organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,14-Diethyl-2,13-diaza-6,17-diazoniatricvclo[16.4.0.0^{7,12}]docosane dichloride tetrahydrate from synchrotron radiation

Dohyun Moon,^a Md Abdus Subhan^b and Jong-Ha Choi^c*

^aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, ^bDepartment of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh, and ^cDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea

Correspondence e-mail: jhchoi@andong.ac.kr

Received 2 October 2013; accepted 3 October 2013

Key indicators: single-crystal synchrotron study; T = 95 K; mean σ (C–C) = 0.001 Å; R factor = 0.029; wR factor = 0.079; data-to-parameter ratio = 20.6.

The asymmetric unit of title hydrated salt, C₂₂H₄₆N₄²⁺·2Cl⁻·-4H₂O, comprises half a centrosymmetric dication, one Cl⁻ anion and two water molecules of crystallization. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms, and that the dication features intramolecular N-H···N hydrogen bonds. In the crystal, a three-dimensional artchitecture is formed by O-H···Cl/N and N-H···Cl/O hydrogen bonds.

Related literature

For background to the coordination chemistry of tetraazamacrocycles, see: Choi et al. (2010); De Clercq (2010). For the synthesis of the precursor macrocycle, see: Lim et al. (2006). For related structures, see: Choi et al. (2006, 2011).

Experimental

Crystal data

$C_{22}H_{46}N_4^{2+}\cdot 2Cl^{-}\cdot 4H_2O$	<i>b</i> = 13.616 (3) Å
$M_r = 509.59$	c = 10.565 (2) Å
Monoclinic, $C2/c$	$\beta = 115.23 \ (3)^{\circ}$
a = 22.122 (4) Å	V = 2878.5 (10)

Z = 4Synchrotron radiation $\lambda = 0.72000 \text{ Å}$

Data collection

ADSC Q210 CCD area-det diffractometer Absorption correction: emr (using intensity measurer (HKL-3000 SCALEPAC

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.079$ S = 1.053663 reflections 178 parameters

 $\mu = 0.27 \text{ mm}^{-1}$. T - 95 K $0.31 \times 0.28 \times 0.25 \text{ mm}$

ector	Otwinowski & Minor, 1997) $T_{min} = 0.922, T_{max} = 0.937$
oirical nents)	13046 measured reflections 3663 independent reflections
'K;	3446 reflections with $I > 2\sigma(I)$ $R_{i,i} = 0.028$
	m _{int} 0.020

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdots Cl1$	0.909 (13)	2.182 (14)	3.0900 (9)	177.3 (12)
$N1 - H2N1 \cdot \cdot \cdot N2^{i}$	0.907 (13)	2.200 (13)	2.9348 (11)	137.6 (10)
$N2-H1N2\cdotsO1W^{ii}$	0.887 (13)	2.262 (13)	3.1242 (12)	164.1 (11)
$O1W - H1O1 \cdots Cl1$	0.833 (19)	2.400 (19)	3.2329 (14)	178.6 (17)
$O1W - H2O1 \cdots Cl1^{iii}$	0.820 (18)	2.335 (18)	3.1479 (10)	171.1 (15)
$O2W-H1O2\cdots O1W^{iv}$	0.84 (2)	2.06 (2)	2.9021 (15)	178.1 (18)
Symmetry codes: (i)	$-x + \frac{1}{2}, -y + \frac{1}{2}$, -z + 1; (ii)	$-x + \frac{1}{2}, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)
$x, -y + 1, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}$,	$-y + \frac{1}{2}, z + \frac{1}{2}.$		2. * 2.	2

Data collection: PAL ADSC Quantum-210 ADX (Arvai &

Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).

The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5261).

References

Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, 0644-0646.

- Choi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612-1616.
- Choi, J.-H., Subhan, M. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2173-o2174.
- De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

0) Å

supporting information

Acta Cryst. (2013). E69, o1620 [doi:10.1107/S1600536813027232]

3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.0^{7,12}]docosane dichloride tetrahydrate from synchrotron radiation

Dohyun Moon, Md Abdus Subhan and Jong-Ha Choi

S1. Comment

The coordination chemistry of tetraazamacrocycles with steric hindrance on the macrocyclic ring, and their complexes are of interest because of their various applications (Choi *et al.*, 2010). Recently, the constrained cyclam derivatives have been reported to exhibit anti-HIV effects and to stimulate the activity of stem cells from the bone marrow (De Clercq, 2010).

