

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis[1-(2,4,6-trimethylphenyl)-1*H*-imidazole- κN^3]copper(II)

Yantao Zhang* and Zhuzhen Lin

Health Vocation and Technical College of Guangzhou Medical University, Guangzhou, People's Republic of China Correspondence e-mail: zhangyantao333@163.com

Received 17 September 2013; accepted 20 October 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.145; data-to-parameter ratio = 14.6.

In the title complex, $[CuCl_2(C_{12}H_{14}N_2)_2]$, the Cu^{2+} cation is situated on an inversion centre and is coordinated by two N atoms from symmetry-related 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted squareplanar geometry. In the organic ligand, the dihedral angle between the benzene ring of the mesityl moiety and the imidazole ring is 76.99 (18)°. Weak intramolecular $C-H\cdots Cl$ hydrogen-bonding interactions consolidate the molecular conformation.

Related literature

For related structures, see: Awwadi (2013); Jia et al. (2005). For the bioactivity of Cu complexes, see: Beaudoin et al. (2009); Deegana et al. (2007); Pettit & Ueda (1992). For the photochemistry of Cu complexes, see: Kuang et al. (2002); Raptopoulou et al. (1998); Teyssot et al. (2007).

Experimental

Crystal data $[CuCl_2(C_{12}H_{14}N_2)_2]$

 $M_r = 506.94$

Cu $K\alpha$ radiation

 $0.44 \times 0.32 \times 0.05 \text{ mm}$

 $\mu = 3.47 \text{ mm}^{-1}$

T = 298 K

Z = 2

Monoclinic, $P2_1/c$ a = 7.1488 (6) Å b = 19.7517 (18) Å c = 8.5126 (7) Å $\beta = 92.674 \ (8)^{\circ}$ $V = 1200.68 (18) \text{ Å}^3$

Data collection

Bruker APEX CCD diffractometer	5702 measured reflections
Absorption correction: multi-scan	2114 independent reflections
(SADABS; Bruker, 2008)	1738 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.311, \ T_{\max} = 0.846$	$R_{\rm int} = 0.036$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.052$	145 parameters

$R[F > 2\sigma(F)] = 0.052$	145 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
2114 reflections	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C1-H1···Cl1	0.93	2.55	3.060 (4)	115

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2773).

References

- Awwadi, F. F. (2013). Acta Cryst. E69, m116.
- Beaudoin, C., Morel, L., Boyer, D., Mahiou, R. & Gautier, A. (2009). Dalton Trans. pp. 6894-6902.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deegana, C., McCanna, M., Devereuxa, M., Coylec, B. & Egan, D. A. (2007). Cancer Lett. 2, 224-233
- Jia, W., McCormick, T., Tao, Y., Lu, J. & Wang, S. (2005). Inorg. Chem. 44, 5706-5712.
- Kuang, S. M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313-3322.
- Pettit, L. D. & Ueda, J. (1992). J. Inorg. Biochem. 3, 203-210.
- Raptopoulou, C. P., Paschalidou, S., Pantazaki, A. A., Terzis, A., Perlepes, S. P., Lialiaris, T., Bakalbassis, E. G., Mrozinski, J. & Kyriakidis, D. A. (1998). J. Inorg. Biochem. 71, 15-27.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Teyssot, M. L., Jarrousse, A. S., Manin, M., Chevry, A., Roche, S., Norre, F., Tsuboyama, A., Kuge, K., Furugori, M., Okada, S., Hoshino, M. & Ueno, K. (2007). Inorg. Chem. 46, 1992-2001.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, m621 [doi:10.1107/S1600536813028821]

Dichloridobis[1-(2,4,6-trimethylphenyl)-1*H*-imidazole-κN³]copper(II)

Yantao Zhang and Zhuzhen Lin

S1. Comment

In recent years, phosphorescent Cu(II) complexes received attention due to their nontoxic properties (Deegana *et al.*, 2007), which make these complexes applicable in biological probing (Beaudoin *et al.*, 2009; Deegana *et al.*, 2007; Pettit & Ueda, 1992), solar energy conversion, and organic light emitting devices (Kuang *et al.*, 2002; Jia *et al.*, 2005; Teyssot *et al.*, 2007). Our interest is focused on the design and synthesis of phosphorescent Cu(II) complexes with various ancillary ligands, and their applications in anti-cancer therapy (Awwadi, 2013; Raptopoulou *et al.*, 1998). We herein describe the synthesis and structural characterization of the title compound, $[CuCl_2(C_{12}H_{14}N_2)_2]$, (I).

