organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-[4-(trifluoromethyl)phenylsulfanyl]benzoate

Thammarse S. Yamuna,^a Jerry P. Jasinski,^b* Brian J. Anderson,^b H. S. Yathirajan^a and Manpreet Kaur^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 13 October 2013; accepted 14 October 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.043; wR factor = 0.123; data-to-parameter ratio = 13.5.

In the title compound, $C_{15}H_{13}F_3O_2S$, the dihedral angle between the benzene rings is 79.5 (1)°. The ester group is twisted by 7.6 (1)° from the mean plane of the adjacent benzene ring. Disorder was modeled over two sites for one F atom of the trifluoromethyl group with an occupancy ratio of 0.54 (6):0.46 (6). In the crystal, molecules are linked *via* weak $C-H\cdots O$ hydrogen bonds, forming two-dimensional networks lying parallel to (101). The networks are linked *via* $C-H\cdots \pi$ interactions, leading to the formation of a threedimensional supramolecular structure.

Related literature

For general background and pharmacological properties of the neuroleptic agent flupentixol [systematic name: (EZ)-2-[4-[3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol] and related compounds, see: Ovhed (1976); Robertson & Trimble (1981); Valle-Jones & Swarbrick (1981); Young *et al.* (1976). For related structures, see: Post *et al.* (1975*a,b*); Siddegowda *et al.* (2011*a,b*). For standard bond lengths, see: Allen *et al.* (1987).

Monoclinic, $P2_1/c$

a = 11.0675 (5) Å

Experimental

Crystal data $C_{15}H_{11}F_{3}O_{2}S$ $M_{r} = 312.30$ b = 8.0429 (3) Å c = 15.6614 (7) Å $\beta = 96.654 (5)^{\circ}$ $V = 1384.70 (11) \text{ Å}^{3}$ Z = 4

Data collection

8110 measured reflections
2705 independent reflections
2224 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.043 & 201 \text{ parameters} \\ wR(F^2) = 0.123 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.36 \text{ e } \text{\AA}^{-3} \\ 2705 \text{ reflections} & \Delta\rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3} \end{array}$

Cu $K\alpha$ radiation $\mu = 2.44 \text{ mm}^{-1}$

 $0.28 \times 0.22 \times 0.12 \text{ mm}$

T = 173 K

Table 1

Hydrogen-bond geometry (Å, °). Cg is the centroid of the C2–C7 benzene ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15C\cdots O2^{i}$	0.96	2.45	3.221 (3)	138
$C12-H12\cdots Cg^{ii}$	0.93	2.70	3.558 (2)	154

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2658).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ovhed, I. (1976). Curr. Med. Res. Opin. 4, 144-150.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.
- Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.
- Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079–o2080.
- Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017–o2018.
- Valle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543–549.
 Young, J. P. R., Hughes, W. C. & Lader, M. H. (1976). Br. Med. J. (Clin. Res. Ed.), 1, 1116–1118.

supporting information

Acta Cryst. (2013). E69, o1670 [doi:10.1107/S1600536813028146]

Methyl 2-[4-(trifluoromethyl)phenylsulfanyl]benzoate

Thammarse S. Yamuna, Jerry P. Jasinski, Brian J. Anderson, H. S. Yathirajan and Manpreet Kaur

