

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-Allyl-7-nitro-2H-indazole

### Assoman Kouakou,<sup>a</sup>\* El Mostapha Rakib,<sup>a</sup> Domenico Spinelli,<sup>b</sup> Mohamed Saadi<sup>c</sup> and Lahcen El Ammari<sup>c</sup>

<sup>a</sup>Laboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, <sup>b</sup>Dipartimento di Chimica 'G. Ciamician', Università degli Studi di Bologna, Via Selmi 2, I-40126 Bologna, Italy, and <sup>c</sup>Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco

Correspondence e-mail: assoman\_k@yahoo.fr

Received 24 September 2013; accepted 28 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.142; data-to-parameter ratio = 18.4.

The asymmetric unit of the title compound,  $C_{10}H_9N_3O_2$ , contains two independent molecules linked by a C-H···N hydrogen bond. Each molecule has a similar conformation, being built up from fused five- and six-membered rings, each linked to an ally and nitro group, respectively. The indazole ring system makes dihedral angles of 2.7 (2) and 2.2 (2)°, respectively, with the plane through the nitro group. The allyl group is nearly perpendicular to the indazole system, as indicated by the N-N-C-C torsion angles of -75.3 (2) and -82.2 (2)°, this being the most important difference between the conformations of the two molecules. In the crystal, molecules are linked by C-H···O and  $\pi$ - $\pi$  [inter-centroid distance = 3.6225 (8) Å] interactions to form a three-dimensional network.

### **Related literature**

For pharmacological effects of indazole derivatives, see: Baraldi et al. (2001); Li et al. (2003); Lee et al. (2001); Rodgers et al. (1996); Schmidt et al. (2008). For similar compounds, see: El Brahmi et al. (2012); Chicha et al. (2013).



# organic compounds

4107 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.028$ 

### **Experimental**

#### Crystal data

| $C_{10}H_9N_3O_2$               | $\gamma = 60.843 \ (2)^{\circ}$           |
|---------------------------------|-------------------------------------------|
| $M_r = 203.20$                  | V = 965.64 (7) Å <sup>3</sup>             |
| Triclinic, P1                   | Z = 4                                     |
| a = 8.1848 (3) Å                | Mo $K\alpha$ radiation                    |
| b = 8.3253 (4) Å                | $\mu = 0.10 \text{ mm}^{-1}$              |
| c = 16.3194 (6) Å               | $T = 296 { m K}$                          |
| $\alpha = 84.168 \ (2)^{\circ}$ | $0.42 \times 0.29 \times 0.17 \text{ mm}$ |
| $\beta = 85.653 \ (2)^{\circ}$  |                                           |
|                                 |                                           |

#### Data collection

Bruker X8 APEX diffractometer 22310 measured reflections 4980 independent reflections

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.046$ | 271 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.142$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4980 reflections                | $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$       | <i>D</i> -H | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|-------------|-------------------------|--------------|---------------------------|
| C10−H10A···N2          | 0.93        | 2.60                    | 2.907 (3)    | 100                       |
| $C5-H5\cdots O1^{i}$   | 0.93        | 2.49                    | 3.4004 (19)  | 165                       |
| $C8-H8A\cdots O4^{ii}$ | 0.97        | 2.45                    | 3.205 (2)    | 134                       |
| $C15-H15\cdots O4^{i}$ | 0.93        | 2.49                    | 3.3986 (19)  | 167                       |
|                        |             |                         |              |                           |

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5258).

### References

- Baraldi, P. G., Balbonic, G., Pavani, M. G., Spalluto, G., Tabrizi, M. A., Clercq, E. D., Balzarini, J., Bando, T., Sugiyama, H. & Romagnoli, R. (2001). J. Med. Chem. 44, 2536-2543.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chicha, H., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Crvst. E69, 01410.
- El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, 03368.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lee, F.-Y., Lien, J.-C., Huang, L.-J., Huang, T.-M., Tsai, S.-C., Teng, C.-M., Wu, C.-C., Cheng, F.-C. & Kuo, S.-C. (2001). J. Med. Chem. 44, 3746-3749.
- Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sparankle, K. G., Fedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.

