

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Isopropyl-4-methoxy-5-methylphenyl acetate

Radouane Oubabi,^a Aziz Auhmani,^a My Youssef Ait Itto,^a Mohamed Driss^b and El Hassane Soumhi^c*

^aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Faculté des Sciences-Semlalia, Université Cadi Avvad, BP 2390, 40001, Marrakech, Morocco, ^bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 ElManar II, Tunis, Tunisia, and ^cEquipe de Chimie des Matériaux et de l'Environnement, FSTG-Marrakech, Université Cadi Ayyad, Bd Abdelkrim Khattabi, BP 549, Marrakech, Morocco Correspondence e-mail: eh_soumhi@yahoo.fr

Received 9 October 2013; accepted 23 October 2013

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 18.4.

In the title compound, $C_{13}H_{18}O_3$, the benzene ring is almost perpendicular to the acetoxy plane, making a dihedral angle of 89.33 (11)°. In the crystal, molecules are linked by weak C- $H \cdots O$ hydrogen bonds, forming a zigzag chain along the caxis direction.

Related literature

For background to natural monoterpenic phenols and their derivatives, see: Yuan-Lang & Erdtman (1962); Ündeğer et al. (2009); Osorio et al. (2006). For a related structure, see: Rajouani et al. (2008).

2780 independent reflections

intensity decay: 1%

 $R_{\rm int}=0.018$

1594 reflections with $I > 2\sigma(I)$

2 standard reflections every 60 min

Experimental

Crystal data

C ₁₃ H ₁₈ O ₃	V = 1281.4 (5) Å ³
$M_r = 222.27$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.829 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 9.600 (2) Å	T = 300 K
c = 12.530 (3) Å	$0.3 \times 0.15 \times 0.1$ mm
$\beta = 100.34 \ (2)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.521, \ T_{\max} = 0.992$ 3366 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	151 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2780 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $C3{-}H1{\cdots}O2^i$ 0.93 2.60 3.523 (3) 171

Symmetry code: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012): software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5314).

References

Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Deft, The Netherlands.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Osorio, E., Arango, G., Robledo, S., Muñoz, D., Jaramillo, L. & Vélez, I. (2006). Acta Farm. Bonaer. 25, 405-413.

Rajouani, N., Ait Itto, My. Y., Benharref, A., Auhmani, A. & Daran, J.-C. (2008). Acta Cryst. E64, 0762.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ündeğer, Ü., Başaran, A., Degen, G. H. & Başaran, N. (2009). Food Chem. Toxicol. 47, 2037–2043.

Yuan-Lang, C. & Erdtman, H. (1962). Acta Chem. Scand. 16, 1291-1295.

supporting information

Acta Cryst. (2013). E69, o1715 [doi:10.1107/S160053681302922X]

2-Isopropyl-4-methoxy-5-methylphenyl acetate

Radouane Oubabi, Aziz Auhmani, My Youssef Ait Itto, Mohamed Driss and El Hassane Soumhi

S1. Comment

The *p*-methoxythymol is a natural phenol extracted from heartwood of tetraclinis articulate (Yuan-Lang *et al.*, 1962). In several recent studies, natural monoterpenic phenols and their derivatives have revealed extensive biological activities, ranging from antimicrobial (Ündeğer *et al.*, 2009) to Antileishmanial and Cytotoxic activities (Osorio *et al.*, 2006). In the aim of preparing monoterpenic phenol derivatives, we report here, the hemisynthesis of 2-isopropyl-4-methoxy-5-methylphenyl acetate from naturally occurred *p*-methoxythymol. Thus, treatment of *p*-methoxythymol with acetic anhydride in pyridine, and provides the title compound as colorless crystals in 72.4% yield. Its structure was fully characterized by its mass and NMR spectroscopic data. Furthermore, the crystallographic study made it possible to determine the stereochemistry. The main geometric features of this group are in good agreement with those observed in a similar compound (Rajouani *et al.*, 2008).

