

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(cyclohexylammonium) *cis*-dichloridobis(oxalato- $\kappa^2 O^1, O^2$)stannate(IV) chloride monohydrate

Modou Sarr,^a Waly Diallo,^a* Aminata Diasse-Sarr,^a Laurent Plasseraud^b and Hélène Cattey^b*

^aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France

Correspondence e-mail: diallo_waly@yahoo.fr, hcattey@u-bourgogne.fr

Received 13 September 2013; accepted 30 September 2013

Key indicators: single-crystal X-ray study; T = 115 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.095; data-to-parameter ratio = 21.0.

The crystal structure of the title compound, $(C_6H_{14}N)_3$ -[Sn(C₂O₄)₂Cl₂]Cl·H₂O, contains three cyclohexylammonium cations, one stannate(IV) dianion, one isolated chloride anion and one lattice water molecule. The cyclohexylammonium cations adopt chair conformations. In the complex anion, two bidentate oxalate ligands and two chloride anions in *cis* positions coordinate octahedrally to the central Sn^{IV} atom. The cohesion of the molecular entities is ensured by the formation of N-H···O, O-H···O, O-H···Cl and N-H···Cl interactions involving cations, anions and the lattice water molecule, giving rise to a layer-like arrangement parallel to (010).

Related literature

For general background on organotin(IV) chemistry and applications, see: Evans & Karpel (1985); Davies *et al.* (2008). For previous studies of tin(IV) derivatives with oxidoanions, see: Sarr & Diop (1990); Qamar-Kane & Diop (2010); Diallo *et al.* (2009). For crystal structures of halogenidotin(IV) compounds, see: Willey *et al.* (1998); Skapski *et al.* (1974); Gueye *et al.* (2011); Sow *et al.* (2013); Sarr *et al.* (2013).

6028 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

Experimental

Crystal data

 $\begin{array}{ll} ({\rm C}_{6}{\rm H}_{14}{\rm N})_{3}[{\rm Sn}({\rm C}_{2}{\rm O}_{4})_{2}{\rm Cl}_{2}]{\rm Cl}\cdot{\rm H}_{2}{\rm O} & V=6421.2~(4)~{\rm \AA}^{3} \\ M_{r}=719.64 & Z=8 \\ {\rm Monoclinic},~C2/c & {\rm Mo}~K\alpha~{\rm radiation} \\ a=27.9894~(10)~{\rm \AA} & \mu=1.09~{\rm mm}^{-1} \\ b=12.3088~(5)~{\rm \AA} & T=115~{\rm K} \\ c=19.3457~(7)~{\rm \AA} & 0.17\times0.08\times0.03~{\rm mm} \\ \beta=105.542~(1)^{\circ} \end{array}$

Data collection

Nonius KappaCCD diffractometer 10624 measured reflections 7264 independent reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & 346 \text{ parameters} \\ wR(F^2) = 0.095 & H\text{-atom parameters constrained} \\ S = 1.22 & \Delta\rho_{\max} = 0.66 \text{ e } \text{\AA}^{-3} \\ 7264 \text{ reflections} & \Delta\rho_{\min} = -0.70 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		/			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots$	A
$N1 - H1A \cdots O4^{i}$	0.89	2.11	2.957 (4)	160	
$N1 - H1B \cdot \cdot \cdot Cl3^{i}$	0.89	2.29	3.163 (4)	166	
N1−H1 <i>C</i> ···O8	0.89	2.05	2.873 (4)	154	
$N1 - H1C \cdots O7$	0.89	2.50	3.130 (5)	129	
$N2-H2A\cdots O4^{ii}$	0.89	1.99	2.829 (4)	157	
$N2 - H2A \cdots O3^{ii}$	0.89	2.56	3.197 (4)	129	
$N2 - H2B \cdot \cdot \cdot Cl3^{i}$	0.89	2.41	3.209 (3)	150	
$N2 - H2C \cdot \cdot \cdot O6^{iii}$	0.89	2.00	2.879 (4)	170	
$N3 - H3A \cdots Cl3$	0.89	2.37	3.180 (3)	152	
$N3-H3A\cdots O7$	0.89	2.48	2.971 (4)	115	
N3−H3 <i>B</i> ···O9	0.89	1.88	2.751 (5)	164	
$N3-H3C\cdotsO1^{iv}$	0.89	2.08	2.957 (4)	167	
$O9-H1O\cdots Cl3^{i}$	0.90	2.21	3.108 (3)	173	
$O9-H2O\cdots O3^{iv}$	0.87	2.28	2.950 (4)	135	
	2 1	1		1 0	

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, -z; (iv) $x, -y, z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2771).

