

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -L-arginine- $\kappa^3 N^2$,O:O')bis(L-arginine- $\kappa^2 N^2$,O)tetra- μ -chlorido-tetra-chloridotetracopper(II)

P. Arularasan,^a B.Sivakumar,^a G. Chakkaravarthi^b* and R. Mohan^a*

^aDepartment of Physics, Presidency College, Chennai 600 005, India, and ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com, professormohan@yahoo.co.in

Received 30 August 2013; accepted 29 September 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 15.6.

The title compound, $[Cu_4Cl_8(C_6H_{14}N_4O_2)_4]$, contains four molecules in the asymmetric unit. In the molecular structure, each of the four Cu^{2+} ions binds to three Cl atoms, one N atom and one O atom, resulting in distorted square-pyramidal coordination environments. The molecular structure is stabilized by weak $C-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds. The crystal structure exhibit weak intermolecular $N-H\cdots O$, C- $H\cdots O$ and $N-H\cdots Cl$ interactions, generating a threedimensional network.

Related literature

For general background of copper derivatives, see: Baran (2004); Sorenson (1976). For related structures, see: Ramaswamy *et al.* (2001); Sridhar *et al.* (2002); Sun *et al.* (2005); Wang *et al.* (2012).

V = 2335.0 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.16 \; \mathrm{mm}$

 $\mu = 2.32 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.053$

Z = 2

Experimental

Crystal data

 $\begin{bmatrix} Cu_4 Cl_8 (C_6 H_{14} N_4 O_2)_4 \end{bmatrix} \\ M_r = 1234.65 \\ Monoclinic, P2_1 \\ a = 11.9315 (8) \text{ Å} \\ b = 12.8805 (10) \text{ Å} \\ c = 15.3949 (13) \text{ Å} \\ \beta = 99.271 (4)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.655, T_{max} = 0.708$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047\\ wR(F^2) &= 0.112\\ S &= 0.98\\ 8443 \text{ reflections}\\ 541 \text{ parameters}\\ \text{H-atom parameters constrained} \end{split}$$

16238 measured reflections 8443 independent reflections 6378 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.98~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.54~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 2876~{\rm Friedel~pairs}\\ {\rm Absolute~structure~parameter:}\\ -0.005~(13) \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C9−H9A···O4	0.97	2.47	2.805 (7)	100
$C22-H22A\cdots O8$	0.97	2.57	3.229 (8)	125
$N13-H13B\cdots Cl2$	0.90	2.62	3.478 (5)	161
$N1 - H1A \cdots Cl8$	0.90	2.52	3.409 (5)	168
$N5-H5C\cdots Cl5$	0.90	2.46	3.341 (5)	165
$N2-H2A\cdots O8^{i}$	0.86	2.02	2.857 (6)	166
$N4-H4F\cdots O7^{i}$	0.86	2.16	2.998 (7)	164
$N10-H10\cdots O4^{ii}$	0.86	1.95	2.791 (7)	167
$N12-H12B\cdots O3^{ii}$	0.86	2.17	2.975 (6)	156
$N15-H15C\cdots O1^{iii}$	0.86	2.02	2.873 (6)	171
$N14-H14A\cdots O2^{iii}$	0.86	2.01	2.873 (6)	176
N6-H6···O6 ^{iv}	0.86	1.99	2.831 (6)	167
$N7 - H7B \cdot \cdot \cdot O5^{iv}$	0.86	2.15	2.969 (7)	160
$C20-H20\cdots O3^{v}$	0.98	2.57	3.426 (7)	145
$N3-H3C \cdot \cdot \cdot Cl2^{vi}$	0.86	2.38	3.224 (7)	165
$N7-H7A\cdots Cl4^{vi}$	0.86	2.63	3.465 (6)	164
N8-H8B···Cl3 ^{vi}	0.86	2.41	3.269 (6)	173
$N11-H11C \cdot \cdot \cdot Cl5^{vii}$	0.86	2.28	3.134 (6)	170
$N12-H12A\cdots Cl6^{vii}$	0.86	2.83	3.574 (6)	146
$N16-H16F\cdots Cl8^{vii}$	0.86	2.32	3.159 (6)	166
$N11 - H11D \cdots Cl4^{viii}$	0.86	2.71	3.310 (5)	128
$C17-H17A\cdots Cl5^{viii}$	0.97	2.79	3.588 (6)	140
$C23-H23A\cdots Cl8^{ix}$	0.97	2.73	3.624 (7)	154
$N16-H16E\cdots Cl1^{ix}$	0.86	2.59	3.314 (5)	142
$N8-H8A\cdots Cl6^{x}$	0.86	2.69	3.300 (5)	130
$N3-H3D\cdots Cl7^{xi}$	0.86	2.70	3.329 (6)	131
$N5-H5D\cdots O8^{xii}$	0.90	2.33	3.041 (7)	136
$C9-H9B\cdots O7^{xii}$	0.97	2.60	3.460 (7)	148
N13 $-H13A\cdots O4^{v}$	0.90	2.54	3.081 (7)	120
Symmetry codes: (i) x + 1 $y = 1$ $z + 1$ (iv)	$-x, y + \frac{1}{2},$	-z + 1; (ii)	$-x + 2, y - \frac{1}{2}, y - \frac{1}$	-z + 2; (i

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1;$ (ii) $-x + 2, y - \frac{1}{2}, -z + 2;$ (iii) $-x + 1, y - \frac{1}{2}, -z + 2;$ (iv) $-x + 1, y - \frac{1}{2}, -z + 2;$ (v) x - 1, y, z - 1; (vi) x, y + 1, z; (vii) x, y - 1, z; (viii) $-x + 1, y - \frac{1}{2}, -z + 2;$ (ix) $-x, y - \frac{1}{2}, -z + 1;$ (x) $-x + 2, y + \frac{1}{2}, -z + 2;$ (x) $-x + 1, y + \frac{1}{2}, -z + 1;$ (xii) x + 1, y, z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors wish to acknowledge SAIF, IIT Madras for DATA Collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2413).

