

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

RbH₂AsO₄

Berthold Stöger

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Received 26 September 2013; accepted 27 September 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (As–O) = 0.001 Å; *R* factor = 0.025; *wR* factor = 0.032; data-to-parameter ratio = 47.8.

RbH₂AsO₄, rubidium dihydrogenarsenate (RDA), was synthesized by partial neutralization of an aqueous H₃AsO₄ solution with aqueous Rb₂CO₃. Its paraelectric roomtemperature phase is composed of virtually regular tetrahedral [AsO₂(OH)₂]⁻ anions and Rb⁺ cations, both located on $\overline{4}$ positions. The [AsO₂(OH)₂] units are connected *via* O– H···O hydrogen bonds into a three-dimensional network, whereby the H atoms are equally disordered between the O atoms. The Rb⁺ cations are located in channels running along the <100> directions and coordinated by eight O atoms located at the vertices of a snub disphenoid.

Related literature

For isotypic phases, see: Al-Karaghouli *et al.* (1978); Delain (1958); Ferrari *et al.* (1956); Helmholtz & Levine (1942); Novotny & Szekely (1952); West (1930); Tenzer *et al.* (1958). For related phases, see: Stöger *et al.* (2012). For isoformular phases crystallizing in a different structure type, *viz.*LiH₂PO₄, see: Catti & Ivaldi (1977); Catti & Ferraris (1974); Nelmes & Choudhary (1978); Fanchon *et al.* (1987). For phase transition, see: Fairall & Reese (1974). For physical properties of RDA and isotypic analogs, see: Ichikawa *et al.* (2001); Shen (1984); Negres *et al.* (2005). For crystal growth, see: Rashkovich (1991). For bond-valence analyses, see: Brown & Altermatt (1985). The extinction correction is described by Becker & Coppens (1974).

Experimental

Crystal data

RbH₂AsO₄ $M_r = 226.4$ Tetragonal, $I\overline{4}2d$ a = 7.7865 (9) Å c = 7.466 (2) Å V = 452.64 (14) Å³ Z = 4Mo Kα radiation $\mu = 18.07 \text{ mm}^{-1}$ T = 295 K0.50 × 0.29 × 0.27 mm

inorganic compounds

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{min} = 0.004, T_{max} = 0.009$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.032$ S = 1.25955 reflections 20 parameters 1 restraint All H-atom parameters refined 9202 measured reflections 955 independent reflections 567 reflections with $I > 3\sigma(I)$ $R_{int} = 0.076$

 $\begin{array}{l} \Delta \rho_{max} = 1.02 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.53 \ e \ \mathring{A}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 409 \ Friedel \ pairs \\ Absolute \ structure \ parameter: \\ -0.010 \ (13) \end{array}$

Table 1

Selected geometric parameters (Å, °).

Rb–O Rb–O ⁱ	3.0890 (17) 2.9304 (12)	As-O	1.6828 (11)
O-As-O ⁱⁱ	109.80 (5)	O-As-O ⁱⁱⁱ	109.31 (5)
	1 2 (11)		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, -z + \frac{3}{4}$; (ii) -x, -y, z; (iii) y, -x, -z.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT-Plus* (Bruker, 2013); data reduction: *SAINT-Plus*; program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2006); molecular graphics: *ATOMS* (Dowty, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The X-ray Centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer and for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2499).

References

- Al-Karaghouli, A. R., Abdul-Wahab, B., Ajaj, E. & Sequeira, A. (1978). Acta Cryst. B34, 1040–1042.
- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2013). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Catti, M. & Ferraris, G. (1974). Acta Cryst. B30, 1-6.
- Catti, M. & Ivaldi, G. (1977). Z. Kristallogr. 146, 215-226.
- Delain, C. (1958). Acad Des Sci. C. R. 247, 1451-1452.
- Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Fairall, C. W. & Reese, W. (1974). Phys. Rev. B, 10, 882-885.
- Fanchon, E., Vicat, J., Tran Qui, D. & Boudjada, A. (1987). Acta Cryst. C43, 1022–1025.