S2. Experimental

A solution of *p*-methoxythymol (111 mg, 0.617 mmol) in acetic anhydride (20 ml) and pyridine (20 ml) was heated under reflux for 24 h. After cooling, the mixture was acidified with 1 N HCl solution then extracted with ether (3×20 ml). The organic layer was washed with water, dried on anhydrous Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was chromatographied on silica gel column using hexane and ethyl acetate (97/3) as eluent, to give 2-isopropyl-4-methoxy-5-methylphenyl acetate (100 mg) in 72.4% yield.

S3. Refinement

All H-atoms were located in a difference map and refined using a riding model with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecule structure of the title compound with 50% probability ellipsoids.

2-Isopropyl-4-methoxy-5-methylphenyl acetate

Crystal data

C₁₃H₁₈O₃ $M_r = 222.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.829 (2) Å b = 9.600 (2) Å c = 12.530 (3) Å $\beta = 100.34$ (2)° V = 1281.4 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.521, T_{\max} = 0.992$ 3366 measured reflections F(000) = 480 $D_x = 1.152 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 300 KPrism, colourless $0.3 \times 0.15 \times 0.1 \text{ mm}$

2780 independent reflections 1594 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -13 \rightarrow 1$ $k = -1 \rightarrow 12$ $l = -15 \rightarrow 15$ 2 standard reflections every 60 min intensity decay: 1% Refinement

•	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0525P)^2 + 0.2201P]$
2780 reflections	where $P = (F_o^2 + 2F_c^2)/3$
151 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.016 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Ζ	U_{iso}^*/U_{eq}
01	0.76460 (12)	0.08305 (13)	0.33870 (9)	0.0587 (4)
O2	0.76646 (18)	-0.07552 (19)	0.46746 (13)	0.1062 (7)
O3	0.43208 (12)	-0.20942 (15)	0.03401 (10)	0.0673 (4)
C1	0.68418 (16)	-0.00154 (18)	0.26312 (13)	0.0496 (4)
C2	0.73387 (16)	-0.09160 (17)	0.19660 (13)	0.0476 (4)
C3	0.64806 (16)	-0.16266 (18)	0.11839 (14)	0.0522 (4)
H1	0.6777	-0.2242	0.0715	0.063*
C4	0.52031 (16)	-0.14316 (18)	0.10945 (13)	0.0514 (4)
C5	0.47183 (17)	-0.0533 (2)	0.17877 (14)	0.0562 (5)
C6	0.55666 (17)	0.0175 (2)	0.25510 (14)	0.0570 (5)
H2	0.5272	0.0792	0.3020	0.068*
C7	0.79534 (17)	0.0364 (2)	0.44091 (15)	0.0612 (5)
C8	0.8695 (2)	0.1412 (3)	0.51249 (17)	0.0803 (7)
Н3	0.8841	0.1081	0.5860	0.096*
H4	0.8239	0.2274	0.5082	0.096*
Н5	0.9485	0.1559	0.4896	0.096*
С9	0.4748 (2)	-0.2910 (2)	-0.04666 (16)	0.0742 (6)
H6	0.5283	-0.2355	-0.0830	0.089*
H7	0.4041	-0.3229	-0.0983	0.089*
H8	0.5210	-0.3697	-0.0132	0.089*
C10	0.33271 (18)	-0.0334 (3)	0.16960 (19)	0.0812 (7)
Н9	0.3168	0.0323	0.2233	0.097*
H10	0.2943	-0.1210	0.1810	0.097*