References

- Baran, E. J. (2004). Mini Rev. Med. Chem. 4, 1-9.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Ramaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E**57**, 0872-0874.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sorenson, J. R. J. (1976). J. Med. Chem. 19, 135-148.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, 0747-0749.
- Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055-m1057.
- Wang, H., Lang, Y. & Wang, S. (2012). Acta Cryst. E68, m540.

supporting information

Acta Cryst. (2013). E69, m583-m584 [doi:10.1107/S1600536813026780]

Bis(μ -L-arginine- $\kappa^3 N^2$, O:O')bis(L-arginine- $\kappa^2 N^2$, O)tetra- μ -chlorido-tetrachloridotetracopper(II)

P. Arularasan, B.Sivakumar, G. Chakkaravarthi and R. Mohan

S1. Comment

Copper complexes exhibit wide spectrum of effects such as anti–inflammatory, anti–cancer, anti–convulsant and anti–tumoral activities (Baran, 2004; Sorenson, 1976).

Four title molecules are present in the asymmetric unit. In the molecular structure a each copper atom binds to three Cl atoms and one N and one O atoms from organic ligand (Fig. 1), resulting in a distorted square-pyramidal coordination environment. In the molecular structure of title compound the bond distances of Cu—O lies in interval 1.954 (4)Å– 1.966 (4)Å, Cu—N - 1.978 (5)Å–1.993 (5)Å and Cu—Cl - 2.2383 (17)Å–2.2867 (16)Å, and are in the normal range compared to the reported complexes (Sun *et al.*, 2005; Wang *et al.*, 2012). The geometric parameters of *L*–arginium moiety in title molecules are agree well with the reported similar structures (Ramaswamy *et al.*, 2001; Sridhar *et al.*, 2002).

The molecular structure is stabilized by weak C—H···O and N—H···Cl hydrogen bonds and the crystal structure is influenced by weak intermolecular N—H···O, C—H···O and N—H···Cl (Table 1) interactions to generate a three dimensional network.

S2. Experimental

The title salt was synthesized from the starting materials of L-arginine (1.7420 g) and copper dichloride dihydrate (1.7048 g) taken in water solvent system. Single crystals suitable for X-ray diffraction were grown by slow evaporation technique at room temperature.

S3. Refinement

The H atoms were positioned geometrically, with C—H = 0.97Å–0.98Å and N—H = 0.86Å–0.90Å, and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figure 1

The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are presented as a small spheres of arbitrary radius.

Bis(μ -L-arginine- $\kappa^3 N^2$, O:O')bis(L-arginine- $\kappa^2 N^2$, O)tetra- μ -chlorido-tetrachloridotetracopper(II)

Crystal data	
$\begin{bmatrix} Cu_4Cl_8(C_6H_{14}N_4O_2)_4 \end{bmatrix}$ $M_r = 1234.65$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 11.9315 (8) Å b = 12.8805 (10) Å c = 15.3949 (13) Å $\beta = 99.271$ (4)°	F(000) = 1256 $D_x = 1.756 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8444 reflections $\theta = 1.3-27.6^{\circ}$ $\mu = 2.32 \text{ mm}^{-1}$ T = 295 K Block, blue $\theta = 2.20 \text{ m} 0.10 \text{ m} 0.16$
$V = 2335.0 (3) \text{ A}^3$ Z = 2 Data collection	$0.20 \times 0.18 \times 0.16 \text{ mm}$
Bruker Kappa APEXII diffractometer Radiation source: fine–focus sealed tube Graphite monochromator ω – and φ –scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.655, T_{\max} = 0.708$	16238 measured reflections 8443 independent reflections 6378 reflections with $l > 2\sigma(l)$ $R_{int} = 0.053$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -11 \rightarrow 15$ $k = -16 \rightarrow 11$ $l = -19 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$
S = 0.98	where $P = (F_o^2 + 2F_c^2)/3$
8443 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
541 parameters	$\Delta \rho_{\rm max} = 0.98 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2876 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.005 (13)
map	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.5534 (5)	0.3535 (5)	0.6619 (4)	0.0314 (14)
C2	0.4492 (4)	0.4237 (5)	0.6536 (4)	0.0293 (13)
H2	0.4449	0.4610	0.5977	0.035*
C3	0.4546 (5)	0.5055 (5)	0.7253 (4)	0.0338 (14)
H3A	0.4540	0.4707	0.7811	0.041*
H3B	0.5262	0.5422	0.7293	0.041*
C4	0.3591 (5)	0.5841 (5)	0.7117 (5)	0.0392 (16)
H4A	0.2876	0.5482	0.6939	0.047*
H4B	0.3554	0.6189	0.7670	0.047*
C5	0.3742 (6)	0.6641 (7)	0.6432 (5)	0.054 (2)
H5A	0.4432	0.7031	0.6624	0.064*
H5B	0.3819	0.6295	0.5885	0.064*
C6	0.2832 (5)	0.8286 (5)	0.5938 (4)	0.0360 (16)
C7	1.0311 (5)	0.2921 (5)	1.1448 (4)	0.0287 (13)
C8	0.9244 (4)	0.3595 (5)	1.1414 (4)	0.0292 (14)
H8	0.9175	0.4005	1.0871	0.035*
C9	0.9305 (5)	0.4355 (5)	1.2162 (4)	0.0360 (15)
H9A	1.0044	0.4686	1.2246	0.043*
H9B	0.9243	0.3974	1.2696	0.043*
C10	0.8397 (5)	0.5195 (5)	1.2036 (4)	0.0383 (15)
H10A	0.7701	0.4908	1.1711	0.046*
H10B	0.8242	0.5416	1.2607	0.046*
C11	0.8748 (5)	0.6123 (5)	1.1547 (5)	0.0391 (16)