References

Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In *Tin Chemistry, Fundamentals, Frontiers, and Applications*. Chichester, UK: John Wiley & Sons Ltd.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

metal-organic compounds

- Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). St. Cerc. St. CICBIA, 10, 207–212.
- Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3–5.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

- Qamar-Kane, H. & Diop, L. (2010). St. Cerc. St. CICBIA, 11, 389-392.
- Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m473-m474.
- Sarr, O. & Diop, L. (1990). Spectrochim. Acta Part A, 46, 1239–1244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C, 278, 1377–1379.
- Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.
- Willey, G. R., Woodman, T. J., Deeth, R. J. & Errington, W. (1998). Main Group Met. Chem. 21, 583–591.

supporting information

Acta Cryst. (2013). E69, m581-m582 [doi:10.1107/S1600536813026901]

Tris(cyclohexylammonium) *cis*-dichloridobis(oxalato- $\kappa^2 O^1, O^2$)stannate(IV) chloride monohydrate

Modou Sarr, Waly Diallo, Aminata Diasse-Sarr, Laurent Plasseraud and Hélène Cattey

S1. Comment

The interest to synthesize new organotin derivatives is related to their applications in numerous fields like agrochemicals, catalysis, medicine, surface disinfectants and marine antifouling paints (Evans & Karpel, 1985; Davies *et al.*, 2008). Our group is involved from a long time in the synthetic quest of new organotin compounds, focusing in particular on the coordination affinity with oxoanions (Sarr & Diop, 1990; Diallo *et al.*, 2009; Qamar-Kane & Diop, 2010; Gueye *et al.*, 2011; Sow *et al.*, 2013; Sarr *et al.*, 2013). Thus, in the course of our ongoing studies on oxalato tin(IV) derivatives, we report herein the structure determination of the reaction product $(C_6H_{14}N)_3[Sn(C_2O_4)_2Cl_2]Cl\cdotH_2O$ obtained from the reaction between $[(C_6H_{14}N)]_2[C_2O_4]$ ·1.5H₂O and SnCl₂·2H₂O. To the best of our knowledge, this is the first crystallographic report of a compound containing a [dihalogenido-bis(oxalato)stannate(IV)] anion.

The molecular entities of the title structure are shown in Fig. 1. The Sn(IV) atom of the stannate anion is sixcoordinated by four oxalate oxygen atoms and two terminal chlorido anions in *cis*-position in a distorted octahedral geometry [Cl1–Sn–Cl2 = 97.37 (4)°, O1–Sn–O2 = 78.19 (10)°, O5–Sn–O6 = 79.99 (10)°]. The bidentate oxalato ligands are nearly planar with O1–Cl2–O2 and O5–C3–C4–O6 torsion angles of 1.1 (6) and 2.7 (5)°, respectively. They form a dihedral angle of 86.62 (17)° between each other. The Sn–Cl distances [Sn–Cl1 = 2.3370 (11) Å, Sn–Cl2 = 2.3466 (10) Å] as well as the Sn–O distances [Sn–O1 = 2.097 (3) Å, Sn–O2 = 2.098 (3) Å, Sn–O5 = 2.060 (3) Å, Sn–O6 = 2.097 (3) Å] are in the typical range of Sn–Cl and Sn–O bonds reported previously in the literature (Willey *et al.*, 1998; Skapski *et al.*, 1974; Sow *et al.*, 2013). The charges of the [Sn(C₂O₄)₂Cl₂]²⁻ dianion and the isolated Cl⁻ anion are compensated by three [(C₆H₁₁NH₃)]⁺ cations, all of which adopt in chair conformations. One uncoordinating water molecule is also present in the crystal lattice.

From a supramolecular view, three of the four oxygen atoms of each oxalato ligand are involved in hydrogen bonging interactions with the lattice water molecule and the surrounding cyclohexylammonium cations through O—H···O and N —H···O contacts, respectively (Table 1). The lattice water molecule is also involved in short contacts with the neighboring isolated Cl⁻ anion and a [(C₆H₁₁NH₃)]⁺ cation through O—H···Cl and N—H···O contacts, respectively. The isolated Cl⁻ anion is additionally hydrogen-bonded to the three cations through N—H···Cl interactions. The supramolecular contributions lead to the formation of layers extending parallel to (010) as shown in Fig. 2.