S1. Comment

The title compound, $C_{15}H_{13}F_3O_2S$, is a methyl ester derivative of the starting material for the synthesis of the flupentixol [systematic name: *(EZ)*-2-[4-[3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol], a well documented neuroleptic. There have been many controlled studies that compared it with a placebo (Ovhed, 1976) and classical antidepressants (Young *et al.*, 1976). Low-dose neuroleptics have been applied increasingly in recent years to treat anxiety and depression (Robertson & Trimble, 1981; Valle-Jones & Swarbrick, 1981). The crystal structures of α -flupenthixol (Post *et al.*, 1975*a*) and β -flupenthixol (Post *et al.*, 1975*a*) and β -flupenthixol (Post *et al.*, 1975*a*) and β -flupenthixol (Post *et al.*, 1975*b*) have been reported. The crystal structures of some related compounds reported by our group are: 1-(2-Hydroxyethyl)-4-[3-(2-trifluoromethyl-9H-thioxanthen-9-yl-idene)propyl]piperazine-1,4-diium dichloride: the dihydrochloride salt of flupentixol (Siddegowda *et al.*, 2011*a*), and 1-(2-Hydroxyethyl) -4-{3-[(E)-2-(trifluoromethyl)-9H-thioxanthen-9-ylidene]propyl}piperazine-1,4-diium bis(3-carboxyprop-2-enoate) (Siddegowda *et al.*, 2011*b*). In view of the importance of flupentixol, we report herein on the crystal structure of the title compound a methyl ester derivative of the starting material for the synthesis of the flupentixol.

In the title molecule, Fig. 1, the dihedral angle between the two benzene rings, (C2-C7) and (C8-C13) is 79.5 (1)°. The ester group (O1/C1/C2/O2) is twisted by 7.6 (1)° from the mean plane of the adjacent benzene ring (C2–C7). Disorder was modeled over two sets of sites for fluorine atom, F3/F3A of the trifluoromethyl group, with an occupancy ratio of 0.54 (6) : 0.46 (6). Bond lengths are in normal ranges (Allen *et al.*, 1987).

In the crystal, molecules are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to (101). These networks are linked via C-H··· π interactions leading to the formation of a three-dimensional supramolecular structure (Table 1 and Fig. 2).

S2. Experimental

The reactant 2-(4-Trifluoromethylphenylsulfanyl)benzoic acid (I) was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. 10 g of (I) [0.0335 mol] was dissolved in 50 ml of methanol, followed by the addition of 1 ml of 98% sulphuric acid and the mixture was refluxed for 8 hours at 338 K. The methanol was distilled off and 100 ml of 10% Na₂CO₃ solution was added and the mixture stirred for 5 min. This was then extracted with dichloromethane and then the solvent was removed by distillation. The product formed was recrystallized from methanol giving colourless block-like crystals of the title compound (M.p. = 413-418 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and refined using the riding model approximation: C-H = 0.93 Å (CH) and 0.96 Å (CH₃), with $U_{iso}(H) = 1.5_{eq}(C-methyl)$ and $= 1.2U_{eq}(C)$ for other H atoms. Disorder for one fluorine atom (F3/F3A) in the trifluoromethyl group was modeled over two sets of sites with an occupancy ratio of 0.54 (6):0.46 (6).

Figure 1

A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [the disordered atom F3A, with occupancy 0.46 (6), has been removed for clarity].

Figure 2

A viewed along the *a* axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [see Table 1 for details; disordered atom F3A, and H atoms not involved in hydrogen bonding, have been omitted for clarity].

Methyl 2-[4-(trifluoromethyl)phenylsulfanyl]benzoate

Crystal data	
$C_{15}H_{11}F_{3}O_{2}S$	F(000) = 640
$M_r = 312.30$	$D_{\rm x} = 1.498 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 11.0675 (5) Å	Cell parameters from 2806 reflections
b = 8.0429 (3) Å	$\theta = 4.0-72.2^{\circ}$
c = 15.6614 (7) Å	$\mu = 2.44 \text{ mm}^{-1}$
$\beta = 96.654 \ (5)^{\circ}$	T = 173 K
V = 1384.70 (11) Å ³	Block, colourless
<i>Z</i> = 4	$0.28 \times 0.22 \times 0.12 \text{ mm}$
Data collection	
Agilent Gemini EOS	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: Enhance (Cu) X-ray Source	(CrysAlis PRO and CrysAlis RED; Agilent,
Detector resolution: 16.0416 pixels mm ⁻¹	2012)