Ferrari, A., Nardelli, M. & Cingli, M. (1956). *Gazz. Chim. Ital.* **86**, 1174–1180. Flack, H. D. (1983). *Acta Cryst.* **A39**, 876–881.

- Helmholtz, L. & Levine, R. (1942). J. Am. Chem. Soc. 64, 354-358.
- Ichikawa, M., Amasaki, D., Gustafsson, T. & Olovsson, I. (2001). *Phys. Rev. B*, 64, 100101-1–100101-4.
- Negres, R. A., Kucheyev, S. O., DeMange, P., Bostedt, C., van Buuren, T., Nelson, A. J. & Demos, S. G. (2005). *Appl. Phys. Lett.* 86, 171107-1–171107-3.

Nelmes, R. J. & Choudhary, R. N. P. (1978). Solid State Commun. 26, 823–826. Novotny, H. N. & Szekely, G. (1952). Monatsh. Chem. 83, 568–582.

Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.

Rashkovich, L. N. (1991). In *KDP-family Single Crystals*. London: Taylor & Francis.

Shen, Y. R. (1984). In The Principles of the Nonlinear Optics. New York: Wiley.

inorganic compounds

Stöger, B., Weil, M. & Zobetz, E. (2012). Z. Kristallogr. 227, 859–868. Tenzer, L., Frazer, B. C. & Pepinsky, R. (1958). Acta Cryst. 11, 505–509. West, J. (1930). Z. Kristallogr. 74, 306–335. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2013). E69, i73-i74 [doi:10.1107/S1600536813026676]

RbH₂AsO₄

Berthold Stöger

S1. Comment

During formation studies and subsequent structure analysis of compounds in the system K₂O–As₂O₅–H₂O (Stöger *et al.*, 2012), related alkali phosphates and arsenates with formula type MH_2XO_4 (M = K, Rb, Cs, NH₄; X = P, As) came into attention. With the exception of CsH₂PO₄, dihydrogenphosphates and -arsenates MH_2XO_4 (M = K, Rb, Cs, NH₄; X = P, As) are isotypic at room temperature and said to belong to the KH₂PO₄ (KDP) family. Members of the KDP family are ferroelectrics with low T_c (Ichikawa *et al.*, 2001) and feature non-linear optical (NLO) properties (Shen, 1984). They have been intensely studied for their physical properties paired with a simple crystal-chemistry. Moreover, they are of technical importance in optical applications due to their favourable transparency, high damage threshold (Negres *et al.*, 2005) and ready access to large single crystals (Rashkovich, 1991). Notably, KDP is used as a standard NLO active compound to evaluate the performance of novel NLO materials.

Structural data was published for all members of the KDP family with the exception of RbH₂AsO₄ (RDA): KH₂PO₄ (West, 1930), RbH₂PO₄ (Al-Karaghouli *et al.*, 1978), (NH₄)H₂PO₄ (Tenzer *et al.*, 1958), KH₂AsO₄ (Helmholtz & Levine, 1942), CsH₂AsO₄ (Ferrari *et al.*, 1956) and (NH₄)H₂AsO₄ (Delain, 1958). The germanate SrH₂GeO₄ (Novotny & Szekely, 1952) crystallizes likewise in the KDP structure type. The dihydrogenphosphates and arsenates with larger or smaller alkali metals crystallize in different structure types: LiH₂PO₄ (Catti & Ivaldi, 1977), NaH₂PO₄ (Catti & Ferraris, 1974), CsH₂PO₄ (Nelmes & Choudhary, 1978) and LiH₂AsO₄ (Fanchon *et al.*, 1987).