- Rodgers, J. D., Johnson, B. L., Wang, H., Greenberg, R. A., Erickson-Viitanen, S., Klabe, R. M., Cordova, B. C., Rayer, M. M., Lam, G. N. & Chang, C. H. (1996). *Bioorg. Med. Chem. Lett.* 6, 2919–2924.
- (1950). Bloorg. Intel. Chem. Lett. 6, 2119 2024. Schmidt, A., Beutler, A. & Snovydovych, B. (2008). *Eur. J. Org. Chem.* pp. 4073–4095.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

# supporting information

Acta Cryst. (2013). E69, o1603-o1604 [doi:10.1107/S1600536813026743]

# 2-Allyl-7-nitro-2H-indazole

# Assoman Kouakou, El Mostapha Rakib, Domenico Spinelli, Mohamed Saadi and Lahcen El Ammari

# S1. Comment

The indazole subunit in organic molecules is an important structure in many drug substances with a wide range of pharmacological effects: *e.g.*, anti-tumor, anti-microbial, anti-platelet, anti-HIV, and anti-inflammatory (Baraldi *et al.*, 2001; Li *et al.*, 2003; Lee *et al.*, 2001; Rodgers *et al.*, 1996; Schmidt *et al.*, 2008). The present work is a continuation of the investigation of the indazole derivatives published recently by our team (El Brahmi *et al.*, 2012; Chicha *et al.*, 2013).

The plot of the structure of the title compound, with two molecules in the asymmetric unit, shows them linked by a C8 —H8B···N4 hydrogen bond, Fig. 1. In the molecules, the allyl groups are nearly perpendicular to indazole planes as indicated by the torsion angles of C8–C9–N1–N2 = -75.3 (2)° and C18–C19–N4–N5 = -82.2 (2)°. This is the most important difference between the two conformations of the molecules as shown in the overlay diagram of the two crystallographically independent molecules (Fig. 2). The dihedral angles of 2.7 (2) and 2.2 (2)°, respectively, between the fused ring systems and the nitro groups lead to a synperiplanar conformation for each molecule.

In the crystal, molecules are linked by C—H···O (Table 2) and  $\pi$ — $\pi$  [inter-centroid distances between centrosymmetrically related (C1–C6) rings = 3.6225 (8) Å; symmetry operation = 1-*x*, 1-*y*, 1-*z*] interactions, forming a three-dimensional network.

# **S2. Experimental**

To a solution of 7-nitroindazole (6.13 mmol) in acetone (15 ml) was added potassium hydroxide (6.8 mmol). After 15 min. at 298 K, allyl bromide (12.26 mmol) was added drop wise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO<sub>4</sub> and the solvent was evaporated *in vacuo*. The resulting residue was purified by column chromatography (EtOAc/hexane 3/7). The title compound was recrystallized from ethanol at room temperature giving colorless crystals (m.p. 358 (1) K, yield: 65%).

# **S3. Refinement**

H atoms were located in a difference map and treated as riding with C—H = 0.93–0.97 Å, and with  $U_{iso}(H) = 1.2U_{eq}$ .



### Figure 1

The two molecules comprising the asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.



### Figure 2

Overlay diagram of the two crystallographically independent molecules highlighting the different orientations of the allyl groups.

# 2-Allyl-7-nitro-2H-indazole

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{10}H_9N_3O_2$               | Z = 4                                                 |
| $M_r = 203.20$                  | F(000) = 424                                          |
| Triclinic, $P\overline{1}$      | $D_{\rm x} = 1.398 {\rm Mg} {\rm m}^{-3}$             |
| Hall symbol: -P 1               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.1848 (3)  Å               | Cell parameters from 4980 reflections                 |
| b = 8.3253 (4) Å                | $\theta = 2.5 - 28.7^{\circ}$                         |
| c = 16.3194 (6) Å               | $\mu=0.10~\mathrm{mm^{-1}}$                           |
| $\alpha = 84.168 (2)^{\circ}$   | T = 296  K                                            |
| $\beta = 85.653 \ (2)^{\circ}$  | Irregular shape, colourless                           |
| $\gamma = 60.843 \ (2)^{\circ}$ | $0.42 \times 0.29 \times 0.17 \text{ mm}$             |
| $V = 965.64(7) \text{ Å}^3$     |                                                       |