$T_{\min} = 0.715, \ T_{\max} = 1.000$	$\theta_{\rm max} = 72.4^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
8110 measured reflections	$h = -13 \rightarrow 10$
2705 independent reflections	$k = -9 \rightarrow 7$
2224 reflections with $I > 2\sigma(I)$	$l = -18 \rightarrow 19$
$R_{\rm int} = 0.039$	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
2705 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.2842P]$
201 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.27$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.74068 (5)	0.20434 (6)	0.53524 (4)	0.03547 (18)	
F1	1.15258 (18)	0.4950 (3)	0.29524 (12)	0.0867 (7)	
F2	1.02027 (17)	0.4280 (3)	0.19408 (10)	0.0764 (6)	
F3	1.1534 (11)	0.257 (2)	0.2621 (9)	0.078 (3)	0.54 (6)
F3A	1.121 (4)	0.234 (3)	0.240 (3)	0.127 (7)	0.46 (6)
01	0.50339 (13)	-0.10252 (18)	0.67852 (9)	0.0370 (4)	
O2	0.61424 (16)	0.1251 (2)	0.66627 (11)	0.0504 (5)	
C1	0.58173 (17)	-0.0107 (3)	0.64017 (13)	0.0289 (4)	
C2	0.62526 (16)	-0.0927 (2)	0.56503 (12)	0.0268 (4)	
C3	0.59456 (18)	-0.2586 (3)	0.54673 (13)	0.0314 (4)	
Н3	0.5458	-0.3151	0.5816	0.038*	
C4	0.63512 (19)	-0.3401 (3)	0.47797 (14)	0.0354 (5)	
H4	0.6149	-0.4509	0.4670	0.042*	
C5	0.70653 (19)	-0.2546 (3)	0.42526 (13)	0.0343 (5)	
Н5	0.7332	-0.3082	0.3783	0.041*	
C6	0.73828 (18)	-0.0906 (3)	0.44206 (13)	0.0313 (4)	
H6	0.7866	-0.0355	0.4063	0.038*	
C7	0.69912 (16)	-0.0063 (2)	0.51164 (13)	0.0271 (4)	
C8	0.83570 (18)	0.2519 (2)	0.45386 (13)	0.0310 (4)	
C9	0.78756 (19)	0.2956 (3)	0.37134 (15)	0.0352 (5)	
H9	0.7037	0.2965	0.3566	0.042*	
C10	0.8636 (2)	0.3378 (3)	0.31074 (14)	0.0368 (5)	
H10	0.8312	0.3660	0.2552	0.044*	
C11	0.98830 (19)	0.3377 (3)	0.33316 (14)	0.0345 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	1.0368 (2)	0.2971 (3)	0.41589 (15)	0.0435 (6)
H12	1.1205	0.2989	0.4310	0.052*
C13	0.9604 (2)	0.2538 (3)	0.47609 (15)	0.0419 (5)