S2. Experimental

All chemicals were purchased from Sigma-Aldrich or Merck and used without further purification. Crystals of the title compound were obtained by reacting $[(C_6H_{14}N)]_2[C_2O_4]$ ·1.5H₂O (0.14 g, 0.44 mmol) with SnCl₂·2H₂O (0.2 g, 0.88 mmol) in 75 ml of ethanol (96% purity) in an 1:2 molar ratio. The mixture was stirred during several hours at room temperature. Slow solvent evaporation yielded colorless crystals suitable for an X-ray crystallographic study.

S3. Refinement

All H atoms, on carbon and nitrogen atoms, were placed at calculated positions using a riding model with C—H = 0.97 Å (methylene) or 0.98 Å (methine) or N—H = 0.89 Å (amine) with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(N)$. H atoms on water molecule were located in Fourier difference maps and were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with partial atom labelling. Colour code: Sn light grey, O red, N blue, Cl green. Displacement ellipsoids are draw at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the *b* axis, showing the layer-like arrangement through intermolecular hydrogen bonding interactions N—H···O; O—H···Cl (dashed lines). Hydrogen atoms are omitted for clarity. Colour code: Sn pink, O red, N blue, Cl green, C grey.

Tris(cyclohexylammonium) cis-dichloridobis(oxalato- $\kappa^2 O^1, O^2$)stannate(IV) chloride monohydrate

Crystal data	
$(C_{6}H_{14}N)_{3}[Sn(C_{2}O_{4})_{2}Cl_{2}]Cl \cdot H_{2}O$ $M_{r} = 719.64$ Monoclinic, C2/c Hall symbol: -C 2yc a = 27.9894 (10) Å b = 12.3088 (5) Å c = 19.3457 (7) Å $\beta = 105.542 (1)^{\circ}$ $V = 6421.2 (4) \text{ Å}^{3}$ Z = 8	F(000) = 2960 $D_x = 1.489 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 59056 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 115 K Prism, colourless $0.17 \times 0.08 \times 0.03 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans ($\kappa = 0$) + additional ω scans	10624 measured reflections 7264 independent reflections 6028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.0^\circ$

$ h = -36 \rightarrow 36 \\ k = -15 \rightarrow 10 $	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
S = 1.22	H-atom parameters constrained
7264 reflections	$w = 1/[\sigma^2(F_o^2) + 39.7649P]$
346 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.66 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.70 \ m e \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Intensities at low angles are poorly measured and three reflections with Error/e.s.d. greater than 4 have been