Data collection

| Bruker X8 APEX<br>diffractometer                | 4107 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.028$               |
|-------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube        | $\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ |
| Graphite monochromator                          | $h = -11 \rightarrow 11$                                                  |
| $\varphi$ and $\omega$ scans                    | $k = -11 \rightarrow 11$                                                  |
| 22310 measured reflections                      | $l = -22 \rightarrow 22$                                                  |
| 4980 independent reflections                    |                                                                           |
| Refinement                                      |                                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                      | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.046$                 | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.142$                               | neighbouring sites                                                        |
| S = 1.04                                        | H-atom parameters constrained                                             |
| 4980 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.076P)^2 + 0.1973P]$                          |
| 271 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$                 |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$                  |
|                                                 |                                                                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| C1  | 0.40636 (16) | 0.52858 (16) | 0.63233 (7)  | 0.0352 (2)                  |
| C2  | 0.32039 (17) | 0.46916 (16) | 0.57894 (7)  | 0.0365 (3)                  |
| C3  | 0.22059 (19) | 0.58263 (18) | 0.51389 (8)  | 0.0439 (3)                  |
| H3  | 0.1656       | 0.5413       | 0.4795       | 0.053*                      |
| C4  | 0.1994 (2)   | 0.76114 (19) | 0.49786 (9)  | 0.0506 (3)                  |
| H4  | 0.1297       | 0.8363       | 0.4534       | 0.061*                      |
| C5  | 0.2794 (2)   | 0.82492 (18) | 0.54647 (9)  | 0.0491 (3)                  |
| Н5  | 0.2659       | 0.9425       | 0.5354       | 0.059*                      |
| C6  | 0.38287 (18) | 0.71050 (17) | 0.61358 (8)  | 0.0406 (3)                  |
| C7  | 0.4834 (2)   | 0.7291 (2)   | 0.67340 (9)  | 0.0478 (3)                  |
| H7  | 0.4978       | 0.8314       | 0.6792       | 0.057*                      |
| C8  | 0.6739 (2)   | 0.5268 (3)   | 0.79150 (9)  | 0.0568 (4)                  |
| H8A | 0.6289       | 0.4718       | 0.8366       | 0.068*                      |
| H8B | 0.6606       | 0.6404       | 0.8092       | 0.068*                      |
| C9  | 0.8763 (2)   | 0.3989 (3)   | 0.77569 (10) | 0.0595 (4)                  |
| H9  | 0.9568       | 0.3830       | 0.8168       | 0.071*                      |
| C10 | 0.9523 (3)   | 0.3085 (3)   | 0.71208 (12) | 0.0699 (5)                  |
|     |              |              |              |                             |