H11A	0.9466	0.6390	1.1850	0.047*
H11B	0.8850	0.5918	1.0959	0.047*
C12	0.7940 (5)	0.7836 (5)	1.1116 (4)	0.0350 (15)
C13	0.4773 (5)	0.1676 (5)	0.7897 (4)	0.0327 (14)
C14	0.5726 (5)	0.0932 (5)	0.7828 (4)	0.0309 (14)
H14	0.5749	0.0782	0.7207	0.037*
C15	0.5476 (5)	-0.0066(5)	0.8300 (4)	0.0363 (15)
H15A	0.5420	0.0098	0.8906	0.044*
H15B	0.4746	-0.0336	0.8024	0.044*
C16	0.6358 (5)	-0.0892 (6)	0.8288 (5)	0.0426 (17)
H16A	0.7073	-0.0656	0.8618	0.051*
H16B	0.6468	-0.1015	0.7686	0.051*
C17	0.6010 (5)	-0.1888(5)	0.8680(5)	0.0414 (16)
H17A	0.5829	-0.1753	0.9262	0.050*
H17B	0.5335	-0.2161	0.8317	0.050*
C18	0.6854 (5)	-0.3587 (5)	0.9072 (4)	0.0328 (15)
C19	0.0012 (5)	0.1880 (5)	0.3325 (4)	0.0293 (14)
C20	0.1079 (4)	0.1333 (5)	0.3163 (4)	0.0283 (14)
H20	0.1057	0.1296	0.2524	0.034*
C21	0.1155 (5)	0.0228 (5)	0.3515 (4)	0.0331 (14)
H21A	0.0851	0.0204	0.4062	0.040*
H21B	0.1945	0.0018	0.3638	0.040*
C22	0.0497 (5)	-0.0528(5)	0.2857 (4)	0.0392 (15)
H22A	-0.0261	-0.0256	0.2668	0.047*
H22B	0.0870	-0.0572	0.2343	0.047*
C23	0.0406 (5)	-0.1608(5)	0.3228 (5)	0.0439 (17)
H23A	0.0068	-0.1564	0.3759	0.053*
H23B	-0.0091	-0.2025	0.2804	0.053*
C24	0.1617 (5)	-0.3054 (5)	0.3774 (4)	0.0347 (16)
N1	0.3473 (4)	0.3563 (4)	0.6459 (3)	0.0300 (12)
H1A	0.2879	0.3883	0.6132	0.036*
H1B	0.3296	0.3443	0.6996	0.036*
N2	0.2789 (4)	0.7344 (4)	0.6281 (4)	0.0413 (14)
H2A	0.2156	0.7142	0.6423	0.050*
N3	0.3784 (5)	0.8669 (5)	0.5730 (5)	0.064 (2)
H3C	0.3790	0.9282	0.5508	0.077*
H3D	0.4396	0.8306	0.5817	0.077*
N4	0.1902 (4)	0.8861 (5)	0.5797 (4)	0.0452 (15)
H4E	0.1923	0.9472	0.5574	0.054*
H4F	0.1276	0.8625	0.5928	0.054*
N5	0.8283 (4)	0.2870 (4)	1.1305 (3)	0.0307 (12)
H5C	0.7654	0.3191	1.1030	0.037*
H5D	0.8150	0.2658	1.1836	0.037*
N6	0.7884 (4)	0.6924 (4)	1.1496 (4)	0.0381 (14)
H6	0.7292	0.6795	1.1731	0.046*
N7	0.7083 (4)	0.8488 (4)	1.1103 (4)	0.0458 (15)
H7A	0.7106	0.9089	1.0863	0.055*
H7B	0.6501	0.8310	1.1333	0.055*

N8	0 8835 (4)	0.8100 (5)	1 0764 (4)	0.0408 (16)
H8A	0.0304	0.7675	1.0781	0.0498 (10)
H8B	0.8861	0.8697	1.0518	0.000
N9	0.6816 (4)	0.1427(4)	0.8237(3)	0.0362(13)
H9C	0.7201	0.1634	0.7811	0.043*
НЭр	0.7245	0.0957	0.8573	0.043*
N10	0.6912 (4)	-0.2646(4)	0.8742 (4)	0.049
H10	0.7525	-0.2473	0.8552	0.049*
N11	0.5912 (4)	-0.3904(5)	0.0352 0.9308 (4)	0.019
HIIC	0.5866	-0.4523	0.9510	0.062*
HIID	0.5336	-0.3495	0.9263	0.062*
N12	0.7755 (4)	-0.4191(4)	0.9132 (4)	0.002
H12A	0.7730	-0.4813	0.9331	0.056*
H12R	0.8368	-0 3963	0.8972	0.056*
N13	0.2093 (4)	0 1961 (4)	0.3535(3)	0.030(13)
H13A	0.2418	0.2219	0.3093	0.040*
H13B	0.2604	0.1549	0.3864	0.040*
N14	0.1512 (4)	-0.2119(4)	0 3432 (3)	0.040 0.0337(13)
H14A	0.2108	-0.1799	0.3326	0.040*
N15	0.2627 (4)	-0.3505(5)	0.3923 (4)	0.0483(16)
H15C	0.3212	-0.3184	0.3796	0.058*
H15D	0.2699	-0.4117	0 4147	0.058*
N16	0.0716(4)	-0.3562(5)	0 3939 (4)	0.0506 (16)
H16E	0.0055	-0.3281	0.3823	0.061*
H16F	0.0790	-0.4175	0.4163	0.061*
01	0.5368 (3)	0.2637 (3)	0.6296 (3)	0.0353(10)
02	0.6472 (3)	0.3859(4)	0.6976 (4)	0.0527(13)
03	1.0198(3)	0.2071 (3)	1.1024 (3)	0.0332(10)
04	1.1221 (3)	0.3230 (4)	1.1867 (3)	0.0389 (11)
05	0.4957 (3)	0.2445 (4)	0.8428 (3)	0.0406 (11)
06	0.3819 (3)	0.1501 (4)	0.7468 (3)	0.0400 (11)
07	0.0126 (3)	0.2638 (3)	0.3875 (3)	0.0335 (10)
08	-0.0918(3)	0.1595 (4)	0.2951 (3)	0.0400 (11)
Cl1	0.19231 (11)	0.17251 (13)	0.56835 (10)	0.0343 (4)
Cl2	0.43100 (13)	0.09564 (13)	0.50464 (12)	0.0419 (4)
Cl3	0.91855 (14)	0.03289 (13)	0.98284 (12)	0.0456 (4)
Cl4	0.67991 (12)	0.10661 (13)	1.04626 (12)	0.0381 (4)
C15	0.60355 (14)	0.37797 (13)	0.99408 (12)	0.0419 (4)
C16	0.83827 (11)	0.30953 (14)	0.91470 (11)	0.0384 (4)
Cl7	0.34317 (13)	0.38180 (14)	0.42749 (12)	0.0440 (4)
C18	0.11091 (14)	0.44053 (13)	0.50966 (12)	0.0435 (4)
Cul	0.37830 (6)	0.22228 (5)	0.58961 (5)	0.03038 (19)
Cu2	0.86295 (6)	0.16497 (6)	1.06027 (5)	0.03005 (18)
Cu3	0.65413 (6)	0.26337 (6)	0.89680 (5)	0.0352 (2)
Cu4	0.16845 (6)	0.31178 (6)	0.42699 (5)	0.03190 (19)
		. /	. /	. ,