At room temperature RDA, like all members of the KDP family, exists in the tetragonal paraelectric phase. Below $T_c = 110$ K it transforms into the orthogonal ferroelectric phase (Fairall & Reese, 1974). The room temperature phase of RDA crystallizes in $I\overline{4}2d$ symmetry. The crystal structure is made up of one [AsO₂(OH₂)]⁻ anion and one Rb⁺ cation, both located on $\overline{4}$ positions. The [AsO₂(OH₂)] tetrahedra are virtually regular (As—O bond lengths 1.6828 (11) Å; O—As—O angles 109.80 (5)° and 109.31 (5)°). They are connected *via* hydrogen bonding in the <100> directions, forming a three dimensional network (Figs. 1 and 2). Thus, every O atom is either donor or acceptor of an O—H…O hydrogen bond, whereby the proton is equally disordered between both oxygen atoms.

The total bond valence sum (BVS) of the unique O atom calculated using $\Sigma \exp((r_0-r)/b)$ and the parameters of Brown and Altermatt (1985) for Rb^I—O ($r_0=2.263$ Å, b=0.37) and As^V—O ($r_0=1.767$ Å, b=0.37) is 1.527 (4) valence units (v.u.). This value is in good agreement with the observed disorder, as it lies halfway between the ideal values of O²⁻ and O⁻ (2 and 1 v.u., respectively).

The Rb⁺ cation is located in channels running along the <100> directions (Fig. 1). It is coordinated by eight O atoms located at the vertices of a snub disphenoid (Fig. 3). The total BVS of Rb⁺ calculates as 1.0878 (15) v.u. using the parameters above, which is in excellent agreement with the expected value (1 v.u.). More remote O atoms are located at 4.3005 (12) Å from the Rb⁺ ion and can therefore not be considered part of the coordination sphere (contribution of 0.004 v.u.).

S2. Experimental

 Rb_2CO_3 and H_3AsO_4 were obtained commercially and used without purification. 1 g 80% *aq*. H_3AsO_4 was dissolved in 10 ml water and titrated against *aq*. Rb_2CO_3 using one drop of methyl red in EtOH as indicator. The water was evaporated and the residue recrystallized from a small amount of water and washed with acetone to obtain large single crystals of RbH_2AsO_4 .

S3. Refinement

An initial model was generated by using the published coordinates of the non-H atoms of the isotypic room temperature phase of RbH₂PO₄ (Al-Karaghouli *et al.*, 1978).

The structure was refined against F values using the Jana2006 software package (Petříček *et al.*, 2006). The disordered H atom was located in a difference Fourier map and was refined with an occupancy of 0.5. The O—H distance was restrained to 0.850 (1) Å. All non-H atoms were refined with anisotropic displacement parameters.

Figure 1

The crystal structure of the paraelectric room temperature phase of RDA viewed approximately down [100]. [AsO₄] tetrahedra are drawn in yellow; Rb, O and H atoms are represented by purple, red and white spheres of arbitrary radii.

Figure 2

Crystal structure of the paraelectric room temperature phase of RDA viewed down the tetragonal axis [001]. Atom colour codes as in Fig. 1.

Figure 3

Coordination polyhedron of Rb in the paraelectric room temperature phase of RDA. Rb and O are represented by purple and red ellipsoids drawn at 75% probability level. Symmetry codes: (i) -*x*, -*y*, *z*; (ii) *y*, -*x*, -*z* + 1; (iii) -*y*, *x*, -*z* + 1; (iv) -*x* + 1/2, *y*, -*z* + 3/4; (v) *x* - 1/2, -*y*, -*z* + 3/4; (vi) -*y*, -*x* + 1/2, *z* + 1/4; (vii) *y*, *x* - 1/2, *z* + 1/4

Rubidium dihydrogenarsenate

Crystal data	
RbH ₂ AsO ₄	Z = 4
$M_r = 226.4$	F(000) = 416
Tetragonal, $I\overline{4}2d$	$D_{\rm x} = 3.321 {\rm ~Mg~m^{-3}}$
Hall symbol: I -4 2bw	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.7865 (9) Å	Cell parameters from 2250 reflections
c = 7.466 (2) Å	$\theta = 3.7-44.1^{\circ}$
$V = 452.64 (14) \text{ Å}^3$	$\mu = 18.07 \text{ mm}^{-1}$