omitted for convenience (respectively, 4.86, 4.84 and 4.24).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
0.84481 (2)	-0.01264 (2)	0.08670 (2)	0.02266 (7)
0.82137 (11)	-0.1343 (2)	0.00914 (14)	0.0275 (6)
0.81693 (10)	-0.1304 (2)	0.14399 (14)	0.0247 (6)
0.79899 (11)	-0.3092 (2)	-0.00137 (15)	0.0313 (6)
0.79534 (11)	-0.3041 (2)	0.14046 (14)	0.0307 (6)
0.84818 (10)	0.0972 (2)	0.16821 (14)	0.0277 (6)
0.77157 (10)	0.0445 (2)	0.05761 (14)	0.0273 (6)
0.72353 (11)	0.1682 (3)	0.08902 (16)	0.0366 (7)
0.80129 (12)	0.2174 (2)	0.20695 (15)	0.0332 (7)
0.92508 (4)	-0.08025 (10)	0.13280 (7)	0.0418 (3)
0.86238 (5)	0.10594 (10)	0.00174 (6)	0.0429 (3)
0.80701 (16)	0.1493 (3)	0.1644 (2)	0.0265 (8)
0.76247 (15)	0.1196 (3)	0.0982 (2)	0.0256 (8)
0.80865 (15)	-0.2263 (3)	0.0328 (2)	0.0244 (8)
0.80675 (15)	-0.2225 (3)	0.1126 (2)	0.0240 (8)
0.69051 (13)	0.2526 (3)	0.20683 (17)	0.0297 (8)
0.6955	0.2190	0.2489	0.045*
0.6989	0.3222	0.2140	0.045*
0.7090	0.2214	0.1815	0.045*
0.63681 (15)	0.2442 (3)	0.1665 (2)	0.0273 (8)
0.6318	0.2849	0.1215	0.033*
0.62238 (16)	0.1271 (3)	0.1480 (2)	0.0331 (9)
0.6292	0.0841	0.1916	0.040*
0.6419	0.0980	0.1178	0.040*
	x $0.84481 (2)$ $0.82137 (11)$ $0.81693 (10)$ $0.79899 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (11)$ $0.79534 (12)$ $0.72353 (11)$ $0.80129 (12)$ $0.92508 (4)$ $0.86238 (5)$ $0.80701 (16)$ $0.76247 (15)$ $0.80675 (15)$ $0.80675 (15)$ $0.69051 (13)$ 0.6955 0.6989 0.7090 $0.63681 (15)$ $0.62238 (16)$ 0.6292 0.6419	xy $0.84481 (2)$ $-0.01264 (2)$ $0.82137 (11)$ $-0.1343 (2)$ $0.81693 (10)$ $-0.1304 (2)$ $0.79899 (11)$ $-0.3092 (2)$ $0.79534 (11)$ $-0.3041 (2)$ $0.79534 (11)$ $-0.3041 (2)$ $0.79534 (11)$ $-0.3041 (2)$ $0.79534 (11)$ $0.0972 (2)$ $0.77157 (10)$ $0.0445 (2)$ $0.72353 (11)$ $0.1682 (3)$ $0.80129 (12)$ $0.2174 (2)$ $0.92508 (4)$ $-0.08025 (10)$ $0.86238 (5)$ $0.10594 (10)$ $0.80701 (16)$ $0.1493 (3)$ $0.76247 (15)$ $0.1196 (3)$ $0.80865 (15)$ $-0.2263 (3)$ $0.69051 (13)$ $0.2526 (3)$ 0.6955 0.2190 0.6989 0.3222 0.7090 0.2214 0.6318 0.2849 $0.62238 (16)$ $0.1271 (3)$ 0.6292 0.0841 0.6419 0.0980	xyz 0.84481 (2) -0.01264 (2) 0.08670 (2) 0.82137 (11) -0.1343 (2) 0.00914 (14) 0.81693 (10) -0.1304 (2) 0.14399 (14) 0.79899 (11) -0.3092 (2) -0.00137 (15) 0.79534 (11) -0.3041 (2) 0.14046 (14) 0.84818 (10) 0.0972 (2) 0.16821 (14) 0.77157 (10) 0.0445 (2) 0.05761 (14) 0.72353 (11) 0.1682 (3) 0.08902 (16) 0.80129 (12) 0.2174 (2) 0.20695 (15) 0.92508 (4) -0.08025 (10) 0.13280 (7) 0.86238 (5) 0.10594 (10) 0.00174 (6) 0.80701 (16) 0.1493 (3) 0.1644 (2) 0.76247 (15) 0.1196 (3) 0.0982 (2) 0.80865 (15) -0.2225 (3) 0.1126 (2) 0.69051 (13) 0.2526 (3) 0.20683 (17) 0.6989 0.3222 0.2140 0.7090 0.2214 0.1815 0.6318 0.2849 0.1215 0.62238 (16) 0.1271 (3) 0.1480 (2) 0.6292 0.0841 0.1916

C7	0.56753 (18)	0.1192 (4)	0.1089 (3)	0.0451 (12)
H7A	0.5616	0.1548	0.0627	0.054*
H7B	0.5584	0.0433	0.1005	0.054*
C8	0.53516 (18)	0.1710 (5)	0.1512 (3)	0.0493 (13)
H8A	0.5008	0.1685	0.1232	0.059*
H8B	0.5380	0.1303	0.1951	0.059*
C9	0.55019 (18)	0.2879 (4)	0.1696 (3)	0.0478 (13)
H9A	0.5303	0.3179	0.1991	0.057*
H9B	0.5440	0.3303	0.1258	0.057*
C10	0.60496 (16)	0.2953 (4)	0.2098 (2)	0.0346 (10)
H10A	0.6142	0.3709	0.2190	0.042*
H10B	0.6106	0.2584	0.2555	0.042*
N2	0.78665 (12)	0.4798 (3)	0.08874 (16)	0.0258 (7)
H2A	0.7910	0.5514	0.0931	0.039*
H2B	0.7694	0.4571	0.1185	0.039*
H2C	0.7702	0.4638	0.0438	0.039*
C11	0.83594 (14)	0.4248 (3)	0.10692 (19)	0.0241 (8)
H11	0.8307	0.3469	0.0971	0.029*
C12	0.86113 (15)	0.4396 (3)	0.1867 (2)	0.0279 (9)
H12A	0.8647	0.5166	0.1977	0.034*
H12B	0.8406	0.4080	0.2146	0.034*
C13	0.91179 (16)	0.3863 (4)	0.2071 (2)	0.0383 (11)
H13A	0.9277	0.3997	0.2574	0.046*
H13B	0.9080	0.3083	0.2002	0.046*
C14	0.94433 (17)	0.4298 (5)	0.1621 (2)	0.0453 (12)
H14A	0.9758	0.3915	0.1743	0.054*
H14B	0.9510	0.5062	0.1726	0.054*
C15	0.91917 (16)	0.4157 (4)	0.0819 (2)	0.0394 (11)
H15A	0.9397	0.4481	0.0543	0.047*
H15B	0.9159	0.3389	0.0705	0.047*
C16	0.86792 (15)	0.4688 (4)	0.0610(2)	0.0314 (9)
H16A	0.8714	0.5469	0.0673	0.038*
H16B	0.8520	0.4544	0.0108	0.038*
N3	0.83237 (12)	0.1870 (3)	0.36505 (17)	0.0275 (7)
H3A	0.8182	0.1415	0.3298	0.041*
H3B	0.8172	0.2511	0.3573	0.041*
H3C	0.8299	0.1601	0.4067	0.041*
C17	0.88578 (15)	0.2008 (3)	0.3675 (2)	0.0291 (9)
H17	0.8875	0.2434	0.3255	0.035*
C18	0.91144 (17)	0.2645 (4)	0.4336 (2)	0.0428 (12)
H18A	0.9080	0.2269	0.4760	0.051*
H18B	0.8961	0.3355	0.4321	0.051*
C19	0.96627 (18)	0.2780 (5)	0.4377 (3)	0.0557 (15)
H19A	0.9697	0.3220	0.3978	0.067*
H19B	0.9827	0.3155	0.4818	0.067*
C20	0.9907 (2)	0.1698 (6)	0.4358 (4)	0.081 (2)
H20A	0.9896	0.1276	0.4777	0.097*
H20B	1.0252	0.1805	0.4367	0.097*