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
C1	0.029 (3)	0.031 (4)	0.034 (4)	-0.006 (3)	0.005 (3)	-0.004 (3)
C2	0.029 (3)	0.033 (4)	0.026 (3)	-0.003 (3)	0.003 (2)	-0.001 (3)
C3	0.032 (3)	0.035 (4)	0.033 (4)	0.001 (3)	0.004 (3)	-0.002 (3)
C4	0.041 (4)	0.036 (4)	0.045 (4)	0.001 (3)	0.020 (3)	-0.008 (3)
C5	0.041 (4)	0.060 (5)	0.066 (5)	0.018 (4)	0.026 (4)	0.020 (4)
C6	0.035 (3)	0.042 (4)	0.033 (4)	0.000 (3)	0.012 (3)	0.004 (3)
C7	0.027 (3)	0.030 (4)	0.029 (3)	-0.001 (3)	0.004 (2)	0.002 (3)
C8	0.027 (3)	0.030 (3)	0.031 (3)	0.007 (3)	0.005 (2)	0.003 (3)
C9	0.044 (4)	0.029 (4)	0.033 (4)	0.007 (3)	0.003 (3)	-0.003 (3)
C10	0.044 (4)	0.035 (4)	0.036 (4)	0.009 (3)	0.009 (3)	0.001 (3)
C11	0.034 (3)	0.038 (4)	0.047 (4)	0.010 (3)	0.010 (3)	-0.002 (3)
C12	0.036 (3)	0.027 (4)	0.042 (4)	-0.001 (3)	0.005 (3)	-0.007 (3)
C13	0.030 (3)	0.035 (4)	0.035 (4)	-0.002 (3)	0.008 (3)	0.008 (3)
C14	0.029 (3)	0.034 (4)	0.030 (3)	-0.003 (3)	0.004 (2)	-0.002 (3)
C15	0.031 (3)	0.041 (4)	0.036 (4)	-0.004 (3)	0.004 (3)	0.000 (3)
C16	0.038 (4)	0.044 (4)	0.047 (4)	0.001 (3)	0.010 (3)	0.005 (3)
C17	0.036 (3)	0.033 (4)	0.056 (5)	0.002 (3)	0.010 (3)	0.005 (4)
C18	0.027 (3)	0.028 (4)	0.042 (4)	0.003 (3)	0.003 (3)	-0.003 (3)
C19	0.030 (3)	0.030 (4)	0.026 (3)	0.003 (3)	-0.001 (3)	0.009 (3)
C20	0.024 (3)	0.037 (4)	0.023 (3)	-0.002 (3)	-0.001 (2)	0.002 (3)
C21	0.029 (3)	0.034 (4)	0.034 (4)	0.005 (3)	-0.002 (2)	0.001 (3)
C22	0.042 (4)	0.036 (4)	0.036 (4)	0.007 (3)	-0.008 (3)	-0.003 (3)
C23	0.032 (3)	0.032 (4)	0.066 (5)	0.002 (3)	0.002 (3)	-0.006 (3)
C24	0.031 (3)	0.035 (4)	0.040 (4)	-0.001 (3)	0.013 (3)	0.000 (3)
N1	0.020 (2)	0.035 (3)	0.034 (3)	0.002 (2)	0.002 (2)	-0.001 (2)
N2	0.032 (3)	0.032 (3)	0.064 (4)	0.004 (3)	0.022 (3)	0.008 (3)
N3	0.047 (4)	0.050 (4)	0.099 (6)	0.001 (3)	0.025 (4)	0.029 (4)
N4	0.043 (3)	0.038 (3)	0.056 (4)	0.005 (3)	0.014 (3)	0.009 (3)
N5	0.023 (2)	0.034 (3)	0.034 (3)	0.003 (2)	0.002 (2)	-0.001 (2)
N6	0.032 (3)	0.034 (3)	0.053 (4)	0.010 (2)	0.020 (2)	0.007 (3)
N7	0.039 (3)	0.032 (3)	0.068 (4)	0.000 (3)	0.013 (3)	0.013 (3)
N8	0.035 (3)	0.050 (4)	0.067 (4)	0.005 (3)	0.019 (3)	0.020 (3)
N9	0.024 (2)	0.046 (3)	0.039 (3)	0.002 (2)	0.006 (2)	0.003 (3)
N10	0.035 (3)	0.028 (3)	0.062 (4)	0.001 (3)	0.015 (3)	0.009 (3)
N11	0.035 (3)	0.047 (4)	0.075 (5)	0.004 (3)	0.014 (3)	0.025 (3)
N12	0.042 (3)	0.034 (3)	0.065 (4)	0.004 (3)	0.012 (3)	0.012 (3)
N13	0.027 (2)	0.038 (3)	0.034 (3)	-0.001 (2)	0.003 (2)	0.000 (2)
N14	0.031 (3)	0.024 (3)	0.047 (3)	-0.004(2)	0.010 (2)	0.003 (2)
N15	0.038 (3)	0.034 (3)	0.074 (4)	0.004 (3)	0.013 (3)	0.016 (3)
N16	0.036 (3)	0.050 (4)	0.067 (4)	0.003 (3)	0.012 (3)	0.027 (3)
01	0.0183 (19)	0.029 (2)	0.058 (3)	0.0028 (19)	0.0057 (18)	0.004 (2)
02	0.027 (2)	0.052 (3)	0.077 (4)	-0.001 (2)	0.003 (2)	-0.021(3)
03	0.024 (2)	0.032 (3)	0.043 (3)	0.0044 (19)	0.0040 (18)	-0.004 (2)
04	0.030 (2)	0.043 (3)	0.043 (3)	-0.002(2)	0.0033 (19)	-0.002(2)
05	0.028 (2)	0.043 (3)	0.049 (3)	0.008 (2)	0.0003 (19)	-0.006 (2)

