metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[bis[dimethyl(pyridine- κN)indium(III)]- μ_4 -benzene-1,3-diolato-bis-[dimethylindium(III)]- μ_4 -benzene-1,3diolato]

Glen G. Briand,^a* Andreas Decken^b and Marshall R. Hoey^a

^aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, E4L 1G8, Canada, and ^bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada Correspondence e-mail: gbriand@mta.ca

Received 9 October 2013; accepted 22 October 2013

Key indicators: single-crystal X-ray study; T = 188 K; mean σ (C–C) = 0.008 Å; R factor = 0.035; wR factor = 0.087; data-to-parameter ratio = 21.4.

The title compound, $[In_2(CH_3)_4(C_6H_4O_2)(C_5H_5N)]$ or $[{(CH_3)_2In}(1,3-O_2C_6H_4){In(CH_3)_2(py)}]_n$, (py = pyridine) contains two crystallographically unique In^{III} ions which are in distorted tetrahedral C_2O_2 and distorted trigonal-bipyr-amidal C_2O_2N coordination environments. The In^{III} coordination centers are bridged head-to-head *via* In–O bonds, yielding four-membered In₂O₂ rings and zigzag polymeric chains along [001].

Related literature

For background to dimethylindium aryloxides, see: Briand *et al.* (2010); Beachley *et al.* (2003); Hausslein *et al.* (1999); Blake *et al.* (2011); Bradley *et al.* (1988); Trentler *et al.* (1997). For dimethylindium compounds with bidentate imine-alkoxide ligands, see: Hu *et al.* (1999); Wu *et al.* (1999); Pal *et al.* (2013); Lewinski *et al.* (2003); Ghoshal *et al.* (2007).

Experimental

Crystal data $[In_2(CH_3)_4(C_6H_4O_2)(C_5H_5N)]$ $M_r = 476.97$

Monoclinic, $P2_1/n$ a = 9.1584 (17) Å

b = 14.075 (3) A	
c = 13.856 (3) Å	
$\beta = 90.106 \ (3)^{\circ}$	
V = 1786.1 (6) Å ³	
$\mathbf{Z} = \mathbf{A}$	

Data collection

Bruker P4/SMART 1000	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 2008a)	
$T_{\min} = 0.626, T_{\max} = 0.938$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 185 parameters $wR(F^2) = 0.087$ H-atom parameters constrainedS = 1.16 $\Delta \rho_{max} = 1.02$ e Å $^{-3}$ 3967 reflections $\Delta \rho_{min} = -0.72$ e Å $^{-3}$

Mo $K\alpha$ radiation $\mu = 2.58 \text{ mm}^{-1}$

 $0.20 \times 0.03 \times 0.03 \text{ mm}$

12064 measured reflections 3967 independent reflections

2885 reflections with $I > 2\sigma(I)$

T = 188 K

 $R_{\rm int} = 0.039$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008*b*); molecular graphics: *DIAMOND* (Brandenburg, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008*b*).

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5663).

References

- Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.
- Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.
- Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). *Organometallics*, 7, 1112–1115.
- Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833– 3841
- Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221–225.
- Hausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.
- Hu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347–350.
- Lewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773–3780.
- Pal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104–111.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172– 2181.
- Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418–422.

supporting information

Acta Cryst. (2013). E69, m622 [doi:10.1107/S1600536813028985]

catena-Poly[bis[dimethyl(pyridine- κN)indium(III)]- μ_4 -benzene-1,3-diolato-bis-[dimethylindium(III)]- μ_4 -benzene-1,3-diolato]