C21	0.9641 (2)	0.1080 (5)	0.3677 (5)	0.085 (2)	
H21A	0.9674	0.1479	0.3259	0.103*	
H21B	0.9796	0.0375	0.3676	0.103*	
C22	0.90922 (19)	0.0926 (4)	0.3630 (4)	0.0556 (15)	
H22A	0.8927	0.0574	0.3181	0.067*	
H22B	0.9057	0.0464	0.4020	0.067*	
C13	0.76656 (4)	-0.00855 (8)	0.28368 (5)	0.0305 (2)	
09	0.80156 (11)	0.3999 (2)	0.35850 (16)	0.0352 (7)	
H1O	0.7804	0.4291	0.3195	0.042*	
H2O	0.7911	0.4075	0.3965	0.042*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Sn	0.02068 (13)	0.02730 (13)	0.01990 (12)	-0.00111 (11)	0.00525 (9)	0.00308 (11)
01	0.0342 (16)	0.0295 (14)	0.0206 (13)	-0.0004 (12)	0.0103 (12)	0.0007 (11)
O2	0.0285 (15)	0.0254 (13)	0.0212 (13)	-0.0018 (11)	0.0086 (11)	0.0002 (11)
O3	0.0387 (18)	0.0303 (15)	0.0258 (15)	0.0031 (13)	0.0102 (13)	-0.0038 (12)
04	0.0421 (18)	0.0279 (14)	0.0241 (14)	-0.0028 (13)	0.0124 (13)	0.0019 (12)
05	0.0299 (16)	0.0276 (14)	0.0259 (14)	0.0022 (12)	0.0082 (12)	0.0016 (11)
O6	0.0253 (15)	0.0298 (14)	0.0228 (13)	0.0025 (11)	-0.0007 (11)	-0.0039 (11)
08	0.0314 (17)	0.0458 (18)	0.0323 (16)	0.0102 (14)	0.0080 (13)	-0.0029 (14)
07	0.0456 (19)	0.0305 (15)	0.0239 (14)	-0.0047 (13)	0.0102 (13)	-0.0057 (12)
Cl1	0.0225 (5)	0.0539 (7)	0.0497 (7)	0.0053 (5)	0.0107 (5)	0.0141 (5)
Cl2	0.0541 (7)	0.0439 (6)	0.0339 (6)	-0.0059 (5)	0.0175 (5)	0.0134 (5)
C3	0.031 (2)	0.0275 (19)	0.0209 (19)	-0.0055 (16)	0.0071 (17)	0.0012 (16)
C4	0.026 (2)	0.0270 (19)	0.026 (2)	0.0059 (16)	0.0112 (17)	0.0080 (16)
C1	0.023 (2)	0.0279 (19)	0.0219 (19)	0.0056 (16)	0.0062 (16)	0.0025 (15)
C2	0.026 (2)	0.0256 (19)	0.0221 (19)	0.0021 (15)	0.0086 (16)	0.0042 (15)
N1	0.034 (2)	0.0362 (19)	0.0209 (16)	0.0000 (15)	0.0105 (15)	-0.0005 (14)
C5	0.027 (2)	0.034 (2)	0.0196 (19)	0.0017 (17)	0.0045 (16)	0.0037 (16)
C6	0.035 (2)	0.033 (2)	0.032 (2)	-0.0027 (18)	0.0093 (19)	-0.0007 (18)
C7	0.040 (3)	0.051 (3)	0.041 (3)	-0.007 (2)	0.004 (2)	-0.006 (2)
C8	0.026 (2)	0.079 (4)	0.039 (3)	-0.012 (2)	0.002 (2)	-0.003 (3)
C9	0.033 (3)	0.063 (3)	0.046 (3)	0.008 (2)	0.006 (2)	-0.006(2)
C10	0.032 (2)	0.037 (2)	0.033 (2)	0.0022 (19)	0.0059 (19)	-0.0068 (19)
N2	0.0258 (17)	0.0314 (17)	0.0195 (15)	-0.0007 (14)	0.0048 (13)	-0.0006 (14)
C11	0.023 (2)	0.0265 (19)	0.0206 (18)	0.0025 (15)	0.0024 (15)	0.0011 (15)
C12	0.029 (2)	0.036 (2)	0.0187 (18)	-0.0034 (17)	0.0055 (16)	0.0026 (16)
C13	0.029 (2)	0.057 (3)	0.026 (2)	0.002 (2)	0.0027 (18)	0.009 (2)
C14	0.028 (2)	0.070 (3)	0.035 (2)	0.002 (2)	0.003 (2)	-0.001 (2)
C15	0.025 (2)	0.059 (3)	0.037 (2)	0.008 (2)	0.0132 (19)	-0.001 (2)
C16	0.031 (2)	0.041 (2)	0.0231 (19)	-0.0006 (19)	0.0096 (17)	0.0002 (17)
N3	0.0274 (18)	0.0340 (18)	0.0207 (16)	-0.0031 (14)	0.0057 (14)	-0.0012 (14)
C17	0.024 (2)	0.035 (2)	0.029 (2)	-0.0061 (17)	0.0088 (17)	0.0016 (17)
C18	0.033 (3)	0.060 (3)	0.034 (2)	-0.012 (2)	0.005 (2)	0.000 (2)
C19	0.030 (3)	0.072 (4)	0.057 (3)	-0.020 (3)	-0.001 (2)	0.006 (3)
C20	0.023 (3)	0.084 (5)	0.124 (6)	-0.001 (3)	0.002 (3)	0.039 (5)