supporting information

O6	0.028 (2)	0.056 (3)	0.034 (3)	-0.001 (2)	0.0004 (18)	0.003 (2)
O7	0.0225 (19)	0.040 (3)	0.037 (3)	0.0081 (19)	0.0036 (17)	-0.004(2)
08	0.022 (2)	0.045 (3)	0.051 (3)	0.000(2)	-0.0017 (19)	-0.004(2)
Cl1	0.0237 (7)	0.0420 (9)	0.0365 (9)	-0.0043 (7)	0.0025 (6)	0.0038 (8)
Cl2	0.0402 (9)	0.0365 (10)	0.0507 (11)	0.0044 (7)	0.0128 (8)	-0.0058 (8)
C13	0.0485 (9)	0.0363 (10)	0.0555 (11)	0.0023 (8)	0.0191 (8)	-0.0112 (8)
Cl4	0.0292 (7)	0.0412 (10)	0.0442 (10)	-0.0031 (7)	0.0073 (7)	0.0018 (8)
C15	0.0430 (9)	0.0351 (9)	0.0481 (10)	0.0085 (8)	0.0095 (7)	-0.0014 (8)
Cl6	0.0277 (7)	0.0470 (10)	0.0399 (9)	-0.0052 (7)	0.0037 (6)	0.0059 (8)
Cl7	0.0361 (8)	0.0503 (11)	0.0461 (10)	-0.0131 (8)	0.0081 (7)	-0.0052 (8)
C18	0.0498 (10)	0.0377 (10)	0.0441 (10)	0.0107 (8)	0.0107 (8)	-0.0012 (8)
Cu1	0.0227 (3)	0.0310 (4)	0.0365 (5)	0.0014 (3)	0.0020 (3)	-0.0018 (4)
Cu2	0.0260 (4)	0.0320 (4)	0.0321 (4)	0.0026 (3)	0.0047 (3)	-0.0005 (4)
Cu3	0.0248 (4)	0.0364 (5)	0.0434 (5)	0.0027 (3)	0.0026 (3)	-0.0038 (4)
Cu4	0.0271 (4)	0.0336 (4)	0.0338 (4)	0.0020 (3)	0.0015 (3)	-0.0009 (4)

Geometric parameters (Å, °)

C1—02	1.238 (7)	C20—C21	1.521 (9)
C101	1.263 (7)	C20—H20	0.9800
C1—C2	1.526 (8)	C21—C22	1.528 (8)
C2—N1	1.483 (7)	C21—H21A	0.9700
С2—С3	1.518 (8)	C21—H21B	0.9700
С2—Н2	0.9800	C22—C23	1.515 (9)
C3—C4	1.515 (8)	C22—H22A	0.9700
С3—НЗА	0.9700	C22—H22B	0.9700
С3—Н3В	0.9700	C23—N14	1.462 (8)
C4—C5	1.506 (10)	C23—H23A	0.9700
C4—H4A	0.9700	C23—H23B	0.9700
C4—H4B	0.9700	C24—N14	1.313 (8)
C5—N2	1.443 (8)	C24—N16	1.317 (8)
C5—H5A	0.9700	C24—N15	1.324 (8)
С5—Н5В	0.9700	N1—Cu1	1.993 (5)
C6—N4	1.323 (8)	N1—H1A	0.9000
C6—N3	1.323 (8)	N1—H1B	0.9000
C6—N2	1.328 (8)	N2—H2A	0.8600
С7—О4	1.236 (7)	N3—H3C	0.8600
С7—О3	1.270 (7)	N3—H3D	0.8600
С7—С8	1.535 (8)	N4—H4E	0.8600
C8—N5	1.468 (7)	N4—H4F	0.8600
С8—С9	1.504 (8)	N5—Cu2	1.988 (5)
С8—Н8	0.9800	N5—H5C	0.9000
C9—C10	1.521 (8)	N5—H5D	0.9000
С9—Н9А	0.9700	N6—H6	0.8600
С9—Н9В	0.9700	N7—H7A	0.8600
C10-C11	1.507 (9)	N7—H7B	0.8600
C10—H10A	0.9700	N8—H8A	0.8600
C10—H10B	0.9700	N8—H8B	0.8600

