

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-[(4-Methylphenyl)sulfanyl]butan-2-one

### Sladjana B. Novaković,<sup>a</sup> Zorica Leka,<sup>b</sup>\* Dragana Stevanović,<sup>c</sup> Jovana Muškinja<sup>c</sup> and Goran A. Bogdanović<sup>a</sup>

<sup>a</sup>Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, <sup>b</sup>Faculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, and <sup>c</sup>Faculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia Correspondence e-mail: zorica@ac.me

Received 24 September 2013; accepted 30 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.170; data-to-parameter ratio = 17.1.

In the title compound,  $C_{11}H_{14}OS$ , all non-H atoms are essentially coplanar, with a mean deviation of 0.023 Å. In the crystal, centrosymmetrically related molecules are weakly connected into dimers by pairs of  $C-H\cdots O$  interactions. The dimers are further linked along the *a* axis by weak  $C-H\cdots \pi$ and  $C-H\cdots S$  interactions.

### **Related literature**

For the physico-chemical properties of organosulfur compounds, see: Page (1999). For the synthetic procedure, see: Stevanović *et al.* (2012). For the role of sulfur in hydrogen bonding, see: Francuski *et al.* (2011).



### **Experimental**

Crystal data

 $\begin{array}{l} C_{11} {\rm H}_{14} {\rm OS} \\ M_r = 194.28 \\ {\rm Triclinic}, \ P\overline{1} \\ a = 7.2703 \ (11) \ {\rm \mathring{A}} \\ b = 7.3226 \ (7) \ {\rm \mathring{A}} \\ c = 11.7615 \ (11) \ {\rm \mathring{A}} \end{array}$ 

 $\alpha = 88.232 (8)^{\circ}$   $\beta = 79.343 (10)^{\circ}$   $\gamma = 61.350 (13)^{\circ}$   $V = 538.80 (13) \text{ Å}^{3}$ Z = 2



 $\mu = 2.33 \text{ mm}^{-1}$ T = 293 K

### Data collection

Agilent Gemini S diffractometer3254 measured reflectionsAbsorption correction: multi-scan<br/>(CrysAlis PRO; Agilent, 2013)2052 independent reflections $T_{min} = 0.444, T_{max} = 1.000$  $R_{int} = 0.027$ 

### Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.055 & 120 \text{ parameters} \\ wR(F^2) = 0.170 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.34 \text{ e } \text{\AA}^{-3} \\ 2052 \text{ reflections} & \Delta\rho_{\min} = -0.33 \text{ e } \text{\AA}^{-3} \end{array}$ 

#### **Table 1** Hydrogen-bond geometry (Å, °).

*Cg* is the centroid of the C4–C9 phenyl ring.

| -                          | -    |                         |                         |                                      |
|----------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $D - H \cdots A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $C10-H10c\cdotsO1^{i}$     | 0.96 | 2.67                    | 3.579 (4)               | 158                                  |
| C3-H3a···S1 <sup>ii</sup>  | 0.97 | 2.99                    | 3.855 (3)               | 149                                  |
| C3-H3b···S1 <sup>iii</sup> | 0.97 | 3.02                    | 3.870 (3)               | 147                                  |
| $C2-H2a\cdots Cg^{ii}$     | 0.97 | 2.86                    | 3.628 (4)               | 137                                  |
| $C2-H2b\cdots Cg^{iv}$     | 0.97 | 2.95                    | 3.678 (4)               | 133                                  |
|                            |      |                         |                         |                                      |

Symmetry codes: (i) -x + 1, -y, -z - 1; (ii) -x, -y, -z; (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects No. 172014, 172035 and 172034).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5084).

### References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Francuski, B. M., Novaković, S. B. & Bogdanović, G. A. (2011). CrystEng-Comm, 13, 3580–3591.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Page, P. C. B. (1999). Editor. Organosulfur Chemistry, Vols. 1–2. Berlin: Springer.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stevanović, D., Pejović, A., Damljanović, I., Vukićević, M., Bogdanović, G. A. & Vukićević, R. D. (2012). *Tetrahedron Lett.* 53, 6257–6260.

 $0.50 \times 0.26 \times 0.14~\text{mm}$ 

# supporting information

Acta Cryst. (2013). E69, o1625 [doi:10.1107/S1600536813026895]

# 4-[(4-Methylphenyl)sulfanyl]butan-2-one

# Sladjana B. Novaković, Zorica Leka, Dragana Stevanović, Jovana Muškinja and Goran A. Bogdanović

# S1. Comment

Sulfides containing a carbonyl group are versatile precursors for the synthesis of wide range of biologically interesting compounds (Page, 1999). The main approach to  $\beta$ -thiaketones is the addition of compounds containing an SH group to conjugated carbonyls (the thia-Michael reaction). We recently published a versatile method for electrochemical generation of the catalyst for this addition (Stevanović *et al.*, 2012) and herein we report the structure of 4-(*o*-tolylthio)-butan-2-one.