The title compound, Fig. 1, containing a positively charged macrocycle, Cl⁻ and water molecules was characterized during the studies of di-*N*-substituted macrocyclic ligands as well as their corresponding copper(II) complexes. The macrocylic ligand lies on a center-of-inversion. Thus, the asymmetric unit contains half of a macrocylic dication, one chloride anion and two water molecules. The four N atoms are coplanar, and the ethyl substituents are *anti* with respect to the macrocyclic plane as a result of the symmetry of the molecule. The C—C and C—N lengths and associated angles are in the normal range (Choi *et al.*, 2006, 2011). As expected, the N–C distances involving the protonated nitrogen atom, N1 are slightly longer than the other N–C distances. The cyclohexane ring that is fused to the 14-membered ring exists in a stable chair conformation, and the N1—C2—C3—N2 torsion angle displays a *gauche* conformation. The crystal structure is stabilized by different types of hydrogen bonds, Table 1.

S2. Experimental

The starting material, the macrocycle 3,14-diethyl-2,6,13,17-tetraazatricyclo(16.4.0.0^{7,12})docosane (L) was prepared according to published procedure (Lim *et al.*, 2006). L (0.67 g, 0.2 mmol) was taken in a round bottomed flask in EtOH (10 ml). 2-Chloro-*N*,*N*-diethylacetamide (0.0936 g, 0.5 mmol) in EtOH (5 ml) was added. Then triethylamine (1.33 g, 0.2 mmol) in EtOH (2 ml) was added. The mixture was heated to reflux for 24 h. Colourless crystals suitable for X-ray analysis were obtained from the solution at 298 K over a period of a few days.

S3. Refinement

The C-bound H-atoms were placed in calculated positions (C—H = 0.98-1.00 Å) and were included in the refinement in the riding model approximation with U_{iso} (H) set to $1.2-1.5U_{eq}$ (C). The O- and N-bound H-atoms were located in a difference Fourier map and refined freely. One of the H atoms of the O2w water molecule was disordered over two sites of equal weight.

Figure 1

The molecular structure of title compound with displacements ellipsoids drawn at the 50% probability level for non-H atoms. Primed atoms are related by the symmetry operation 1/2-x, 1/2-y, 1-z.

3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.0^{7,12}]docosane dichloride tetrahydrate