H13	0.9929	0.2258	0.5317	0.050*
C14	1.0745 (2)	0.3760 (3)	0.26912 (17)	0.0493 (6)
C15	0.4586 (2)	-0.0262 (3)	0.75237 (14)	0.0406 (5)
H15A	0.4236	0.0801	0.7363	0.061*
H15B	0.5247	-0.0117	0.7972	0.061*
H15C	0.3979	-0.0964	0.7727	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0389 (3)	0.0280 (3)	0.0428 (3)	-0.0061 (2)	0.0183 (2)	-0.0040 (2)
F1	0.0817 (12)	0.1103 (16)	0.0725 (12)	-0.0512 (12)	0.0279 (10)	0.0079 (11)
F2	0.0827 (12)	0.1077 (16)	0.0416 (9)	-0.0139 (11)	0.0196 (8)	0.0172 (9)
F3	0.078 (6)	0.083 (8)	0.083 (5)	0.030 (4)	0.054 (5)	0.025 (4)
F3A	0.196 (15)	0.049 (4)	0.166 (15)	0.017 (9)	0.151 (12)	0.011 (8)
01	0.0469 (9)	0.0324 (8)	0.0350 (8)	-0.0067 (6)	0.0189 (7)	-0.0022 (6)
O2	0.0583 (10)	0.0422 (9)	0.0564 (11)	-0.0182 (8)	0.0304 (8)	-0.0184 (8)
C1	0.0261 (9)	0.0314 (10)	0.0295 (10)	-0.0011 (8)	0.0042 (7)	0.0000 (8)
C2	0.0229 (9)	0.0297 (10)	0.0277 (9)	-0.0004 (7)	0.0020 (7)	0.0010 (7)
C3	0.0304 (10)	0.0308 (10)	0.0335 (10)	-0.0052 (8)	0.0061 (8)	0.0007 (8)
C4	0.0392 (11)	0.0281 (10)	0.0391 (12)	-0.0053 (9)	0.0057 (9)	-0.0051 (8)
C5	0.0378 (11)	0.0345 (11)	0.0316 (10)	0.0019 (9)	0.0082 (9)	-0.0058 (8)
C6	0.0310 (10)	0.0327 (11)	0.0317 (10)	0.0014 (8)	0.0099 (8)	0.0034 (8)
C7	0.0249 (9)	0.0246 (9)	0.0320 (10)	0.0007 (7)	0.0036 (7)	0.0013 (7)
C8	0.0329 (10)	0.0251 (9)	0.0368 (11)	-0.0028 (8)	0.0117 (8)	0.0011 (8)
C9	0.0293 (10)	0.0331 (11)	0.0429 (12)	0.0018 (8)	0.0027 (9)	0.0012 (9)
C10	0.0433 (12)	0.0341 (11)	0.0325 (11)	0.0014 (9)	0.0031 (9)	0.0049 (9)
C11	0.0394 (11)	0.0300 (11)	0.0353 (11)	-0.0036 (9)	0.0098 (9)	0.0018 (8)
C12	0.0289 (11)	0.0611 (16)	0.0407 (13)	-0.0067 (10)	0.0046 (9)	0.0080 (11)
C13	0.0361 (12)	0.0558 (14)	0.0337 (11)	-0.0031 (10)	0.0039 (9)	0.0097 (10)
C14	0.0543 (15)	0.0508 (15)	0.0458 (14)	-0.0043 (12)	0.0186 (11)	0.0103 (11)
C15	0.0508 (13)	0.0427 (13)	0.0315 (11)	-0.0040 (10)	0.0179 (9)	-0.0010 (9)