C11—N6	1.453 (7)	N9—Cu3	1.978 (5)
C11—H11A	0.9700	N9—H9C	0.9000
C11—H11B	0.9700	N9—H9D	0.9000
C12—N8	1.317 (8)	N10—H10	0.8600
C12—N6	1.320 (8)	N11—H11C	0.8600
C12—N7	1.321 (8)	N11—H11D	0.8600
C13—O6	1.241 (7)	N12—H12A	0.8600
C13—O5	1.281 (8)	N12—H12B	0.8600
C13—C14	1 504 (8)	N13—Cu4	1 978 (5)
C14 N9	1.501(0) 1 493 (7)	N13—H13A	0.9000
C14 $C15$	1.495(7) 1.530(9)	N13 H13R	0.9000
C14 = H14	0.0800	N14 H14A	0.9000
C14—H14	1,409,(0)		0.8000
	1.498 (9)		0.8600
CIS—HISA	0.9700	NIS—HISD	0.8600
CIS—HISB	0.9700	NI6—HI6E	0.8600
C16—C17	1.506 (9)	N16—H16F	0.8600
C16—H16A	0.9700	O1—Cu1	1.966 (4)
C16—H16B	0.9700	O3—Cu2	1.956 (4)
C17—N10	1.444 (8)	O5—Cu3	1.954 (4)
C17—H17A	0.9700	O7—Cu4	1.960 (4)
C17—H17B	0.9700	Cl1—Cu1	2.2823 (15)
C18—N11	1.301 (8)	Cl2—Cu1	2.2433 (18)
C18—N12	1.319 (8)	Cl3—Cu2	2.2383 (17)
C18—N10	1.320 (8)	Cl4—Cu2	2.2867 (16)
C19—O8	1.221 (7)	Cl5—Cu3	2.2532 (18)
C19—O7	1.285 (7)	C16—Cu3	2.2498 (15)
C19—C20	1.511 (8)	C17—Cu4	2.2704 (16)
$C_{20} = N_{13}$	1 491 (7)	C18—Cu4	2 2633 (18)
020 1113	1.191 (7)		2.2035 (10)
02-C1-O1	123 8 (6)	H21A—C21—H21B	108.0
02 - C1 - C2	120.3 (6)	C_{23} C_{22} C_{21} C_{21}	113.4(5)
01 - C1 - C2	115.9(5)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	108.9
N1 C2 C3	113.9(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.9
N1 = C2 = C1	113.8 (4)	C_{21} C_{22} C	108.9
N1 = C2 = C1	107.0(3)	C23—C22—H22B	108.9
$C_3 = C_2 = C_1$	114.3 (5)	C21—C22—H22B	108.9
N1 - C2 - H2	106.8	H22A—C22—H22B	107.7
C3—C2—H2	106.8	N14—C23—C22	112.1 (5)
С1—С2—Н2	106.8	N14—C23—H23A	109.2
C4—C3—C2	114.9 (5)	С22—С23—Н23А	109.2
С4—С3—Н3А	108.6	N14—C23—H23B	109.2
С2—С3—НЗА	108.6	С22—С23—Н23В	109.2
C4—C3—H3B	108.6	H23A—C23—H23B	107.9
С2—С3—Н3В	108.6	N14—C24—N16	120.4 (6)
НЗА—СЗ—НЗВ	107.5	N14—C24—N15	119.8 (6)
C5—C4—C3	112.5 (5)	N16—C24—N15	119.8 (6)
С5—С4—Н4А	109.1	C2—N1—Cu1	109.6 (3)
С3—С4—Н4А	109.1	C2—N1—H1A	109.8
C5—C4—H4B	109.1	Cu1—N1—H1A	109.8

C3—C4—H4B	109.1	C2—N1—H1B	109.8
H4A—C4—H4B	107.8	Cu1—N1—H1B	109.8
N2C5C4	111.2 (5)	H1A—N1—H1B	108.2
N2—C5—H5A	109.4	C6—N2—C5	123.9 (6)
C4—C5—H5A	109.4	C6—N2—H2A	118.1
N2—C5—H5B	109.4	C5—N2—H2A	118.1
C4—C5—H5B	109.4	C6—N3—H3C	120.0
H5A—C5—H5B	108.0	C6—N3—H3D	120.0
N4—C6—N3	118.8 (6)	H3C—N3—H3D	120.0
N4—C6—N2	119.4 (6)	C6—N4—H4E	120.0
N3—C6—N2	121.8 (6)	C6—N4—H4F	120.0
O4—C7—O3	123.9 (6)	H4E—N4—H4F	120.0
O4—C7—C8	119.3 (6)	C8—N5—Cu2	109.7 (3)
O3—C7—C8	116.8 (5)	C8—N5—H5C	109.7
N5—C8—C9	116.2 (5)	Cu2—N5—H5C	109.7
N5—C8—C7	105.8 (5)	C8—N5—H5D	109.7
C9—C8—C7	113.9 (5)	Cu2—N5—H5D	109.7
N5—C8—H8	106.8	H5C—N5—H5D	108.2
C9—C8—H8	106.8	C12 - N6 - C11	124.8 (5)
C7—C8—H8	106.8	C12—N6—H6	117.6
C8-C9-C10	114.8 (5)	C_{11} N_{6} H_{6}	117.6
C8-C9-H9A	108.6	C12—N7—H7A	120.0
C10-C9-H9A	108.6	C12 N7—H7B	120.0
C8-C9-H9B	108.6	H7A - N7 - H7B	120.0
C10-C9-H9B	108.6	C12—N8—H8A	120.0
H9A - C9 - H9B	107.5	C12 N8—H8B	120.0
C11 - C10 - C9	112 2 (5)	H8A = N8 = H8B	120.0
C_{11} C_{10} H_{10A}	109.2	C14 N9 $Cu3$	120.0
C9-C10-H10A	109.2	C14 N9 H9C	109.4
C_{11} C_{10} H_{10B}	109.2	$C_{14} = N_{2} = H_{2}C_{14}$	109.4
C_{10} C_{10} H_{10B}	109.2	C14 NO HOD	109.4
H_{10A} C_{10} H_{10B}	107.9	$C_{14} = N_{2} = H_{2}D$	109.4
N6 C11 C10	109.8 (5)		109.4
N6 C11 H11A	109.8 (3)	$\begin{array}{ccc} 1100 & 1100 \\ 1100 & $	124.1(5)
$C_{10} C_{11} H_{11A}$	109.7	$C_{18} = N_{10} = C_{17}$	124.1(3)
N6 C11 H11P	109.7	$C_{10} = N_{10} = 110$	117.9
$C_{10} C_{11} H_{11} B$	109.7	C_{17} N10—1110 C_{18} N11 H11C	117.9
	109.7	C_{18} N11 H11D	120.0
	100.2		120.0
$N_{0} = C_{12} = N_{0}$	121.0(0) 120.5(6)	$\begin{array}{cccc} \text{HIC} & \text{HIC} & \text{HIC} \\ \text{C18} & \text{HIC} & \text{HICA} \end{array}$	120.0
$N_{0} = C_{12} = N_{7}$	120.5 (0)	C18 = N12 = H12R	120.0
$N_0 - C_{12} - N_1$	118.5 (0)		120.0
06-013-05	121.9 (6)	H12A - N12 - H12B	120.0
06-013-014	119.1 (6)	C_{20} N13 C_{4}	111.7 (3)
U5-U13-U14	118.9 (5)	C_{20} —N13—H13A	109.3
N9-C14-C13	108.4 (5)	U4 - N13 - H13A	109.3
N9—C14—C15	112.4 (5)	C20—N13—H13B	109.3
C13—C14—C15	107.1 (5)	Cu4—N13—H13B	109.3
N9—C14—H14	109.6	H13A—N13—H13B	107.9