| H10A | 0.8786       | 0.3191       | 0.6690       | 0.084*     |
|------|--------------|--------------|--------------|------------|
| H10B | 1.0812       | 0.2321       | 0.7089       | 0.084*     |
| N1   | 0.51163 (16) | 0.44398 (16) | 0.69883 (7)  | 0.0424 (3) |
| N2   | 0.55488 (16) | 0.57195 (17) | 0.72082 (7)  | 0.0463 (3) |
| N3   | 0.33824 (17) | 0.28617 (16) | 0.59100 (8)  | 0.0469 (3) |
| 01   | 0.2663 (3)   | 0.24031 (19) | 0.54180 (9)  | 0.0862 (5) |
| O2   | 0.42204 (19) | 0.18615 (16) | 0.65005 (8)  | 0.0689 (3) |
| C11  | 0.77659 (16) | 0.77408 (16) | 0.98570 (7)  | 0.0358 (3) |
| C12  | 0.71532 (16) | 0.68123 (16) | 1.04771 (7)  | 0.0357 (3) |
| C13  | 0.64456 (19) | 0.75454 (19) | 1.12190 (8)  | 0.0444 (3) |
| H13  | 0.6060       | 0.6915       | 1.1621       | 0.053*     |
| C14  | 0.6294 (2)   | 0.9241 (2)   | 1.13810 (10) | 0.0543 (4) |
| H14  | 0.5804       | 0.9718       | 1.1888       | 0.065*     |
| C15  | 0.6852 (2)   | 1.0194 (2)   | 1.08103 (10) | 0.0541 (4) |
| H15  | 0.6741       | 1.1317       | 1.0922       | 0.065*     |
| C16  | 0.75989 (19) | 0.94553 (17) | 1.00491 (9)  | 0.0437 (3) |
| C17  | 0.8334 (2)   | 1.0005 (2)   | 0.93490 (10) | 0.0543 (4) |
| H17  | 0.8441       | 1.1072       | 0.9265       | 0.065*     |
| C18  | 0.9745 (2)   | 0.8661 (3)   | 0.80039 (10) | 0.0671 (5) |
| H18A | 1.0708       | 0.7405       | 0.7924       | 0.081*     |
| H18B | 1.0348       | 0.9421       | 0.7980       | 0.081*     |
| C19  | 0.8404 (2)   | 0.9320 (2)   | 0.73243 (10) | 0.0573 (4) |
| H19  | 0.7356       | 1.0480       | 0.7344       | 0.069*     |
| C20  | 0.8612 (3)   | 0.8364 (3)   | 0.67013 (12) | 0.0725 (5) |
| H20A | 0.9647       | 0.7199       | 0.6665       | 0.087*     |
| H20B | 0.7726       | 0.8848       | 0.6294       | 0.087*     |
| N4   | 0.85309 (16) | 0.72904 (16) | 0.90988 (7)  | 0.0434 (3) |
| N5   | 0.88521 (17) | 0.87130 (18) | 0.88237 (8)  | 0.0505 (3) |
| N6   | 0.72571 (15) | 0.50676 (15) | 1.03441 (7)  | 0.0415 (2) |
| O3   | 0.78980 (18) | 0.43963 (15) | 0.96842 (7)  | 0.0602 (3) |
| O4   | 0.67488 (19) | 0.43012 (16) | 1.09090 (8)  | 0.0691 (4) |
|      |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|-------------|-------------|-------------|-------------|-------------|
| C1  | 0.0349 (5) | 0.0344 (5)  | 0.0368 (6)  | -0.0177 (5) | 0.0018 (4)  | -0.0023 (4) |
| C2  | 0.0381 (6) | 0.0340 (5)  | 0.0391 (6)  | -0.0191 (5) | 0.0006 (5)  | -0.0028 (5) |
| C3  | 0.0472 (7) | 0.0438 (7)  | 0.0408 (6)  | -0.0213 (6) | -0.0050 (5) | -0.0044 (5) |
| C4  | 0.0571 (8) | 0.0405 (7)  | 0.0450 (7)  | -0.0172 (6) | -0.0076 (6) | 0.0049 (5)  |
| C5  | 0.0575 (8) | 0.0323 (6)  | 0.0537 (8)  | -0.0198 (6) | 0.0006 (6)  | 0.0000 (5)  |
| C6  | 0.0429 (6) | 0.0349 (6)  | 0.0467 (7)  | -0.0207 (5) | 0.0035 (5)  | -0.0073 (5) |
| C7  | 0.0499 (7) | 0.0449 (7)  | 0.0560 (8)  | -0.0275 (6) | 0.0010 (6)  | -0.0124 (6) |
| C8  | 0.0510 (8) | 0.0786 (10) | 0.0469 (8)  | -0.0337 (8) | -0.0057 (6) | -0.0141 (7) |
| C9  | 0.0516 (8) | 0.0773 (11) | 0.0546 (9)  | -0.0345 (8) | -0.0082 (7) | -0.0023 (8) |
| C10 | 0.0568 (9) | 0.0864 (13) | 0.0607 (10) | -0.0308 (9) | -0.0006 (8) | -0.0034 (9) |
| N1  | 0.0444 (6) | 0.0458 (6)  | 0.0413 (6)  | -0.0250 (5) | -0.0048 (4) | -0.0006 (5) |
| N2  | 0.0453 (6) | 0.0548 (7)  | 0.0453 (6)  | -0.0280 (5) | -0.0021 (5) | -0.0107 (5) |
| N3  | 0.0516 (6) | 0.0404 (6)  | 0.0563 (7)  | -0.0284 (5) | -0.0044 (5) | -0.0006 (5) |
|     |            |             |             |             |             |             |