The molecular structure of compound (I) is shown in Fig. 1. The metal cation is situated on an inversion centre and is coordinated by two N atoms of the 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. The mesityl ring moiety and the imidazole ring are almost orthogonal to each other, with a dihedral angle between the two rings of 76.99 (18) °. Weak intramolecular C—H…Cl hydrogen bonding interactions consolidate the molecular conformation (Fig. 2).

S2. Experimental

In a Schlenk flask, a solution of 1-mesityl-1H-imidazole (10 ml, 1M in CH₂Cl₂) was added to a suspension of CuCl₂ (5 mmol) in 10 ml CH₂Cl₂ at room temperature. The reaction was stirred in the absence of light for 6 h at this temperature. The reaction mixture was then filtered in the dark and the volume of the solution reduced to 5.0 ml. Pentane was added to afford the product as an green solid in 40% yield. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in CH₂Cl₂ at room temperature.

S3. Refinement

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH₃) Å and with U_{iso} (H)= 1.2 (1.5 for methyl) U_{eq} (C).

Figure 1

Molecular structure of compound (I). Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code A) -x+1, -y+1, -z+1.]

Figure 2

The crystal packing of compound (I). C—H…Cl interactions are shown as dashed lines.

Dichloridobis[1-(2,4,6-trimethylphenyl)-1*H*-imidazole- κN^3]copper(II)

Crystal data	
$[CuCl_2(C_{12}H_{14}N_2)_2]$	Hall symbol: -P 2ybc
$M_r = 506.94$	a = 7.1488 (6) A
Monoclinic, $P2_1/c$	<i>b</i> = 19.7517 (18) Å

Cell parameters from 7467 reflections

 $\theta = 2.2 - 27.0^{\circ}$

 $\mu = 3.47 \text{ mm}^{-1}$

 $0.44 \times 0.32 \times 0.05 \text{ mm}$

5702 measured reflections 2114 independent reflections

 $\theta_{\text{max}} = 66.9^{\circ}, \ \theta_{\text{min}} = 4.5^{\circ}$ $h = -7 \rightarrow 8$

1738 reflections with $I > 2\sigma(I)$

T = 298 K

Plate, green

 $R_{\rm int} = 0.036$

 $k = -21 \rightarrow 23$

 $l = -10 \rightarrow 9$

c = 8.5126 (7) Å $\beta = 92.674 (8)^{\circ}$ $V = 1200.68 (18) \text{ Å}^{3}$ Z = 2 F(000) = 526 $D_x = 1.402 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$

Data collection

Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.311, T_{\max} = 0.846$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.052$ Hydrogen site location: inferred from $wR(F^2) = 0.145$ neighbouring sites *S* = 1.02 H-atom parameters constrained 2114 reflections $w = 1/[\sigma^2(F_0^2) + (0.0792P)^2 + 1.6476P]$ 145 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 1.16 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

= $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ (Fractional at	tomic co	ordinates	and	isotropic d	or equivale	ent isotropic	displacement	parameters	$(Å^2$	²)
---	---------------	----------	-----------	-----	-------------	-------------	---------------	--------------	------------	--------	----------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.5000	0.5000	0.0301 (3)	
C11	0.2765 (2)	0.45641 (8)	0.65130 (12)	0.0843 (6)	
N1	0.3864 (4)	0.45022 (13)	0.3140 (3)	0.0271 (6)	
N2	0.2163 (4)	0.37951 (14)	0.1669 (3)	0.0298 (6)	
C5	-0.0735 (5)	0.33960 (18)	0.0315 (4)	0.0321 (7)	
C7	-0.1896 (5)	0.28533 (19)	-0.0109 (4)	0.0370 (8)	
H7	-0.2996	0.2937	-0.0704	0.044*	
C4	0.0884 (4)	0.32493 (17)	0.1230 (4)	0.0292 (7)	
C1	0.2452 (5)	0.40602 (17)	0.3112 (4)	0.0305 (7)	
H1	0.1762	0.3950	0.3976	0.037*	