C13—C14—H14	109.6	C24—N14—C23	121.6 (5)
C15—C14—H14	109.6	C24—N14—H14A	119.2
C16—C15—C14	113.5 (5)	C23—N14—H14A	119.2
C16—C15—H15A	108.9	C24—N15—H15C	120.0
C14—C15—H15A	108.9	C24—N15—H15D	120.0
C16—C15—H15B	108.9	H15C—N15—H15D	120.0
C14—C15—H15B	108.9	C_{24} N16 H16E	120.0
H15A—C15—H15B	107.7	C_{24} N16 H16E	120.0
C_{15} C_{16} C_{17}	111.1 (5)	$H_{16F} N_{16} H_{16F}$	120.0
C15—C16—H16A	109.4	C1 - O1 - Cu1	120.0 117.0(4)
C17 - C16 - H16A	109.4	$C7-O3-Cu^2$	117.0(1) 115.2(4)
C15-C16-H16B	109.4	$C_{13} = 05 = C_{13}$	115.2(1)
C17 - C16 - H16B	109.4	C19 - 07 - Cu4	116.0(3)
H_{16A} $-C_{16}$ $-H_{16B}$	108.0	O1 - Cu1 - N1	82 28 (18)
N10 C17 C16	110.6 (5)	$O_1 = C_{11} = O_1^{12}$	02.20(10)
N10 - C17 + H17A	100.5	$N_1 = C_{11} = C_{12}$	91.94 (13) 166 55 (15)
N10-C1/-H1/A	109.5	NI = CuI = CI2	100.33(13)
Γ_{10} Γ_{17} Γ_{17} Γ_{17}	109.5	NI Cul Cll	1/0.14(14)
N10-C1/-H1/B	109.5		93.32 (13)
C10-C17-H17B	109.5	Cl2-Cu1-Cl1	93.99 (6)
HI/A - CI/-HI/B	108.1	O_3 — Cu_2 — N_5	82.67 (18)
N11-C18-N12	121.8 (6)	03—Cu2—Cl3	92.15 (13)
	119.8 (6)	N5—Cu2—Cl3	1/4./2 (14)
N12—C18—N10	118.4 (6)	O3—Cu2—Cl4	166.08 (14)
08-019-07	122.1 (5)	N5—Cu2—Cl4	91.82 (14)
08-C19-C20	120.5 (6)	Cl3—Cu2—Cl4	93.46 (7)
O7—C19—C20	117.4 (5)	O5—Cu3—N9	84.12 (19)
N13—C20—C19	109.7 (5)	O5—Cu3—Cl6	160.68 (15)
N13—C20—C21	111.9 (5)	N9—Cu3—Cl6	91.69 (14)
C19—C20—C21	112.4 (5)	O5—Cu3—Cl5	91.14 (14)
N13—C20—H20	107.6	N9—Cu3—Cl5	168.54 (16)
C19—C20—H20	107.6	Cl6—Cu3—Cl5	96.10 (7)
C21—C20—H20	107.6	O7—Cu4—N13	83.92 (18)
C20—C21—C22	111.4 (5)	O7—Cu4—Cl8	92.69 (13)
C20—C21—H21A	109.3	N13—Cu4—Cl8	176.58 (14)
C22—C21—H21A	109.3	O7—Cu4—Cl7	161.90 (13)
C20—C21—H21B	109.3	N13—Cu4—Cl7	89.44 (14)
C22—C21—H21B	109.3	C18—Cu4—Cl7	93.93 (7)
O2—C1—C2—N1	-155.8 (6)	C10-C11-N6-C12	179.5 (6)
O1—C1—C2—N1	25.0 (7)	C13—C14—N9—Cu3	15.5 (6)
O2—C1—C2—C3	-28.3 (8)	C15—C14—N9—Cu3	-102.7 (5)
O1—C1—C2—C3	152.5 (6)	N11-C18-N10-C17	4.9 (11)
N1—C2—C3—C4	-63.0(7)	N12-C18-N10-C17	-176.8 (6)
C1—C2—C3—C4	172.6 (5)	C16—C17—N10—C18	179.0 (7)
C2—C3—C4—C5	-76.2 (7)	C19—C20—N13—Cu4	10.0 (6)
C3—C4—C5—N2	176.8 (6)	C21—C20—N13—Cu4	-115.4 (5)
O4—C7—C8—N5	-151.3 (5)	N16—C24—N14—C23	0.3 (10)
03—C7—C8—N5	29.7 (7)	N15—C24—N14—C23	177.8 (6)