The molecule of the title compound (Fig. 1) is essentially planar with a mean deviation of all non-H atoms of 0.023 Å. Atoms O1 and C10 exhibit the highest deviation from the mean molecular plane of 0.047 (3) and -0.057 (2) Å, respectively. The crystal packing displays no classical hydrogen bonding. The carbonyl O1 acceptor is engaged only in a weak C10—H10*c*···O1 interaction (Table 1) which associates the centrosymmetric molecules into dimers (Fig. 2a). Pairs of C—H··· $\pi$  and C—H···S interactions (Table 1) connect the molecules along the *a* axis (Figure 2b). In the absence of more relevant hydrogen bonding the weak C—H···S interactions can be considered important for the stabilization of the crystal structure (Francuski *et al.*, 2011).

## S2. Experimental

The title compound was obtained by treating methyl vinyl ketone with the corresponding thiophenol in the presence of an electrochemically generated zirconium catalyst, following the reported procedure (Stevanović *et al.*, 2012).

## S3. Refinement

All H atoms were placed at geometrically calculated positions and included in the refinement in the riding model approximation, with C—H lengths of 0.93 (CH), 0.96 (CH<sub>3</sub>) and 0.97 (CH<sub>2</sub>) Å.  $U_{iso}$  of the H atoms was set at 1.5 $U_{eq}$  of the parent C atom for the methyl group and at 1.2 $U_{eq}$  otherwise.



# Figure 1

The molecular structure of the title compound, with atom labels and 40% probability displacement ellipsoids for non-H atoms.



### Figure 2

Intermolecular interactions in the title compound: (a) C—H···O interactions (dashed lines) connecting centrosymmetrically related molecules into dimers; (b) C—H··· $\pi$  (dotted lines) and C—H···S interactions (dashed lines) connecting the molecules along *a* axis. H-atoms not involved in hydrogen interactions are omitted.

### 4-[(4-Methylphenyl)sulfanyl]butan-2-one

| Crystal data                     |
|----------------------------------|
| $C_{11}H_{14}OS$                 |
| $M_r = 194.28$                   |
| Triclinic, $P\overline{1}$       |
| Hall symbol: -P 1                |
| <i>a</i> = 7.2703 (11) Å         |
| <i>b</i> = 7.3226 (7) Å          |
| c = 11.7615 (11)  Å              |
| $\alpha = 88.232 \ (8)^{\circ}$  |
| $\beta = 79.343 \ (10)^{\circ}$  |
| $\gamma = 61.350 \ (13)^{\circ}$ |
| $V = 538.80 (13) \text{ Å}^3$    |
|                                  |

Z = 2 F(000) = 208  $D_x = 1.198 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54180 \mathcal{A} Cell parameters from 1309 reflections  $\theta = 7.0-72.1^{\circ}$   $\mu = 2.33 \text{ mm}^{-1}$  T = 293 KPrismatic, colourless  $0.50 \times 0.26 \times 0.14 \text{ mm}$  Data collection