Geometric parameters (Å, °)

S1—C7	1.783 (2)	C5—C6	1.382 (3)	
S1—C8	1.785 (2)	С6—Н6	0.9300	
F1-C14	1.322 (3)	C6—C7	1.394 (3)	
F2—C14	1.324 (3)	C8—C9	1.385 (3)	
F3—C14	1.311 (13)	C8—C13	1.384 (3)	
F3A-C14	1.354 (19)	С9—Н9	0.9300	
01—C1	1.334 (2)	C9—C10	1.382 (3)	
O1—C15	1.446 (2)	C10—H10	0.9300	
O2—C1	1.206 (3)	C10—C11	1.384 (3)	
C1—C2	1.478 (3)	C11—C12	1.383 (3)	

С2—С3	1.398 (3)	C11—C14	1.494 (3)
C2—C7	1.417 (3)	С12—Н12	0.9300
С3—Н3	0.9300	C12—C13	1.382 (3)
C3—C4	1.380 (3)	С13—Н13	0.9300
C4—H4	0.9300	С15—Н15А	0.9600
C4—C5	1.389 (3)	C15—H15B	0.9600
С5—Н5	0.9300	С15—Н15С	0.9600
C7—S1—C8	102.41 (9)	С10—С9—Н9	119.9
C1—O1—C15	115.20 (17)	С9—С10—Н10	120.2
O1—C1—C2	113.60 (17)	C9—C10—C11	119.6 (2)
O2—C1—O1	122.19 (19)	C11—C10—H10	120.2
O2—C1—C2	124.20 (18)	C10-C11-C14	121.7 (2)
C3—C2—C1	119.69 (18)	C12—C11—C10	120.3 (2)
C3—C2—C7	119.33 (18)	C12—C11—C14	118.0 (2)
C7—C2—C1	120.97 (18)	C11—C12—H12	120.1
С2—С3—Н3	119.3	C13—C12—C11	119.8 (2)
C4—C3—C2	121.35 (19)	C13—C12—H12	120.1
С4—С3—Н3	119.3	C8—C13—H13	119.9
C3—C4—H4	120.4	C12—C13—C8	120.1 (2)
C3—C4—C5	119.17 (19)	C12—C13—H13	119.9
C5—C4—H4	120.4	F1-C14-F2	105.0 (2)
С4—С5—Н5	119.7	F1-C14-F3A	117 (2)
C6—C5—C4	120.58 (19)	F1-C14-C11	112.7 (2)
С6—С5—Н5	119.7	F2	97 (2)
С5—С6—Н6	119.4	F2-C14-C11	113.7 (2)
C5—C6—C7	121.16 (19)	F3—C14—F1	98.0 (8)
С7—С6—Н6	119.4	F3—C14—F2	113.3 (7)
C2—C7—S1	119.74 (15)	F3—C14—C11	112.8 (7)
C6—C7—S1	121.86 (15)	F3A-C14-C11	110.7 (8)
C6—C7—C2	118.40 (18)	O1—C15—H15A	109.5
C9—C8—S1	121.72 (16)	O1—C15—H15B	109.5
C13—C8—S1	118.39 (16)	O1—C15—H15C	109.5
C13—C8—C9	119.78 (19)	H15A—C15—H15B	109.5
С8—С9—Н9	119.9	H15A—C15—H15C	109.5
C10—C9—C8	120.3 (2)	H15B—C15—H15C	109.5
S1—C8—C9—C10	177.55 (16)	C8—S1—C7—C6	-1.42 (18)
S1—C8—C13—C12	-177.2 (2)	C8—C9—C10—C11	-0.6 (3)
01	-7.3 (3)	C9—C8—C13—C12	-0.8 (4)
O1—C1—C2—C7	173.53 (17)	C9—C10—C11—C12	-0.5 (3)
02-C1-C2-C3	171.6 (2)	C9—C10—C11—C14	177.6 (2)
02-C1-C2-C7	-7.6 (3)	C10—C11—C12—C13	1.0 (4)
C1—C2—C3—C4	-178.95 (19)	C10—C11—C14—F1	127.0 (3)
C1 - C2 - C7 - S1	0.1 (2)	C10—C11—C14—F2	7.6 (4)
C1—C2—C7—C6	1/9.48 (17)	C10—C11—C14—F3	-123.1 (8)
$C_2 - C_3 - C_4 - C_5$	-0.9 (3)	C10—C11—C14—F3A	-100(2)
C3—C2—C7—S1	-179.11 (15)	C11—C12—C13—C8	-0.4(4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 (3) 1.0 (3) -0.4 (3) 179.17 (16) -0.2 (3) 81.16 (19) -102.49 (19) 0.2 (2)	C12—C11—C14—F1 C12—C11—C14—F2 C12—C11—C14—F3 C12—C11—C14—F3A C13—C8—C9—C10 C14—C11—C12—C13 C15—O1—C1—O2	-54.9 (3) -174.2 (2) 55.0 (9) 78 (2) 1.3 (3) -177.2 (2) 1.2 (3) 170.06 (17)
C7—S1—C8—C13 C7—C2—C3—C4 C8—S1—C7—C2	-102.49 (19) 0.3 (3) 177.93 (15)	C15—O1—C1—O2 C15—O1—C1—C2	1.2 (3) -179.96 (17)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C15—H15C····O2 ⁱ	0.96	2.45	3.221 (3)	138
C12—H12··· <i>Cg</i> ⁱⁱ	0.93	2.70	3.558 (2)	154

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) -*x*+2, -*y*, -*z*+1.