O4—C7—C8—C9	-22.5 (8)	C22—C23—N14—C24	178.8 (6)
O3—C7—C8—C9	158.5 (5)	O2-C1Cu1	172.4 (5)
N5-C8-C9-C10	-70.3 (7)	C2-C1-O1-Cu1	-8.4 (7)
C7—C8—C9—C10	166.4 (5)	O4—C7—O3—Cu2	169.3 (5)
C8—C9—C10—C11	-87.2 (7)	C8—C7—O3—Cu2	-11.8 (7)
C9-C10-C11-N6	-176.3 (5)	O6—C13—O5—Cu3	-175.7 (4)
O6-C13-C14-N9	167.7 (5)	C14—C13—O5—Cu3	7.6 (7)
O5-C13-C14-N9	-15.5 (8)	O8-C19-O7-Cu4	-171.0 (5)
O6-C13-C14-C15	-70.8 (7)	C20-C19-O7-Cu4	9.8 (7)
O5-C13-C14-C15	106.1 (6)	C1—O1—Cu1—N1	-7.2 (5)
N9-C14-C15-C16	-61.0(7)	C1—O1—Cu1—Cl2	160.6 (4)
C13—C14—C15—C16	180.0 (5)	C2—N1—Cu1—O1	20.6 (4)
C14—C15—C16—C17	-174.3 (6)	C2—N1—Cu1—Cl2	-44.5 (9)
C15—C16—C17—N10	-174.5 (6)	C2—N1—Cu1—Cl1	-168.3 (4)
O8-C19-C20-N13	167.8 (5)	C7—O3—Cu2—N5	-6.4 (4)
O7-C19-C20-N13	-13.1 (7)	C7—O3—Cu2—Cl3	172.6 (4)
O8—C19—C20—C21	-67.2 (7)	C7—O3—Cu2—Cl4	-73.7 (7)
O7—C19—C20—C21	112.0 (6)	C8—N5—Cu2—O3	23.0 (4)
N13—C20—C21—C22	-152.0 (5)	C8—N5—Cu2—Cl4	-169.9 (4)
C19—C20—C21—C22	84.1 (6)	C13—O5—Cu3—N9	1.7 (4)
C20-C21-C22-C23	-171.7 (5)	C13—O5—Cu3—Cl6	80.0 (6)
C21—C22—C23—N14	-65.3 (7)	C13—O5—Cu3—Cl5	-167.8 (4)
C3—C2—N1—Cu1	-156.7 (4)	C14—N9—Cu3—O5	-10.2 (4)
C1-C2-N1-Cu1	-28.9(5)	C14—N9—Cu3—Cl6	-171.3 (4)
N4—C6—N2—C5	177.7 (7)	C14—N9—Cu3—Cl5	55.8 (10)
N3—C6—N2—C5	-2.3 (11)	C19—O7—Cu4—N13	-2.9 (4)
C4—C5—N2—C6	158.3 (7)	C19—O7—Cu4—Cl8	177.6 (4)
C9—C8—N5—Cu2	-159.9 (4)	C19—O7—Cu4—Cl7	66.2 (6)
C7—C8—N5—Cu2	-32.4 (5)	C20-N13-Cu4-07	-4.6 (4)
N8—C12—N6—C11	-1.9 (11)	C20—N13—Cu4—Cl7	-167.7 (4)
N7-C12-N6-C11	178.8 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	<i>D</i> —H···A
С9—Н9А…О4	0.97	2.47	2.805 (7)	100
C22—H22A···O8	0.97	2.57	3.229 (8)	125
N13—H13B…Cl2	0.90	2.62	3.478 (5)	161
N1—H1A…C18	0.90	2.52	3.409 (5)	168
N5—H5 <i>C</i> ···Cl5	0.90	2.46	3.341 (5)	165
N2—H2A···O8 ⁱ	0.86	2.02	2.857 (6)	166
N4—H4F···O7 ⁱ	0.86	2.16	2.998 (7)	164
N10—H10…O4 ⁱⁱ	0.86	1.95	2.791 (7)	167
N12—H12 <i>B</i> ···O3 ⁱⁱ	0.86	2.17	2.975 (6)	156
N15—H15C…O1 ⁱⁱⁱ	0.86	2.02	2.873 (6)	171
N14—H14A····O2 ⁱⁱⁱ	0.86	2.01	2.873 (6)	176
N6—H6····O6 ^{iv}	0.86	1.99	2.831 (6)	167
N7—H7 B ···O5 ^{iv}	0.86	2.15	2.969 (7)	160

supporting information

C20—H20····O3 ^v	0.98	2.57	3.426 (7)	145	
N3—H3C···Cl2 ^{vi}	0.86	2.38	3.224 (7)	165	
N7—H7A····Cl4 ^{vi}	0.86	2.63	3.465 (6)	164	
N8—H8 <i>B</i> ···Cl3 ^{vi}	0.86	2.41	3.269 (6)	173	
N11—H11 <i>C</i> ····Cl5 ^{vii}	0.86	2.28	3.134 (6)	170	
N12—H12A····Cl6 ^{vii}	0.86	2.83	3.574 (6)	146	
N16—H16F····Cl8 ^{vii}	0.86	2.32	3.159 (6)	166	
N11—H11D····Cl4 ^{viii}	0.86	2.71	3.310 (5)	128	
C17—H17A····Cl5 ^{viii}	0.97	2.79	3.588 (6)	140	
C23—H23A····Cl8 ^{ix}	0.97	2.73	3.624 (7)	154	
N16—H16E····Cl1 ^{ix}	0.86	2.59	3.314 (5)	142	
N8—H8A···Cl6 ^x	0.86	2.69	3.300 (5)	130	
N3—H3 D ···Cl 7^{xi}	0.86	2.70	3.329 (6)	131	
N5—H5 <i>D</i> ···O8 ^{xii}	0.90	2.33	3.041 (7)	136	
C9—H9 <i>B</i> ····O7 ^{xii}	0.97	2.60	3.460 (7)	148	
N13—H13A····O4 ^v	0.90	2.54	3.081 (7)	120	

Symmetry codes: (i) -x, y+1/2, -z+1; (ii) -x+2, y-1/2, -z+2; (iii) -x+1, y-1/2, -z+1; (iv) -x+1, y+1/2, -z+2; (v) x-1, y, z-1; (vi) x, y+1, z; (vii) x, y-1, z; (viii) -x+1, y-1/2, -z+2; (ix) -x, y-1/2, -z+1; (xi) -x+2, y+1/2, -z+2; (xi) -x+1, y+1/2, -z+1; (xii) x+1, y, z+1.