Glen G. Briand, Andreas Decken and Marshall R. Hoey

S1. Comment

Dimethylindium aryloxides [Me2InOR]2 form dimeric structures in the solid state via intermolecular In-O coordinate bonding interactions (Briand et al., 2010; Beachley et al., 2003; Hausslein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and symmetric near planar In_2O_2 ring cores. Substitution of monodentate alkoxide (-OR) ligands with bidentate imine-alkoxide ligands additionally results in an intramolecular In-N coordination, yielding distorted trigonal bipyramidal In centres and asymmetric In₂O₂ rings (Hu et al., 1999; Wu et al., 1999; Pal et al., 2013; Lewinski et al., 2003; Ghoshal et al., 2007). The molecular structure of (I) (Fig. 1) shows two crystallographically unique In atoms. In addition to the In1-O1 bond, In1 exhibits an intermolecular In1-O1ⁱ interaction. This results in a distorted tetrahedral C₂O₂ bonding environment for indium [C1—In1—C2 = 144.3 (3), O1—In1—O1ⁱ = 73.87 (14)°] and a symmetric In_2O_2 ring structure $[In_1-O_1 = 2.172 (3), In_1-O_1^i = 2.174 (3) Å]$. Similarly, In2 is coordinated to two methyl C atoms [C3 and C4] and two aryloxide O atoms [O2 and O2ⁱⁱ], but is is also coordinated by the N atom of a pyridine molecule [2.486 (4) Å]. This results in a distorted trigonal bypyramidal C₂O₂N bonding environment for In, with the two methyl C atoms and a bridging O atom in equatorial positions $[C3-In2-C4 = 142.5 (2), C3-In2-O2^{ii} = 14$ 107.8 (2), C4—In2—O2ⁱⁱ = 109.25 (19)°], and the pyridine N atom and a bridging O atom in axial positions [O2-In2-In2] $N1 = 156.63 (13)^{\circ}$]. The axial In2—O2 bond distance [2.330 (3) Å] is longer than the equatorial In2—O2ⁱⁱ bond distance [2.152 (3) Å], presumably as a result of the *trans* influence of the pyridine N atom, resulting in an asymmetric In₂O₂ ring. The two unique In_2O_2 rings are bridged by the 1,3-benzenediolate phenyl ring, giving a zigzag polymeric structure along [001] (Fig. 2).

S2. Experimental

Under an atmosphere of dinitrogen, InMe₃ (0.250 g, 1.56 mmol) was dissolved in diethyl ether (10 ml). Pyridine (0.125 g, 1.56 mmol) was added and the solution stirred for 30 min. Resorcinol (0.088 g, 0.78 mmol) was then added and the reaction mixture stirred for an additional 1 h. The reaction was then filtered and the filtrate allowed to sit at 296K. After 1 d, the solution was filtered to yield colourless crystals of $[Me_2In(1,3-O_2C_6H_4)InMe_2(py)]_{\infty}$ (0.122 g, 0.256 mmol, 33%). Anal. Calc. for C₁₅H₂₁In₂NO₂: C, 37.77; H, 4.44; N, 2.94. Found: C, 38.32; H, 4.47; N, 2.88. F T—IR (ATR, cm⁻¹): 618 w, 698 s, 748 m, 772 w, 829 w, 844 w, 968 s, 1003 w, 1034 w, 1142 s, 1171 s, 1213 w, 1249 m, 1299 m, 1427 w, 1441 w, 1482 m, 1467 m, 1573 s, 2283 w, 2475 w, 2881 m, 3004 m. FT-Raman (cm⁻¹): 487 vs [v_{sym} (Me—In—Me)], 524 w [v_{asym} (Me—In—Me)], 994 m, 1034 m, 1159 m, 1305 w, 1586 w, 2920 m, 2982 w, 3064 m.

S3. Refinement

Hydrogen atoms were included in calculated positions and refined using a riding model.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.

Figure 2

Part of the crystal structure of (I) showing the zigzag polymeric structure along [001], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -*x*, 1 - *y*, 1 - *z*; (ii) -*x*, 1 - *y*, 2 - *z*.

catena-Poly[bis[dimethyl(pyridine- κN)indium(III)]- μ_4 -benzene-1,3-diolato-bis[dimethylindium(III)]- μ_4 -benzene-1,3-diolato]

Crystal data	
$[In_2(CH_3)_4(C_6H_4O_2)(C_5H_5N)]$	F(000) = 928
$M_r = 476.97$	$D_{\rm x} = 1.774 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo <i>Ka</i> radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5671 reflections
a = 9.1584 (17) Å	$\theta = 2.7 - 27.9^{\circ}$
b = 14.075 (3) Å	$\mu = 2.58 \text{ mm}^{-1}$
c = 13.856 (3) Å	T = 188 K
$\beta = 90.106 \ (3)^{\circ}$	Rod, colourless
V = 1786.1 (6) Å ³	$0.20 \times 0.03 \times 0.03 \text{ mm}$
Z = 4	

Data collection

Bruker P4/SMART 1000 diffractometer Radiation source: fine-focus sealed tube, K760 Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>) $T_{min} = 0.626, T_{max} = 0.938$ <i>Refinement</i>	12064 measured reflections 3967 independent reflections 2885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -10 \rightarrow 11$ $k = -18 \rightarrow 18$ $l = -16 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.087$	neighbouring sites
S = 1.16	H-atom parameters constrained
3967 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0339P)^2 + 1.2232P]$
185 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.02$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.72$ e Å ⁻³

