	109.5
$\mathrm{Cl2}-\mathrm{Pd} 1-\mathrm{Cl1}^{\text {i }}$	91.196 (14)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{Cl2}-\mathrm{Pd} 1-\mathrm{Cl} 1$	91.197 (14)	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 1$	88.803 (14)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{Cl} 1$	180.0	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 2$	114.67 (7)	$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1$	112.61 (7)	$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
C2-P1-C1	106.82 (9)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 3$	110.58 (7)	$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C2-P1-C3	105.30 (8)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C1-P1-C3	106.27 (9)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 11$	111.1 (15)	N1-C3-P1	112.01 (10)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 12$	108.8 (15)	N1-C3-H3A	109.2
H11-N1-H12	112 (2)	P1-C3-H3A	109.2
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 13$	110.2 (15)	N1-C3-H3B	109.2
H11-N1-H13	109 (2)	P1-C3-H3B	109.2
H12-N1-H13	106 (2)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.9
O1-P1-C3-N1	13.59 (14)	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 3-\mathrm{N} 1$	-108.92 (13)
C2—P1-C3-N1	137.98 (13)		

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 12 \cdots \mathrm{Cl1}$	$0.88(2)$	$2.40(2)$	$3.2220(15)$	$155(2)$
$\mathrm{N} 1 — \mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.86(2)$	$1.89(2)$	$2.7425(17)$	$172(2)$

supporting information

$\mathrm{N} 1 — \mathrm{H} 13 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.84(2)$	$2.73(2)$	$3.3752(15)$	$135.1(18)$
$\mathrm{N} 1 — \mathrm{H} 13 \cdots \mathrm{Cl}^{\mathrm{iii}}$	$0.84(2)$	$2.82(2)$	$3.5241(16)$	$143.4(18)$

Symmetry codes: (ii) $-x,-y,-z+1$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