| Agilent Gemini S<br>diffractometer<br>Radiation source: Enhance (Cu) X-ray Source<br>Graphite monochromator<br>Detector resolution: 16.3280 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis PRO</i> ; Agilent, 2013)<br>$T_{\min} = 0.444, T_{\max} = 1.000$ | 3254 measured reflections<br>2052 independent reflections<br>1731 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.027$<br>$\theta_{max} = 72.9^{\circ}, \theta_{min} = 3.8^{\circ}$<br>$h = -8 \rightarrow 8$<br>$k = -9 \rightarrow 5$<br>$l = -14 \rightarrow 14$                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.055$<br>$wR(F^2) = 0.170$<br>S = 1.07<br>2052 reflections<br>120 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                                             | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.1046P)^2 + 0.083P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.34$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.33$ e Å <sup>-3</sup> |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|---------------|-----------------------------|
| S1   | 0.31244 (10) | -0.14778 (8) | 0.03374 (5)   | 0.0640 (3)                  |
| O1   | 0.2948 (4)   | 0.0791 (3)   | -0.32862 (19) | 0.0927 (7)                  |
| C1   | 0.3882 (4)   | -0.1053 (4)  | -0.3166 (2)   | 0.0643 (6)                  |
| C2   | 0.4007 (4)   | -0.1919 (4)  | -0.2004 (2)   | 0.0596 (6)                  |
| H2A  | 0.5496       | -0.2765      | -0.1949       | 0.072*                      |
| H2B  | 0.3359       | -0.2818      | -0.1924       | 0.072*                      |
| C3   | 0.2892 (4)   | -0.0231 (4)  | -0.1015 (2)   | 0.0576 (6)                  |
| H3A  | 0.1398       | 0.0627       | -0.1058       | 0.069*                      |
| H3B  | 0.3552       | 0.0656       | -0.1070       | 0.069*                      |
| C4   | 0.1796 (3)   | 0.0637 (3)   | 0.14013 (19)  | 0.0524 (5)                  |
| C5   | 0.1709 (4)   | 0.0158 (4)   | 0.2556 (2)    | 0.0598 (6)                  |
| C6   | 0.0713 (5)   | 0.1782 (4)   | 0.3408 (2)    | 0.0709 (7)                  |
| H6   | 0.0662       | 0.1474       | 0.4182        | 0.085*                      |
| C7   | -0.0202 (4)  | 0.3834 (4)   | 0.3140 (2)    | 0.0714 (7)                  |
| H7   | -0.0864      | 0.4896       | 0.3728        | 0.086*                      |
| C8   | -0.0132 (4)  | 0.4303 (4)   | 0.2004 (2)    | 0.0687 (7)                  |
| H8   | -0.0762      | 0.5690       | 0.1819        | 0.082*                      |
| С9   | 0.0874 (4)   | 0.2723 (4)   | 0.1125 (2)    | 0.0639 (6)                  |
| Н9   | 0.0935       | 0.3050       | 0.0353        | 0.077*                      |
| C10  | 0.4997 (5)   | -0.2615 (5)  | -0.4198 (2)   | 0.0793 (8)                  |
| H10A | 0.4179       | -0.3296      | -0.4283       | 0.119*                      |
| H10B | 0.6391       | -0.3635      | -0.4083       | 0.119*                      |
| H10C | 0.5132       | -0.1911      | -0.4884       | 0.119*                      |
| C11  | 0.2678 (6)   | -0.2074 (4)  | 0.2878 (3)    | 0.0811 (8)                  |
| H11A | 0.2357       | -0.2111      | 0.3705        | 0.122*                      |

# supporting information

| H11B | 0.4198 | -0.2749 | 0.2614 | 0.122* |
|------|--------|---------|--------|--------|
| H11C | 0.2095 | -0.2787 | 0.2519 | 0.122* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0807 (5)  | 0.0453 (4)  | 0.0554 (4)  | -0.0233 (3)  | -0.0076 (3)  | -0.0088 (2)  |
| 01  | 0.1279 (18) | 0.0579 (11) | 0.0675 (12) | -0.0307 (12) | -0.0024 (11) | -0.0022 (9)  |
| C1  | 0.0754 (15) | 0.0555 (13) | 0.0581 (13) | -0.0312 (12) | -0.0025 (11) | -0.0110 (10) |
| C2  | 0.0651 (14) | 0.0516 (12) | 0.0570 (13) | -0.0263 (11) | -0.0029 (10) | -0.0126 (10) |
| C3  | 0.0650 (13) | 0.0497 (12) | 0.0524 (12) | -0.0248 (10) | -0.0043 (10) | -0.0106 (9)  |
| C4  | 0.0569 (12) | 0.0455 (11) | 0.0511 (11) | -0.0225 (9)  | -0.0066 (9)  | -0.0084(8)   |
| C5  | 0.0675 (14) | 0.0561 (13) | 0.0554 (12) | -0.0299 (11) | -0.0101 (10) | -0.0004 (10) |
| C6  | 0.0868 (18) | 0.0749 (17) | 0.0496 (13) | -0.0406 (14) | -0.0041 (12) | -0.0053 (11) |
| C7  | 0.0769 (16) | 0.0612 (15) | 0.0637 (15) | -0.0276 (13) | 0.0019 (12)  | -0.0204 (12) |
| C8  | 0.0773 (16) | 0.0463 (12) | 0.0700 (15) | -0.0221 (11) | -0.0061 (12) | -0.0092 (11) |
| C9  | 0.0798 (16) | 0.0493 (12) | 0.0549 (13) | -0.0258 (11) | -0.0104 (11) | -0.0016 (10) |
| C10 | 0.106 (2)   | 0.0705 (17) | 0.0544 (14) | -0.0401 (16) | -0.0038 (14) | -0.0132 (12) |
| C11 | 0.113 (2)   | 0.0628 (16) | 0.0651 (16) | -0.0389 (16) | -0.0217 (15) | 0.0098 (12)  |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| S1—C4      | 1.771 (2)   | C6—C7    | 1.375 (4) |
|------------|-------------|----------|-----------|
| S1—C3      | 1.804 (2)   | С6—Н6    | 0.9300    |
| O1—C1      | 1.204 (3)   | C7—C8    | 1.367 (4) |
| C1—C2      | 1.488 (4)   | С7—Н7    | 0.9300    |
| C1C10      | 1.506 (3)   | C8—C9    | 1.388 (3) |
| C2—C3      | 1.522 (3)   | C8—H8    | 0.9300    |
| C2—H2A     | 0.9700      | С9—Н9    | 0.9300    |
| C2—H2B     | 0.9700      | C10—H10A | 0.9600    |
| С3—НЗА     | 0.9700      | C10—H10B | 0.9600    |
| С3—Н3В     | 0.9700      | C10—H10C | 0.9600    |
| C4—C5      | 1.390 (3)   | C11—H11A | 0.9600    |
| C4—C9      | 1.398 (3)   | C11—H11B | 0.9600    |
| C5—C6      | 1.386 (3)   | C11—H11C | 0.9600    |
| C5-C11     | 1.506 (3)   |          |           |
|            |             |          |           |
| C4—S1—C3   | 103.72 (11) | С7—С6—Н6 | 119.1     |
| O1—C1—C2   | 122.4 (2)   | С5—С6—Н6 | 119.1     |
| O1—C1—C10  | 121.3 (3)   | C8—C7—C6 | 119.5 (2) |
| C2-C1-C10  | 116.4 (2)   | С8—С7—Н7 | 120.2     |
| C1—C2—C3   | 112.78 (19) | С6—С7—Н7 | 120.2     |
| C1—C2—H2A  | 109.0       | C7—C8—C9 | 120.4 (2) |
| C3—C2—H2A  | 109.0       | С7—С8—Н8 | 119.8     |
| C1—C2—H2B  | 109.0       | С9—С8—Н8 | 119.8     |
| C3—C2—H2B  | 109.0       | C8—C9—C4 | 119.9 (2) |
| H2A—C2—H2B | 107.8       | С8—С9—Н9 | 120.1     |
| C2—C3—S1   | 108.38 (16) | С4—С9—Н9 | 120.1     |