T = 295 K	$0.50 \times 0.29 \times 0.27 \text{ mm}$
Block, clear colourless	
Data collection	
Bruker Kappa APEXII CCD diffractometer	9202 measured reflections 955 independent reflections
Radiation source: X-ray tube	567 reflections with $I > 3\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.076$
ω and φ scans	$\theta_{\rm max} = 45.3^{\circ}, \ \theta_{\rm min} = 3.8^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2013)	$k = -15 \rightarrow 14$
$T_{\min} = 0.004, \ T_{\max} = 0.009$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F	All H-atom parameters refined
Least-squares matrix: full	Weighting scheme based on measured s.u.'s $w =$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$1/(\sigma^2(F) + 0.0001F^2)$
$wR(F^2) = 0.032$	$(\Delta/\sigma)_{\rm max} = 0.021$
S = 1.25	$\Delta \rho_{\rm max} = 1.02 \text{ e} \text{ Å}^{-3}$
955 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$
20 parameters	Extinction correction: B-C type 1 Gaussian
1 restraint	isotropic (Becker & Coppens, 1974)
0 constraints	Extinction coefficient: 4440 (110)
Primary atom site location: isomorphous structure methods	Absolute structure: Flack (1983), 409 Friedel pairs
Hydrogen site location: difference Fourier map	Absolute structure parameter: -0.010 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Rb	0	0	0.5	0.01896 (5)	
As	0	0	0	0.01382 (5)	
0	0.15295 (14)	0.08872 (11)	0.12961 (14)	0.0203 (2)	
Н	0.147 (6)	0.1975 (7)	0.122 (10)	0.048 (12)*	0.5

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb	0.02023 (8)	0.02023 (8)	0.01640 (11)	0	0	0
As	0.01201 (7)	0.01201 (7)	0.01744 (11)	0	0	0
0	0.0173 (3)	0.0172 (3)	0.0265 (4)	0.0032 (3)	-0.0093 (3)	-0.0063 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Rb—O	3.0890 (17)	Rb-O ^{vii}	2.9304 (12)
Rb—O ⁱ	3.0890 (17)	As—O	1.6828 (11)
Rb—O ⁱⁱ	3.0890 (17)	As—O ⁱ	1.6828 (11)
Rb—O ⁱⁱⁱ	3.0890 (17)	As—O ^{viii}	1.6828 (11)
Rb—O ^{iv}	2.9304 (12)	As—O ^{ix}	1.6828 (11)
Rb—O ^v	2.9304 (12)	0—Н	0.850 (8)
Rb—O ^{vi}	2.9304 (12)		

O-Rb-O ⁱ	52.94 (3)	O—As—O ⁱ	109.80 (5)
O—Rb—O ⁱⁱ	143.26 (3)	O—As—O ^{viii}	109.31 (5)
O—Rb—O ⁱⁱⁱ	143.26 (3)	O—As—O ^{ix}	109.31 (5)
O—Rb—O ^{iv}	82.32 (3)	O ⁱ —As—O ^{viii}	109.31 (5)
O—Rb—O ^v	133.06 (3)	O ⁱ —As—O ^{ix}	109.31 (5)
O—Rb—O ^{vi}	67.05 (3)	O ^{viii} —As—O ^{ix}	109.80 (5)
O—Rb—O ^{vii}	80.84 (3)		

Symmetry codes: (i) -*x*, -*y*, *z*; (ii) *y*, -*x*, -*z*+1; (iii) -*y*, *x*, -*z*+1; (iv) -*x*+1/2, *y*, -*z*+3/4; (v) *x*-1/2, -*y*, -*z*+3/4; (vi) -*y*, -*x*+1/2, *z*+1/4; (vii) *y*, *x*-1/2, *z*+1/4; (viii) *y*,

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O—H···O ^x	0.850 (8)	1.665 (6)	2.5125 (13)	175 (6)

Symmetry code: (x) x, -y+1/2, -z+1/4.