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by *SHELXL* according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.12136 (4)	0.57110 (3)	0.43640 (3)	0.03464 (12)	
0.11428 (4)	0.39665 (3)	1.01934 (3)	0.02955 (11)	
0.0623 (4)	0.5253 (3)	0.5809 (2)	0.0361 (8)	
0.0754 (3)	0.5316 (2)	0.9254 (2)	0.0300 (8)	
0.0635 (5)	0.2789 (3)	1.1488 (3)	0.0396 (11)	
0.0184 (8)	0.7054 (5)	0.4259 (6)	0.073 (2)	
0.0580	0.7480	0.4755	0.109*	
-0.0870	0.6980	0.4356	0.109*	
0.0365	0.7325	0.3619	0.109*	
0.3108 (7)	0.4920 (5)	0.3979 (5)	0.0631 (19)	
0.3153	0.4856	0.3276	0.095*	
0.3060	0.4288	0.4275	0.095*	
0.3981	0.5253	0.4211	0.095*	
0.0431 (7)	0.3018 (4)	0.9068 (4)	0.0562 (17)	
	x 0.12136 (4) 0.11428 (4) 0.0623 (4) 0.0754 (3) 0.0635 (5) 0.0184 (8) 0.0580 -0.0870 0.0365 0.3108 (7) 0.3153 0.3060 0.3981 0.0431 (7)	xy 0.12136 (4) 0.57110 (3) 0.11428 (4) 0.39665 (3) 0.0623 (4) 0.5253 (3) 0.0754 (3) 0.5316 (2) 0.0635 (5) 0.2789 (3) 0.0184 (8) 0.7054 (5) 0.0580 0.7480 -0.0870 0.6980 0.0365 0.7325 0.3108 (7) 0.4920 (5) 0.3153 0.4856 0.3060 0.4288 0.3981 0.5253 0.0431 (7) 0.3018 (4)	xyz 0.12136 (4) 0.57110 (3) 0.43640 (3) 0.11428 (4) 0.39665 (3) 1.01934 (3) 0.0623 (4) 0.5253 (3) 0.5809 (2) 0.0754 (3) 0.5316 (2) 0.9254 (2) 0.0635 (5) 0.2789 (3) 1.1488 (3) 0.0184 (8) 0.7054 (5) 0.4259 (6) 0.0580 0.7480 0.4755 -0.0870 0.6980 0.4356 0.365 0.7325 0.3619 0.3108 (7) 0.4920 (5) 0.3979 (5) 0.3060 0.4288 0.4275 0.3981 0.5253 0.4211 0.0431 (7) 0.3018 (4) 0.9068 (4)	xyz $U_{iso}*/U_{eq}$ 0.12136 (4)0.57110 (3)0.43640 (3)0.03464 (12)0.11428 (4)0.39665 (3)1.01934 (3)0.02955 (11)0.0623 (4)0.5253 (3)0.5809 (2)0.0361 (8)0.0754 (3)0.5316 (2)0.9254 (2)0.0300 (8)0.0635 (5)0.2789 (3)1.1488 (3)0.0396 (11)0.0184 (8)0.7054 (5)0.4259 (6)0.073 (2)0.05800.74800.47550.109*-0.08700.69800.43560.109*0.3108 (7)0.4920 (5)0.3979 (5)0.0631 (19)0.31530.48560.32760.095*0.30600.42880.42750.095*0.39810.52530.42110.095*0.0431 (7)0.3018 (4)0.9068 (4)0.0562 (17)