| С2—С3—НЗА  | 110.0       | C1-C10-H10A   | 109.5 |  |
|------------|-------------|---------------|-------|--|
| S1—C3—H3A  | 110.0       | C1-C10-H10B   | 109.5 |  |
| С2—С3—Н3В  | 110.0       | H10A-C10-H10B | 109.5 |  |
| S1—C3—H3B  | 110.0       | C1—C10—H10C   | 109.5 |  |
| НЗА—СЗ—НЗВ | 108.4       | H10A—C10—H10C | 109.5 |  |
| C5—C4—C9   | 119.8 (2)   | H10B-C10-H10C | 109.5 |  |
| C5—C4—S1   | 117.25 (18) | C5—C11—H11A   | 109.5 |  |
| C9—C4—S1   | 122.96 (18) | C5-C11-H11B   | 109.5 |  |
| C6—C5—C4   | 118.5 (2)   | H11A—C11—H11B | 109.5 |  |
| C6—C5—C11  | 120.6 (2)   | C5—C11—H11C   | 109.5 |  |
| C4—C5—C11  | 120.9 (2)   | H11A—C11—H11C | 109.5 |  |
| C7—C6—C5   | 121.9 (2)   | H11B—C11—H11C | 109.5 |  |
|            |             |               |       |  |

# Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 phenyl ring.

| D—H···A                            | <i>D</i> —Н | Н…А  | D···A     | <i>D</i> —H··· <i>A</i> |
|------------------------------------|-------------|------|-----------|-------------------------|
| C10—H10c····O1 <sup>i</sup>        | 0.96        | 2.67 | 3.579 (4) | 158                     |
| C3—H3a···S1 <sup>ii</sup>          | 0.97        | 2.99 | 3.855 (3) | 149                     |
| C3—H3b····S1 <sup>iii</sup>        | 0.97        | 3.02 | 3.870 (3) | 147                     |
| C2—H2a··· <i>Cg</i> <sup>ii</sup>  | 0.97        | 2.86 | 3.628 (4) | 137                     |
| C2—H2b···· <i>Cg</i> <sup>iv</sup> | 0.97        | 2.95 | 3.678 (4) | 133                     |

Symmetry codes: (i) -*x*+1, -*y*, -*z*-1; (ii) -*x*, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*; (iv) -*x*+1, -*y*+1, -*z*+1.