				/
C2	0.4488 (5)	0.45081 (18)	0.1632 (4)	0.0348 (8)
H2	0.5475	0.4769	0.1295	0.042*
C8	-0.1471 (5)	0.21907 (18)	0.0325 (4)	0.0358 (8)
C11	0.1388 (5)	0.25940 (17)	0.1680 (4)	0.0296 (7)
C10	0.0168 (5)	0.20712 (18)	0.1221 (4)	0.0345 (8)
H10	0.0461	0.1630	0.1525	0.041*
C12	0.3186 (5)	0.2443 (2)	0.2602 (4)	0.0399 (9)
H12A	0.3064	0.2570	0.3681	0.060*
H12B	0.4189	0.2695	0.2171	0.060*
H12C	0.3452	0.1968	0.2543	0.060*
C6	-0.1178 (5)	0.41059 (19)	-0.0233 (5)	0.0430 (9)
H6A	-0.1165	0.4405	0.0657	0.065*
H6B	-0.2395	0.4114	-0.0760	0.065*
H6C	-0.0256	0.4251	-0.0946	0.065*
C9	-0.2722 (6)	0.1608 (2)	-0.0181 (6)	0.0521 (10)
H9A	-0.2241	0.1196	0.0282	0.078*
H9B	-0.2757	0.1569	-0.1306	0.078*
H9C	-0.3965	0.1687	0.0160	0.078*
C3	0.3455 (5)	0.40795 (19)	0.0722 (4)	0.0372 (8)
H3	0.3590	0.3993	-0.0341	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0369 (4)	0.0328 (4)	0.0208 (4)	-0.0118 (3)	0.0032 (3)	-0.0030 (3)
Cl1	0.1018 (10)	0.1223 (12)	0.0307 (5)	-0.0855 (9)	0.0242 (5)	-0.0249 (6)
N1	0.0296 (14)	0.0288 (14)	0.0230 (13)	-0.0028 (11)	0.0024 (10)	-0.0001 (11)
N2	0.0329 (14)	0.0316 (15)	0.0252 (13)	-0.0094 (12)	0.0043 (11)	-0.0045 (11)
C5	0.0282 (16)	0.0331 (18)	0.0352 (17)	-0.0009 (14)	0.0049 (13)	-0.0074 (15)
C7	0.0271 (17)	0.042 (2)	0.042 (2)	-0.0025 (15)	-0.0027 (14)	-0.0063 (16)
C4	0.0296 (16)	0.0339 (17)	0.0242 (15)	-0.0089 (14)	0.0044 (12)	-0.0074 (14)
C1	0.0339 (17)	0.0350 (17)	0.0229 (15)	-0.0094 (14)	0.0042 (13)	-0.0035 (13)
C2	0.0401 (19)	0.0388 (19)	0.0259 (17)	-0.0128 (15)	0.0050 (14)	-0.0009 (14)
C8	0.0323 (18)	0.0363 (19)	0.0391 (19)	-0.0084 (15)	0.0041 (14)	-0.0085 (15)
C11	0.0331 (17)	0.0327 (18)	0.0234 (16)	-0.0054 (14)	0.0045 (13)	-0.0011 (13)
C10	0.0372 (19)	0.0314 (18)	0.0354 (18)	-0.0055 (15)	0.0057 (14)	-0.0022 (15)
C12	0.042 (2)	0.042 (2)	0.0352 (19)	-0.0074 (16)	-0.0045 (15)	0.0033 (16)
C6	0.038 (2)	0.036 (2)	0.055 (2)	0.0018 (16)	-0.0016 (17)	-0.0028 (17)
C9	0.042 (2)	0.043 (2)	0.071 (3)	-0.0121 (18)	-0.0017 (19)	-0.012 (2)
C3	0.045 (2)	0.046 (2)	0.0213 (16)	-0.0150 (17)	0.0087 (14)	-0.0058 (15)

Geometric parameters (Å, °)

Cu1—N1 ⁱ	2.004 (3)	С6—Н6А	0.9600
Cu1—N1	2.004 (3)	C6—H6B	0.9600
Cu1—Cl1 ⁱ	2.2684 (10)	С6—Н6С	0.9600
Cu1—Cl1	2.2684 (10)	C7—C8	1.390 (5)
N1—C1	1.334 (4)	С7—Н7	0.9300