H3A	0.1234	0.2910	0.8616	0.084*
H3B	-0.0397	0.3302	0.8724	0.084*
H3C	0.0130	0.2412	0.9353	0.084*
C4	0.3053 (6)	0.4553 (4)	1.0846 (4)	0.0454 (15)
H4A	0.3067	0.5242	1.0746	0.068*
H4B	0.3923	0.4269	1.0553	0.068*
H4C	0.3047	0.4417	1.1540	0.068*
C5	0.1383 (5)	0.5416 (3)	0.6650 (3)	0.0270 (10)
C6	0.0693 (5)	0.5259 (3)	0.7530 (3)	0.0277 (11)
H6	-0.0282	0.5029	0.7544	0.033*
C7	0.1435 (5)	0.5439 (3)	0.8395 (3)	0.0264 (10)
C8	0.2872 (5)	0.5754 (4)	0.8361 (4)	0.0314 (11)
H8	0.3395	0.5870	0.8941	0.038*
C9	0.3536 (6)	0.5897 (4)	0.7479 (4)	0.0371 (13)
H9	0.4518	0.6115	0.7462	0.044*
C10	0.2808 (5)	0.5731 (3)	0.6622 (3)	0.0311 (11)
H10	0.3282	0.5832	0.6022	0.037*
C11	-0.0627 (6)	0.2311 (4)	1.1471 (5)	0.0464 (14)
H11	-0.1250	0.2380	1.0927	0.056*
C12	-0.1062 (7)	0.1719 (4)	1.2216 (5)	0.0572 (17)
H12	-0.1960	0.1383	1.2176	0.069*
C13	-0.0192 (8)	0.1624 (5)	1.3002 (5)	0.066 (2)
H13	-0.0476	0.1223	1.3520	0.080*
C14	0.1099 (8)	0.2112 (5)	1.3044 (5)	0.0614 (18)
H14	0.1723	0.2061	1.3590	0.074*
C15	0.1467 (7)	0.2677 (4)	1.2274 (4)	0.0479 (15)
H15	0.2369	0.3010	1.2302	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.0337 (2)	0.0504 (2)	0.0198 (2)	-0.00910 (16)	0.00038 (15)	0.00502 (16)
In2	0.0284 (2)	0.0370 (2)	0.02328 (19)	0.00222 (15)	0.00004 (14)	-0.00206 (15)
01	0.035 (2)	0.058 (2)	0.0152 (17)	-0.0138 (17)	-0.0001 (15)	0.0008 (16)
O2	0.0281 (18)	0.047 (2)	0.0149 (17)	0.0054 (15)	0.0021 (14)	0.0016 (15)
N1	0.039 (3)	0.040 (3)	0.040 (3)	0.001 (2)	0.004 (2)	0.003 (2)
C1	0.080 (5)	0.058 (4)	0.081 (5)	-0.005 (4)	-0.005 (4)	0.018 (4)
C2	0.043 (4)	0.103 (6)	0.044 (4)	-0.001 (4)	0.004 (3)	-0.014 (4)
C3	0.078 (5)	0.054 (4)	0.037 (3)	-0.002 (3)	0.002 (3)	-0.018 (3)
C4	0.034 (3)	0.051 (4)	0.051 (4)	-0.007 (3)	-0.011 (3)	0.011 (3)
C5	0.035 (3)	0.032 (3)	0.014 (2)	-0.001 (2)	-0.001 (2)	0.0007 (19)
C6	0.022 (2)	0.040 (3)	0.022 (3)	-0.004(2)	-0.001(2)	0.000(2)
C7	0.031 (3)	0.030(3)	0.019 (2)	0.006 (2)	0.001 (2)	0.001 (2)
C8	0.028 (3)	0.048 (3)	0.018 (2)	-0.003 (2)	-0.004(2)	-0.001 (2)
C9	0.025 (3)	0.058 (4)	0.029 (3)	-0.007(2)	-0.001(2)	0.004 (2)
C10	0.031 (3)	0.046 (3)	0.016 (2)	-0.007 (2)	0.003 (2)	-0.001 (2)
C11	0.049 (4)	0.040 (3)	0.050 (4)	-0.003 (3)	-0.002(3)	0.001 (3)
C12	0.049 (4)	0.047 (4)	0.076 (5)	-0.010 (3)	0.009 (4)	0.009 (3)

supporting information

C13	0.065 (5)	0.065 (5)	0.069 (5)	0.001 (4)	0.013 (4)	0.024 (4)
C14	0.073 (5)	0.069 (5)	0.042 (4)	0.011 (4)	-0.004 (3)	0.020 (3)
C15	0.050 (4)	0.048 (4)	0.046 (4)	0.001 (3)	0.002 (3)	0.008 (3)

Geometric parameters (Å, °)