| 01  | 0.1353 (13) | 0.0694 (8)  | 0.0879 (9)  | -0.0731 (9)  | -0.0361 (9) | 0.0031 (7)  |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| O2  | 0.0785 (8)  | 0.0473 (6)  | 0.0881 (9)  | -0.0373 (6)  | -0.0305 (7) | 0.0222 (6)  |
| C11 | 0.0350 (5)  | 0.0359 (6)  | 0.0385 (6)  | -0.0185 (5)  | -0.0107 (4) | 0.0035 (5)  |
| C12 | 0.0354 (6)  | 0.0328 (5)  | 0.0394 (6)  | -0.0171 (5)  | -0.0079 (5) | 0.0029 (4)  |
| C13 | 0.0454 (7)  | 0.0467 (7)  | 0.0396 (6)  | -0.0214 (6)  | -0.0047 (5) | 0.0012 (5)  |
| C14 | 0.0592 (8)  | 0.0515 (8)  | 0.0484 (8)  | -0.0214 (7)  | -0.0056 (6) | -0.0131 (6) |
| C15 | 0.0601 (9)  | 0.0393 (7)  | 0.0652 (9)  | -0.0229 (6)  | -0.0165 (7) | -0.0084 (6) |
| C16 | 0.0457 (7)  | 0.0371 (6)  | 0.0532 (7)  | -0.0236 (5)  | -0.0165 (6) | 0.0061 (5)  |
| C17 | 0.0574 (8)  | 0.0509 (8)  | 0.0655 (9)  | -0.0363 (7)  | -0.0199 (7) | 0.0172 (7)  |
| C18 | 0.0548 (9)  | 0.0939 (13) | 0.0546 (9)  | -0.0423 (9)  | -0.0056 (7) | 0.0238 (9)  |
| C19 | 0.0529 (8)  | 0.0657 (9)  | 0.0513 (8)  | -0.0303 (7)  | -0.0036 (6) | 0.0144 (7)  |
| C20 | 0.0687 (11) | 0.0900 (13) | 0.0579 (10) | -0.0402 (10) | 0.0091 (8)  | 0.0004 (9)  |
| N4  | 0.0441 (6)  | 0.0490 (6)  | 0.0400 (5)  | -0.0257 (5)  | -0.0059 (4) | 0.0048 (5)  |
| N5  | 0.0500 (6)  | 0.0615 (7)  | 0.0476 (6)  | -0.0354 (6)  | -0.0112 (5) | 0.0162 (5)  |
| N6  | 0.0421 (5)  | 0.0377 (5)  | 0.0482 (6)  | -0.0223 (5)  | -0.0070 (5) | 0.0026 (4)  |
| O3  | 0.0892 (8)  | 0.0508 (6)  | 0.0500 (6)  | -0.0399 (6)  | -0.0076 (5) | -0.0067 (5) |
| O4  | 0.0824 (8)  | 0.0530 (6)  | 0.0815 (8)  | -0.0439 (6)  | 0.0186 (7)  | 0.0003 (6)  |
|     |             |             |             |              |             |             |

Geometric parameters (Å, °)

| C1—N1        | 1.3459 (17)          | C11—N4                 | 1.3459 (16)           |
|--------------|----------------------|------------------------|-----------------------|
| C1—C2        | 1.4208 (17)          | C11—C12                | 1.4196 (17)           |
| C1—C6        | 1.4337 (17)          | C11—C16                | 1.4313 (17)           |
| C2—C3        | 1.3648 (18)          | C12—C13                | 1.3686 (18)           |
| C2—N3        | 1.4517 (16)          | C12—N6                 | 1.4509 (16)           |
| C3—C4        | 1.409 (2)            | C13—C14                | 1.407 (2)             |
| С3—Н3        | 0.9300               | С13—Н13                | 0.9300                |
| C4—C5        | 1.358 (2)            | C14—C15                | 1.358 (2)             |
| C4—H4        | 0.9300               | C14—H14                | 0.9300                |
| C5—C6        | 1.402 (2)            | C15—C16                | 1.403 (2)             |
| С5—Н5        | 0.9300               | C15—H15                | 0.9300                |
| C6—C7        | 1.389 (2)            | C16—C17                | 1.391 (2)             |
| C7—N2        | 1.330 (2)            | C17—N5                 | 1.326 (2)             |
| С7—Н7        | 0.9300               | С17—Н17                | 0.9300                |
| C8—N2        | 1.4649 (19)          | C18—N5                 | 1.469 (2)             |
| C8—C9        | 1.489 (2)            | C18—C19                | 1.486 (2)             |
| C8—H8A       | 0.9700               | C18—H18A               | 0.9700                |
| C8—H8B       | 0.9700               | C18—H18B               | 0.9700                |
| C9—C10       | 1.279 (2)            | C19—C20                | 1.304 (3)             |
| С9—Н9        | 0.9300               | С19—Н19                | 0.9300                |
| C10—H10A     | 0.9300               | C20—H20A               | 0.9300                |
| C10—H10B     | 0.9300               | C20—H20B               | 0.9300                |
| N1—N2        | 1.3615 (16)          | N4—N5                  | 1.3605 (16)           |
| N3—O2        | 1.2137 (16)          | N6—O3                  | 1.2240 (15)           |
| N3—01        | 1.2207 (17)          | N6—O4                  | 1.2292 (15)           |
| N1 C1 C2     | 121.0 (2)            | N4 C11 C12             | 1315(2)               |
| N1 - C1 - C6 | 131.9(2)<br>111.6(2) | $N_{-}C_{11} = C_{12}$ | 131.3(2)<br>111 7 (2) |
|              | 111.0 (2)            |                        | 111.7 (2)             |