Crystal data	
$C_{22}H_{46}N_4^{2+}\cdot 2C1^-\cdot 4H_2O$	F(000) = 1120
$M_r = 509.59$	$D_{\rm x} = 1.176 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Synchrotron radiation, $\lambda = 0.72000$ Å
a = 22.122 (4) Å	Cell parameters from 31113 reflections
b = 13.616 (3) Å	$\theta = 1.3-66.4^{\circ}$
c = 10.565 (2) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\beta = 115.23 \ (3)^{\circ}$	T = 95 K
$V = 2878.5 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.31\times0.28\times0.25~mm$
Data collection	
ADSC Q210 CCD area-detector	$T_{\min} = 0.922, T_{\max} = 0.937$
diffractometer	13046 measured reflections
Radiation source: PLSII 2D bending magnet	3663 independent reflections
Si(111) double crystal monochromator	3446 reflections with $I > 2\sigma(I)$
ωscan	$R_{\rm int} = 0.028$
Absorption correction: empirical (using	$\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
intensity measurements)	$h = -29 \rightarrow 29$
(HKL-3000 SCALEPACK; Otwinowski &	$k = -18 \rightarrow 18$
Minor, 1997)	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
3663 reflections	and constrained refinement
178 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 2.157P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	0.24338 (3)	0.30241 (5)	0.30460 (7)	0.00545 (13)	
H1N1	0.2484 (6)	0.3678 (10)	0.3234 (13)	0.013 (3)*	
H2N1	0.2370 (6)	0.2756 (9)	0.3766 (13)	0.014 (3)*	
N2	0.34493 (3)	0.23871 (5)	0.55886 (7)	0.00584 (14)	
H1N2	0.3460 (6)	0.1738 (10)	0.5533 (13)	0.012 (3)*	
C1	0.18207 (4)	0.28405 (6)	0.17163 (8)	0.00738 (15)	
H1A	0.1831	0.2160	0.1398	0.009*	
H1B	0.1819	0.3293	0.0981	0.009*	
C2	0.30641 (4)	0.26138 (6)	0.30527 (8)	0.00612 (15)	
H2	0.3004	0.1891	0.2872	0.007*	
C3	0.32229 (4)	0.30822 (7)	0.19167 (8)	0.01049 (16)	
H3A	0.3289	0.3798	0.2083	0.013*	
H3B	0.2844	0.2980	0.0990	0.013*	
C4	0.38574 (4)	0.26195 (8)	0.19333 (9)	0.01451 (18)	
H4A	0.3775	0.1916	0.1680	0.017*	
H4B	0.3971	0.2947	0.1226	0.017*	
C5	0.44453 (4)	0.27145 (8)	0.33736 (9)	0.01465 (18)	
H5A	0.4836	0.2358	0.3377	0.018*	
H5B	0.4569	0.3415	0.3572	0.018*	
C6	0.42661 (4)	0.22968 (7)	0.45105 (9)	0.01216 (17)	
H6A	0.4645	0.2403	0.5436	0.015*	
H6B	0.4194	0.1580	0.4370	0.015*	
C7	0.36367 (4)	0.27744 (6)	0.44987 (8)	0.00632 (15)	
H7	0.3718	0.3497	0.4651	0.008*	

C8	0.39051 (4)	0.27036 (6)	0.70259 (8)	0.00656 (15)	
H8	0.4375	0.2635	0.7134	0.008*	
C9	0.38146 (4)	0.20090 (6)	0.80803 (8)	0.00776 (15)	
H9A	0.3820	0.1324	0.7770	0.009*	
H9B	0.4203	0.2089	0.8998	0.009*	
C10	0.37854 (4)	0.37876 (6)	0.72406 (9)	0.01032 (16)	
H10A	0.3825	0.4182	0.6492	0.012*	
H10B	0.3324	0.3865	0.7153	0.012*	
C11	0.42749 (5)	0.41859 (7)	0.86611 (10)	0.01776 (19)	
H11A	0.4227	0.3815	0.9408	0.027*	
H11B	0.4179	0.4881	0.8734	0.027*	
H11C	0.4733	0.4117	0.8753	0.027*	
Cl1	0.256487 (11)	0.526092 (15)	0.35905 (2)	0.01378 (8)	
O1W	0.16965 (4)	0.51673 (5)	0.02378 (8)	0.01737 (15)	
H1O1	0.1926 (9)	0.5195 (12)	0.110 (2)	0.038 (4)*	
H2O1	0.1952 (8)	0.5022 (12)	-0.0111 (17)	0.033 (4)*	
O2W	0.52804 (5)	0.02912 (8)	0.40229 (12)	0.0354 (2)	
H1O2	0.5693 (11)	0.0172 (13)	0.4382 (19)	0.044 (5)*	
H2O2	0.512 (2)	0.016 (3)	0.328 (5)	0.062 (14)*	0.50
H3O2	0.5140 (19)	0.015 (3)	0.457 (4)	0.041 (10)*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0030 (3)	0.0080 (3)	0.0048 (3)	-0.0006 (2)	0.0011 (2)	-0.0001 (2)
N2	0.0045 (3)	0.0083 (3)	0.0045 (3)	-0.0011 (2)	0.0017 (2)	-0.0001 (2)
C1	0.0037 (3)	0.0124 (4)	0.0044 (3)	-0.0012 (3)	0.0001 (3)	0.0005 (3)
C2	0.0030 (3)	0.0095 (3)	0.0061 (3)	0.0000 (3)	0.0021 (3)	-0.0009 (3)
C3	0.0072 (4)	0.0190 (4)	0.0057 (3)	-0.0013 (3)	0.0032 (3)	0.0007 (3)
C4	0.0084 (4)	0.0291 (5)	0.0080 (4)	-0.0005 (3)	0.0054 (3)	-0.0023 (3)
C5	0.0058 (4)	0.0308 (5)	0.0093 (4)	-0.0008 (3)	0.0050 (3)	-0.0001 (3)
C6	0.0050 (3)	0.0232 (4)	0.0093 (4)	0.0032 (3)	0.0040 (3)	0.0019 (3)
C7	0.0032 (3)	0.0109 (4)	0.0049 (3)	-0.0011 (3)	0.0018 (3)	0.0000 (3)
C8	0.0036 (3)	0.0099 (4)	0.0053 (3)	-0.0008 (3)	0.0010 (3)	-0.0002 (3)
C9	0.0041 (3)	0.0111 (4)	0.0069 (3)	0.0010 (3)	0.0012 (3)	0.0023 (3)
C10	0.0131 (4)	0.0091 (4)	0.0081 (3)	-0.0011 (3)	0.0039 (3)	-0.0007 (3)
C11	0.0209 (5)	0.0151 (4)	0.0129 (4)	-0.0049 (4)	0.0030 (3)	-0.0055 (3)
Cl1	0.01970 (12)	0.00834 (11)	0.01508 (12)	-0.00076 (7)	0.00912 (9)	0.00064 (7)
O1W	0.0187 (3)	0.0182 (3)	0.0168 (3)	0.0023 (3)	0.0092 (3)	0.0010 (3)
O2W	0.0226 (5)	0.0488 (6)	0.0330 (5)	0.0101 (4)	0.0101 (4)	0.0081 (4)