In1—C1	2.118 (7)	С3—НЗС	0.9800
In1—C2	2.130 (6)	C4—H4A	0.9800
In1—O1	2.172 (3)	C4—H4B	0.9800
In1—O1 ⁱ	2.174 (3)	C4—H4C	0.9800
In2—C4	2.134 (5)	C5—C10	1.379 (7)
In2—O2 ⁱⁱ	2.152 (3)	C5—C6	1.393 (6)
In2—C3	2.152 (5)	C6—C7	1.400 (6)
In2—O2	2.330 (3)	С6—Н6	0.9500
In2—N1	2.486 (4)	C7—C8	1.390 (7)
O1—C5	1.376 (5)	C8—C9	1.380 (7)
O1—In1 ⁱ	2.174 (3)	C8—H8	0.9500
O2—C7	1.355 (5)	C9—C10	1.381 (7)
O2—In2 ⁱⁱ	2.152 (3)	С9—Н9	0.9500
N1-C11	1.337 (7)	C10—H10	0.9500
N1—C15	1.338 (7)	C11—C12	1.385 (8)
C1—H1A	0.9800	C11—H11	0.9500
C1—H1B	0.9800	C12—C13	1.355 (9)
C1—H1C	0.9800	C12—H12	0.9500
C2—H2A	0.9800	C13—C14	1.368 (9)
C2—H2B	0.9800	C13—H13	0.9500
C2—H2C	0.9800	C14—C15	1.373 (8)
С3—НЗА	0.9800	C14—H14	0.9500
С3—Н3В	0.9800	C15—H15	0.9500
C1—In1—C2	144.3 (3)	НЗА—СЗ—НЗС	109.5
C1—In1—O1	102.5 (2)	НЗВ—СЗ—НЗС	109.5
C2—In1—O1	106.3 (2)	In2—C4—H4A	109.5
C1—In1—O1 ⁱ	101.9 (2)	In2—C4—H4B	109.5
C2—In1—O1 ⁱ	106.1 (2)	H4A—C4—H4B	109.5
O1—In1—O1 ⁱ	73.87 (14)	In2—C4—H4C	109.5
C4—In2—O2 ⁱⁱ	109.25 (19)	H4A—C4—H4C	109.5
C4—In2—C3	142.5 (2)	H4B—C4—H4C	109.5
O2 ⁱⁱ —In2—C3	107.8 (2)	O1—C5—C10	120.5 (4)
C4—In2—O2	92.62 (17)	O1—C5—C6	119.0 (4)
O2 ⁱⁱ —In2—O2	72.15 (13)	C10—C5—C6	120.4 (4)
C3—In2—O2	93.2 (2)	C5—C6—C7	120.0 (4)
C4—In2—N1	96.11 (19)	С5—С6—Н6	120.0
O2 ⁱⁱ —In2—N1	84.49 (13)	С7—С6—Н6	120.0
C3—In2—N1	93.0 (2)	O2—C7—C8	120.5 (4)
O2—In2—N1	156.63 (13)	O2—C7—C6	120.3 (4)
C5—O1—In1	127.2 (3)	C8—C7—C6	119.1 (4)
C5—O1—In1 ⁱ	126.0 (3)	C9—C8—C7	119.8 (5)

In1—O1—In1 ⁱ	106.13 (14)	С9—С8—Н8	120.1
C7—O2—In2 ⁱⁱ	128.7 (3)	С7—С8—Н8	120.1
C7—O2—In2	121.6 (3)	C8—C9—C10	121.5 (5)
In2 ⁱⁱ —O2—In2	107.85 (13)	С8—С9—Н9	119.2
C11—N1—C15	116.4 (5)	С10—С9—Н9	119.2
C11—N1—In2	119.1 (4)	C5—C10—C9	119.1 (4)
C15—N1—In2	124.0 (4)	C5—C10—H10	120.4
In1—C1—H1A	109.5	С9—С10—Н10	120.4
In1—C1—H1B	109.5	N1—C11—C12	122.7 (6)
H1A—C1—H1B	109.5	N1-C11-H11	118.7
In1—C1—H1C	109.5	C12-C11-H11	118.7
H1A—C1—H1C	109.5	C13—C12—C11	119.2 (6)
H1B—C1—H1C	109.5	C13—C12—H12	120.4
In1—C2—H2A	109.5	C11—C12—H12	120.4
In1—C2—H2B	109.5	C12—C13—C14	119.5 (6)
H2A—C2—H2B	109.5	С12—С13—Н13	120.3
In1—C2—H2C	109.5	C14—C13—H13	120.3
H2A—C2—H2C	109.5	C13—C14—C15	118.1 (7)
H2B—C2—H2C	109.5	C13—C14—H14	120.9
In2—C3—H3A	109.5	C15-C14-H14	120.9
In2—C3—H3B	109.5	N1-C15-C14	124.1 (6)
НЗА—СЗ—НЗВ	109.5	N1-C15-H15	118.0
In2—C3—H3C	109.5	C14—C15—H15	118.0

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.