| C2—C1—C6      | 116.5 (2) | C12-C11-C16   | 116.8 (2) |
|---------------|-----------|---------------|-----------|
| C3—C2—C1      | 120.6 (2) | C13—C12—C11   | 120.6 (2) |
| C3—C2—N3      | 118.2 (2) | C13—C12—N6    | 118.2 (2) |
| C1—C2—N3      | 121.3 (2) | C11-C12-N6    | 121.2 (2) |
| C2—C3—C4      | 121.2 (2) | C12—C13—C14   | 120.8 (2) |
| С2—С3—Н3      | 119.4     | С12—С13—Н13   | 119.6     |
| С4—С3—Н3      | 119.4     | C14—C13—H13   | 119.6     |
| C5—C4—C3      | 120.8 (2) | C15—C14—C13   | 121.2 (2) |
| C5—C4—H4      | 119.6     | C15—C14—H14   | 119.4     |
| C3—C4—H4      | 119.6     | C13—C14—H14   | 119.4     |
| C4—C5—C6      | 118.9 (2) | C14—C15—C16   | 118.8 (2) |
| С4—С5—Н5      | 120.6     | C14—C15—H15   | 120.6     |
| С6—С5—Н5      | 120.6     | C16—C15—H15   | 120.6     |
| C7—C6—C5      | 134.0 (2) | C17—C16—C15   | 134.4 (2) |
| C7—C6—C1      | 104.0 (2) | C17—C16—C11   | 103.8 (2) |
| C5—C6—C1      | 121.9 (2) | C15—C16—C11   | 121.8 (2) |
| N2—C7—C6      | 106.6 (2) | N5-C17-C16    | 106.7 (2) |
| N2—C7—H7      | 126.7     | N5—C17—H17    | 126.6     |
| С6—С7—Н7      | 126.7     | С16—С17—Н17   | 126.6     |
| N2—C8—C9      | 114.9 (2) | N5-C18-C19    | 113.1 (2) |
| N2—C8—H8A     | 108.5     | N5-C18-H18A   | 109.0     |
| С9—С8—Н8А     | 108.5     | C19—C18—H18A  | 109.0     |
| N2—C8—H8B     | 108.5     | N5-C18-H18B   | 109.0     |
| С9—С8—Н8В     | 108.5     | C19—C18—H18B  | 109.0     |
| H8A—C8—H8B    | 107.5     | H18A—C18—H18B | 107.8     |
| С10—С9—С8     | 127.5 (2) | C20-C19-C18   | 123.8 (2) |
| С10—С9—Н9     | 116.3     | С20—С19—Н19   | 118.1     |
| С8—С9—Н9      | 116.3     | C18—C19—H19   | 118.1     |
| С9—С10—Н10А   | 120.0     | C19—C20—H20A  | 120.0     |
| C9—C10—H10B   | 120.0     | C19—C20—H20B  | 120.0     |
| H10A—C10—H10B | 120.0     | H20A—C20—H20B | 120.0     |
| C1—N1—N2      | 103.1 (2) | C11—N4—N5     | 103.0 (2) |
| C7—N2—N1      | 114.7 (2) | C17—N5—N4     | 114.8 (2) |
| C7—N2—C8      | 126.3 (2) | C17—N5—C18    | 126.9 (2) |
| N1—N2—C8      | 119.0 (2) | N4—N5—C18     | 118.3 (2) |
| O2—N3—O1      | 122.8 (2) | O3—N6—O4      | 122.8 (2) |
| O2—N3—C2      | 118.7 (2) | O3—N6—C12     | 118.6 (2) |
| O1—N3—C2      | 118.5 (2) | O4—N6—C12     | 118.5 (2) |
|               |           |               |           |

# Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|----------------------------|-------------|-------|--------------|---------|
| C10—H10A…N2                | 0.93        | 2.60  | 2.907 (3)    | 100     |
| C5—H5···O1 <sup>i</sup>    | 0.93        | 2.49  | 3.4004 (19)  | 165     |
| C8—H8A····O4 <sup>ii</sup> | 0.97        | 2.45  | 3.205 (2)    | 134     |
| C15—H15…O4 <sup>i</sup>    | 0.93        | 2.49  | 3.3986 (19)  | 167     |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*+1, –*z*+2.