Geometric parameters (Å, °)

N1—C2	1.4995 (10)	C6—C7	1.5320 (11)
N1-C1	1.5003 (12)	С6—Н6А	0.9900
N1—H1N1	0.909 (13)	C6—H6B	0.9900
N1—H2N1	0.907 (13)	С7—Н7	1.0000
N2—C7	1.4774 (10)	C8—C10	1.5333 (12)

N2—C8	1.4842 (11)	C8—C9	1.5381 (11)
N2—H1N2	0.887 (13)	C8—H8	1.0000
C1—C9 ⁱ	1.5234 (11)	C9-C1 ⁱ	1.5233 (11)
C1—H1A	0.9900	С9—Н9А	0.9900
C1—H1B	0.9900	С9—Н9В	0.9900
C^2 C^3	1.5264(11)		1 5276 (13)
$C_2 = C_3$	1.5204(11) 1.5285(12)		0.0000
	1.5265 (12)		0.9900
C2—H2	1.0000		0.9900
C3—C4	1.5318 (12)	C11—H11A	0.9800
С3—НЗА	0.9900	C11—H11B	0.9800
С3—Н3В	0.9900	C11—H11C	0.9800
C4—C5	1.5286 (13)	O1W—H1O1	0.833 (19)
C4—H4A	0.9900	O1W—H2O1	0.820 (18)
C4—H4B	0.9900	O2W—H1O2	0.84 (2)
C5—C6	1 5262 (12)	O2W—H2O2	0.73(4)
C5H5A	0.9900	02W - H302	0.78(4)
C5 U5D	0.0000	02 W - 11502	0.70(4)
С5—пзв	0.9900		
$C_{2} = N_{1} = C_{1}$	114 20 (6)	С5—С6—Н6А	109.2
C_2 N1 H1N1	100.7(8)	$C7$ $C6$ $H6\Lambda$	109.2
$C_2 = N_1 = H_1 N_1$	109.7(0) 110.2(8)	$C_{1} = C_{0} = H_{0}$	109.2
CI-NI-HINI	110.2(6)		109.2
C2—NI—H2NI	108.8 (8)	С/—Сб—Н6В	109.2
C1 - N1 - H2N1	108.5 (8)	H6A—C6—H6B	107.9
H1N1—N1—H2N1	105.0 (11)	N2—C7—C2	109.85 (6)
C7—N2—C8	113.56 (6)	N2—C7—C6	113.46 (7)
C7—N2—H1N2	106.2 (8)	C2—C7—C6	108.08 (7)
C8—N2—H1N2	109.4 (8)	N2—C7—H7	108.4
N1-C1-C9 ⁱ	111.44 (7)	С2—С7—Н7	108.4
N1—C1—H1A	109.3	С6—С7—Н7	108.4
$C9^{i}$ $C1$ $H1A$	109.3	$N_{2} = C_{8} = C_{10}$	110.24 (6)
N1 C1 H1P	100.2	$N_2 \subset C \subset C$	108.72(6)
NI-CI-HIB	109.3	$N_2 - C_0 - C_9$	108.72(0)
	109.3	C10-C8-C9	113.01 (7)
HIA—CI—HIB	108.0	N2—C8—H8	108.0
N1—C2—C3	111.46 (7)	С10—С8—Н8	108.0
N1—C2—C7	108.91 (7)	С9—С8—Н8	108.0
C3—C2—C7	110.83 (7)	C1 ⁱ —C9—C8	115.61 (7)
N1—C2—H2	108.5	C1 ⁱ —C9—H9A	108.4
С3—С2—Н2	108.5	С8—С9—Н9А	108.4
С7—С2—Н2	108.5	C1 ⁱ —C9—H9B	108.4
C2-C3-C4	109.63 (7)	С8—С9—Н9В	108.4
$C_2 - C_3 - H_3 A$	109.7	H9A - C9 - H9B	107.4
$C_2 = C_3 = H_3 \Lambda$	100.7		107.4 112 10 (7)
C_{1} C_{2} C_{2} U_{2} U_{2}	109.7	$C_{11} = C_{10} = U_{10A}$	113.10(7)
$C_2 = C_3 = H_2 D$	107./		109.0
C4—C3—H3B	109.7		109.0
НЗА—СЗ—НЗВ	108.2	С11—С10—Н10В	109.0
C5—C4—C3	111.30 (7)	C8—C10—H10B	109.0
C5—C4—H4A	109.4	H10A—C10—H10B	107.8
C3—C4—H4A	109.4	C10-C11-H11A	109.5