supporting information

C21	0.042 (4)	0.057 (4)	0.169 (8)	0.011 (3)	0.049 (5)	0.002 (5)
C22	0.036 (3)	0.049 (3)	0.085 (4)	0.003 (2)	0.023 (3)	-0.004 (3)
C13	0.0300 (5)	0.0338 (5)	0.0303 (5)	-0.0063 (4)	0.0126 (4)	-0.0057 (4)
09	0.0339 (17)	0.0423 (17)	0.0297 (15)	0.0034 (14)	0.0091 (13)	0.0073 (13)

Geometric parameters (Å, °)

Sn—O5	2.060 (3)	C11—C16	1.520 (5)
Sn—O6	2.097 (3)	C11—C12	1.526 (5)
Sn—O1	2.097 (3)	C11—H11	0.9800
Sn—O2	2.098 (3)	C12—C13	1.516 (6)
Sn—Cl1	2.3370 (11)	C12—H12A	0.9700
Sn—Cl2	2.3466 (10)	C12—H12B	0.9700
01—C1	1.306 (5)	C13—C14	1.516 (6)
O2—C2	1.281 (5)	C13—H13A	0.9700
O3—C1	1.206 (5)	C13—H13B	0.9700
O4—C2	1.222 (4)	C14—C15	1.531 (6)
O5—C3	1.303 (5)	C14—H14A	0.9700
O6—C4	1.282 (5)	C14—H14B	0.9700
O8—C4	1.214 (5)	C15—C16	1.529 (6)
07—С3	1.215 (5)	C15—H15A	0.9700
C3—C4	1.572 (6)	C15—H15B	0.9700
C1—C2	1.561 (5)	C16—H16A	0.9700
N1—C5	1.500 (5)	C16—H16B	0.9700
N1—H1A	0.8900	N3—C17	1.493 (5)
N1—H1B	0.8900	N3—H3A	0.8900
N1—H1C	0.8900	N3—H3B	0.8900
C5—C6	1.513 (6)	N3—H3C	0.8900
C5—C10	1.514 (6)	C17—C22	1.498 (6)
С5—Н5	0.9800	C17—C18	1.508 (6)
C6—C7	1.522 (6)	C17—H17	0.9800
С6—Н6А	0.9700	C18—C19	1.524 (7)
C6—H6B	0.9700	C18—H18A	0.9700
С7—С8	1.514 (7)	C18—H18B	0.9700
С7—Н7А	0.9700	C19—C20	1.503 (9)
С7—Н7В	0.9700	C19—H19A	0.9700
С8—С9	1.514 (7)	C19—H19B	0.9700
C8—H8A	0.9700	C20—C21	1.530 (10)
C8—H8B	0.9700	C20—H20A	0.9700
C9—C10	1.525 (6)	C20—H20B	0.9700
С9—Н9А	0.9700	C21—C22	1.526 (7)
С9—Н9В	0.9700	C21—H21A	0.9700
C10—H10A	0.9700	C21—H21B	0.9700
C10—H10B	0.9700	C22—H22A	0.9700
N2-C11	1.492 (5)	C22—H22B	0.9700
N2—H2A	0.8900	09—H10	0.8992
N2—H2B	0.8900	O9—H2O	0.8667
N2—H2C	0.8900		

O5—Sn—O6	79.99 (10)	N2-C11-C16	110.6 (3)
O5—Sn—O1	163.31 (11)	N2-C11-C12	109.4 (3)
O6—Sn—O1	87.22 (10)	C16—C11—C12	111.3 (3)
O5—Sn—O2	89.79 (10)	N2—C11—H11	108.5
O6—Sn—O2	84.16 (11)	C16—C11—H11	108.5
O1—Sn—O2	78.19 (10)	C12—C11—H11	108.5
O5—Sn—C11	95.71 (8)	C13—C12—C11	111.0 (3)
O6—Sn—C11	173.10 (8)	C13—C12—H12A	109.4
O1—Sn—Cl1	95.93 (8)	C11—C12—H12A	109.4
O2—Sn—C11	90.46 (8)	C13—C12—H12B	109.4
O5—Sn—Cl2	98.78 (8)	C11—C12—H12B	109.4
O6—Sn—Cl2	88.65 (8)	H12A—C12—H12B	108.0
O1—Sn—Cl2	91.55 (8)	C14—C13—C12	111.2 (4)
O2—Sn—Cl2	167.72 (8)	C14—C13—H13A	109.4
Cl1—Sn—Cl2	97.37 (4)	C12—C13—H13A	109.4
C1—O1—Sn	115.6 (2)	C14—C13—H13B	109.4
C2—O2—Sn	115.3 (2)	C12—C13—H13B	109.4
C3—O5—Sn	114.9 (2)	H13A—C13—H13B	108.0
C4—O6—Sn	114.7 (2)	C13—C14—C15	110.9 (4)
O7—C3—O5	125.1 (4)	C13—C14—H14A	109.5
O7—C3—C4	119.5 (4)	C15—C14—H14A	109.5
O5—C3—C4	115.4 (3)	C13—C14—H14B	109.5
O8—C4—O6	125.7 (4)	C15—C14—H14B	109.5
O8—C4—C3	119.3 (4)	H14A—C14—H14B	108.0
O6—C4—C3	115.0 (3)	C16—C15—C14	111.4 (4)
O3—C1—O1	125.8 (4)	C16—C15—H15A	109.4
O3—C1—C2	120.4 (3)	C14—C15—H15A	109.4
O1—C1—C2	113.9 (3)	C16—C15—H15B	109.4
O4—C2—O2	124.7 (3)	C14—C15—H15B	109.4
O4—C2—C1	119.6 (3)	H15A—C15—H15B	108.0
O2—C2—C1	115.7 (3)	C11—C16—C15	110.5 (3)
C5—N1—H1A	109.5	C11—C16—H16A	109.6
C5—N1—H1B	109.5	C15—C16—H16A	109.6
H1A—N1—H1B	109.5	C11—C16—H16B	109.6
C5—N1—H1C	109.5	C15—C16—H16B	109.6
H1A—N1—H1C	109.5	H16A—C16—H16B	108.1
H1B—N1—H1C	109.5	C17—N3—H3A	109.5
N1—C5—C6	110.8 (3)	C17—N3—H3B	109.5
N1-C5-C10	109.8 (3)	H3A—N3—H3B	109.5
C6—C5—C10	111.5 (4)	C17—N3—H3C	109.5
N1—C5—H5	108.2	H3A—N3—H3C	109.5
С6—С5—Н5	108.2	H3B—N3—H3C	109.5
С10—С5—Н5	108.2	N3—C17—C22	110.3 (3)
C5—C6—C7	110.4 (4)	N3—C17—C18	109.4 (3)
С5—С6—Н6А	109.6	C22—C17—C18	113.3 (4)
С7—С6—Н6А	109.6	N3—C17—H17	107.9
С5—С6—Н6В	109.6	С22—С17—Н17	107.9