N1—C2	1 378 (4)	C8—C10	1 388 (5)
N2-C1	1 343 (4)	C8—C9	1509(5)
N_2 C3	1.374(4)	C9—H9A	0.9600
N2-C4	1.371(1) 1 451(4)	C9—H9B	0.9600
C1—H1	0.9300	C9—H9C	0.9600
$C_2 C_3$	1.345(5)		1 396 (5)
$C_2 = C_3$	0.0300		0.9300
$C_2 = H_2$	0.9300	C_{11} C_{12}	1 504 (5)
C_{3}	0.9300	C12 H12A	1.304(3)
C4 = C11	1.392(5)	C12 H12R	0.9000
C4 = C3	1.393(3)	C12—III2B	0.9000
C_{5}	1.595 (5)	CI2—HI2C	0.9000
05-06	1.507 (5)		
N1 ⁱ —Cu1—N1	180.00 (13)	H6A—C6—H6B	109.5
N1 ⁱ —Cu1—Cl1 ⁱ	89.56 (8)	С5—С6—Н6С	109.5
$N1-Cu1-Cl1^{i}$	90.44 (8)	H6A—C6—H6C	109.5
N1 ⁱ —Cu1—Cl1	90.44 (8)	H6B—C6—H6C	109.5
N1—Cu1—Cl1	89.56 (8)	C8-C7-C5	122.4 (3)
$Cl1^{i}$ — $Cu1$ — $Cl1$	180.00(7)	C8—C7—H7	118.8
C1-N1-C2	105.5(3)	C5-C7-H7	118.8
C1 - N1 - Cu1	103.3(3) 127 8 (2)	$C_{10} - C_{8} - C_{7}$	118.3(3)
C_{2} N1—Cu1	1265(2)	C10-C8-C9	1201(3)
C1 - N2 - C3	120.3(2) 1074(3)	C7 - C8 - C9	120.1(3) 121.6(3)
C1 N2 C4	107.4(3) 126.4(3)	$C_{1} = C_{2} = C_{2}$	109.5
$C_1 = N_2 = C_4$ $C_3 = N_2 = C_4$	120.4(3) 125.8(3)	$C_8 - C_9 - H_9B$	109.5
$N_1 = C_1 = N_2$	120.8(3)		109.5
N1 = C1 = N2	110.8 (5)	$\begin{array}{cccc} \Pi SA & \Box S & \Box \\ \Box S \Box$	109.5
$N_1 = C_1 = H_1$	124.0		109.5
$N_2 = C_1 = H_1$	124.0	$H_{0}P_{0} = C_{0} = H_{0}C_{0}$	109.5
$C_2 = C_2 = M_1$	109.8 (5)	H9B - C9 - H9C	109.3
C3-C2-H2	125.1		121.9 (3)
N1 - C2 - H2	125.1	C_{8} C_{10} H_{10}	119.0
$C_2 = C_3 = N_2$	106.6 (3)	CII = CI0 = HI0	119.0
C2—C3—H3	126.7		11/.4 (3)
N2—C3—H3	126.7	C4—C11—C12	122.1 (3)
C11-C4-C5	123.0 (3)	C10—C11—C12	120.5 (3)
C11—C4—N2	117.9 (3)	СП—С12—Н12А	109.5
C5—C4—N2	119.1 (3)	С11—С12—Н12В	109.5
C7—C5—C4	117.0 (3)	H12A—C12—H12B	109.5
C7—C5—C6	121.4 (3)	C11—C12—H12C	109.5
C4—C5—C6	121.5 (3)	H12A—C12—H12C	109.5
С5—С6—Н6А	109.5	H12B—C12—H12C	109.5
С5—С6—Н6В	109.5		
Cl1 ⁱ —Cu1—N1—C1	174 6 (3)	C11—C4—C5—C7	19(5)
C_{11} C_{11} N_{1} C_{1}	-54(3)	N2-C4-C5-C7	178 4 (3)
$Cl1^{i}$ $Cu1$ $N1$ $C2$	0.1(3)	$C_{11} - C_{4} - C_{5} - C_{6}$	-1762(3)
$C_{11} = C_{11} = N_{11} = C_{2}$	-1799(3)	$N_{-C_{4}-C_{5}-C_{6}}$	0.3(5)
$C_1 = C_1 = C_1 = C_2$	-0.2(4)	$C_{4} = C_{5} = C_{5} = C_{0}$	-1.1(5)
$\mathbb{C}_{2} \longrightarrow \mathbb{I}_{1} \longrightarrow \mathbb{C}_{1} \longrightarrow \mathbb{I}_{2}$	0.3 (4)		1.1 (3)

Cu1—N1—C1—N2	-175.7 (2)	C6—C5—C7—C8	177.1 (4)	
C3—N2—C1—N1	0.1 (4)	C5—C7—C8—C10	0.4 (5)	
C4—N2—C1—N1	173.2 (3)	C5—C7—C8—C9	-178.4 (4)	
C1—N1—C2—C3	0.4 (4)	C7—C8—C10—C11	-0.5 (5)	
Cu1—N1—C2—C3	175.9 (2)	C9—C8—C10—C11	178.3 (3)	
N1—C2—C3—N2	-0.3 (4)	C5-C4-C11-C10	-2.0 (5)	
C1—N2—C3—C2	0.1 (4)	N2-C4-C11-C10	-178.6 (3)	
C4—N2—C3—C2	-173.0 (3)	C5-C4-C11-C12	177.0 (3)	
C1—N2—C4—C11	-74.2 (4)	N2-C4-C11-C12	0.4 (5)	
C3—N2—C4—C11	97.6 (4)	C8—C10—C11—C4	1.2 (5)	
C1—N2—C4—C5	109.1 (4)	C8-C10-C11-C12	-177.8 (3)	
C3—N2—C4—C5	-79.1 (4)			

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···Cl1	0.93	2.55	3.060 (4)	115