C5—C4—H4B C3—C4—H4B H4A—C4—H4B C6—C5—C4 C6—C5—H5A C4—C5—H5A C4—C5—H5B H5A—C5—H5B H5A—C5—H5B C5—C6—C7	109.4 109.4 108.0 110.83 (7) 109.5 109.5 109.5 108.1 112.06 (7)	C10—C11—H11B H11A—C11—H11B C10—C11—H11C H11A—C11—H11C H11B—C11—H11C H101—O1W—H2O1 H102—O2W—H2O2 H102—O2W—H3O2 H2O2—O2W—H3O2	109.5 109.5 109.5 109.5 109.5 106.6 (16) 111 (4) 108 (3) 124 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162.93 (7) 62.08 (9) -175.33 (6) -178.28 (7) 60.24 (9) -56.36 (10) 54.06 (11) -55.52 (11) -167.13 (6) 71.78 (9) 52.42 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.38 (6) 176.69 (7) -60.34 (9) -179.94 (7) 57.97 (9) 73.59 (8) -161.26 (6) -75.02 (9) 48.13 (9) -175.53 (7) 62.15 (9)

Symmetry code: (i) -x+1/2, -y+1/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> 1···Cl1	0.909 (13)	2.182 (14)	3.0900 (9)	177.3 (12)
$N1$ — $H2N1$ ··· $N2^{i}$	0.907 (13)	2.200 (13)	2.9348 (11)	137.6 (10)
N2—H1 $N2$ ···O1 W^{ii}	0.887 (13)	2.262 (13)	3.1242 (12)	164.1 (11)
O1 <i>W</i> —H1 <i>O</i> 1···Cl1	0.833 (19)	2.400 (19)	3.2329 (14)	178.6 (17)
O1 <i>W</i> —H2 <i>O</i> 1····Cl1 ⁱⁱⁱ	0.820 (18)	2.335 (18)	3.1479 (10)	171.1 (15)
O2 <i>W</i> —H1 <i>O</i> 2···O1 <i>W</i> ^{iv}	0.84 (2)	2.06 (2)	2.9021 (15)	178.1 (18)

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x, -y+1, z-1/2; (iv) x+1/2, -y+1/2, z+1/2.