С7—С6—Н6В	109.6	C18—C17—H17	107.9
H6A—C6—H6B	108.1	C17—C18—C19	110.2 (4)
C8—C7—C6	112.0 (4)	C17—C18—H18A	109.6
C8—C7—H7A	109.2	C19—C18—H18A	109.6
С6—С7—Н7А	109.2	C17—C18—H18B	109.6
С8—С7—Н7В	109.2	C19—C18—H18B	109.6
С6—С7—Н7В	109.2	H18A—C18—H18B	108.1
H7A—C7—H7B	107.9	C20—C19—C18	111.1 (5)
C9—C8—C7	111.0 (4)	С20—С19—Н19А	109.4
С9—С8—Н8А	109.4	C18—C19—H19A	109.4
С7—С8—Н8А	109.4	C20—C19—H19B	109.4
С9—С8—Н8В	109.4	C18—C19—H19B	109.4
С7—С8—Н8В	109.4	H19A—C19—H19B	108.0
H8A—C8—H8B	108.0	C19—C20—C21	110.1 (5)
C8—C9—C10	110.8 (4)	С19—С20—Н20А	109.6
С8—С9—Н9А	109.5	C21—C20—H20A	109.6
С10—С9—Н9А	109.5	С19—С20—Н20В	109.6
С8—С9—Н9В	109.5	C21—C20—H20B	109.6
С10—С9—Н9В	109.5	H20A—C20—H20B	108.2
H9A—C9—H9B	108.1	C22—C21—C20	111.2 (6)
C5—C10—C9	110.7 (4)	C22—C21—H21A	109.4
C5-C10-H10A	109.5	C20—C21—H21A	109.4
С9—С10—Н10А	109.5	C22—C21—H21B	109.4
C5-C10-H10B	109.5	C20—C21—H21B	109.4
C9—C10—H10B	109.5	H21A—C21—H21B	108.0
H10A—C10—H10B	108.1	C17—C22—C21	109.6 (4)
C11—N2—H2A	109.5	C17—C22—H22A	109.8
C11—N2—H2B	109.5	C21—C22—H22A	109.8
H2A—N2—H2B	109.5	C17—C22—H22B	109.8
C11—N2—H2C	109.5	C21—C22—H22B	109.8
H2A—N2—H2C	109.5	H22A—C22—H22B	108.2
H2B—N2—H2C	109.5	Н10—09—Н2О	111.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O4 ⁱ	0.89	2.11	2.957 (4)	160
N1—H1B····Cl3 ⁱ	0.89	2.29	3.163 (4)	166
N1—H1 <i>C</i> ···O8	0.89	2.05	2.873 (4)	154
N1—H1 <i>C</i> ···O7	0.89	2.50	3.130 (5)	129
N2—H2A····O4 ⁱⁱ	0.89	1.99	2.829 (4)	157
N2—H2A····O3 ⁱⁱ	0.89	2.56	3.197 (4)	129
N2—H2 B ···Cl3 ⁱ	0.89	2.41	3.209 (3)	150
N2—H2 <i>C</i> ···O6 ⁱⁱⁱ	0.89	2.00	2.879 (4)	170
N3—H3 <i>A</i> ···Cl3	0.89	2.37	3.180 (3)	152
N3—H3 <i>A</i> ···O7	0.89	2.48	2.971 (4)	115
N3—H3 <i>B</i> ···O9	0.89	1.88	2.751 (5)	164
N3—H3 <i>C</i> ···O1 ^{iv}	0.89	2.08	2.957 (4)	167

			supporting information		
$09 - H1 O \cdot Cl3^{i}$ $09 - H2 O \cdot O3^{iv}$	0.90	2.21	3.108 (3)	173	
	0.87	2.28	2.950 (4)	135	

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+1/2; (ii) *x*, *y*+1, *z*; (iii) -*x*+3/2, -*y*+1/2, -*z*; (iv) *x*, -*y*, *z*+1/2.