supporting information

H11	0.2982	0.0011	0.0986	0.097*	
C11	0.87402 (16)	-0.11360 (19)	0.20594 (15)	0.0546 (5)	
H12	0.9162	-0.0529	0.2641	0.066*	
C12	0.9114 (2)	-0.2629 (2)	0.23722 (18)	0.0747 (6)	
H13	0.8718	-0.3250	0.1813	0.090*	
H14	0.8850	-0.2857	0.3043	0.090*	
H15	1.0009	-0.2723	0.2458	0.090*	
C13	0.9195 (2)	-0.0725 (3)	0.10231 (18)	0.0785 (6)	
H16	1.0093	-0.0797	0.1133	0.094*	
H17	0.8949	0.0218	0.0837	0.094*	
H19	0.8830	-0.1335	0.0445	0.094*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0685 (8)	0.0536 (7)	0.0512 (7)	-0.0086 (6)	0.0036 (6)	-0.0056 (6)
O2	0.1266 (15)	0.1007 (13)	0.0758 (10)	-0.0443 (11)	-0.0236 (10)	0.0304 (10)
O3	0.0564 (7)	0.0792 (9)	0.0621 (8)	-0.0073 (7)	-0.0007 (6)	-0.0123 (7)
C1	0.0553 (10)	0.0460 (10)	0.0448 (9)	-0.0017 (8)	0.0022 (8)	0.0014 (8)
C2	0.0509 (9)	0.0444 (9)	0.0464 (9)	-0.0011 (8)	0.0054 (7)	0.0033 (8)
C3	0.0574 (11)	0.0510 (10)	0.0475 (9)	-0.0004 (8)	0.0079 (8)	-0.0034 (8)
C4	0.0508 (10)	0.0521 (10)	0.0481 (9)	-0.0037 (8)	0.0006 (8)	0.0019 (8)
C5	0.0516 (10)	0.0583 (11)	0.0562 (10)	0.0076 (9)	0.0030 (8)	0.0052 (9)
C6	0.0624 (11)	0.0543 (11)	0.0543 (11)	0.0077 (9)	0.0108 (9)	-0.0040 (9)
C7	0.0533 (11)	0.0727 (13)	0.0545 (11)	-0.0043 (10)	0.0013 (9)	0.0009 (10)
C8	0.0706 (13)	0.0957 (17)	0.0675 (13)	-0.0095 (12)	-0.0071 (11)	-0.0155 (12)
C9	0.0796 (14)	0.0819 (15)	0.0586 (11)	-0.0200 (12)	0.0054 (10)	-0.0148 (11)
C10	0.0567 (12)	0.0940 (17)	0.0900 (16)	0.0120 (12)	0.0052 (11)	-0.0100 (13)
C11	0.0504 (10)	0.0560 (11)	0.0559 (10)	-0.0048 (9)	0.0053 (8)	-0.0048 (9)
C12	0.0615 (12)	0.0719 (14)	0.0860 (15)	0.0071 (11)	0.0006 (11)	0.0076 (12)
C13	0.0652 (13)	0.0903 (16)	0.0839 (15)	-0.0030 (12)	0.0236 (11)	0.0106 (13)

Geometric parameters (Å, °)

01—C7	1.341 (2)	C11—C12	1.522 (3)	
01—C1	1.421 (2)	C8—H3	0.9600	
O2—C7	1.183 (2)	C8—H4	0.9600	
O3—C4	1.374 (2)	C8—H5	0.9600	
О3—С9	1.420 (2)	С9—Н6	0.9600	
C1—C2	1.376 (2)	С9—Н7	0.9600	
C1—C6	1.379 (2)	С9—Н8	0.9600	
С2—С3	1.401 (2)	С10—Н9	0.9600	
C2—C11	1.516 (2)	C10—H10	0.9600	
C3—C4	1.380 (2)	C10—H11	0.9600	
С3—Н1	0.9300	C11—H12	0.9800	
C4—C5	1.392 (3)	C12—H13	0.9600	
C5—C6	1.380 (2)	C12—H14	0.9600	
C5—C10	1.502 (3)	C12—H15	0.9600	

С6—Н2	0.9300	C13—H16	0.9600
C7—C8	1.484 (3)	C13—H17	0.9600
C11—C13	1.521 (3)	C13—H19	0.9600
C7—O1—C1	117.57 (14)	O3—C9—H7	109.5
C4—O3—C9	118.02 (15)	Н6—С9—Н7	109.5
C2—C1—C6	122.33 (16)	O3—C9—H8	109.5
C2-C1-O1	120.23 (15)	Н6—С9—Н8	109.5
C6—C1—O1	117.31 (16)	Н7—С9—Н8	109.5
C1 - C2 - C3	116.58 (16)	C5-C10-H9	109.5
C1 - C2 - C11	122.40 (15)	C5-C10-H10	109.5
C_{3} C_{2} C_{11}	121.02 (16)	H9-C10-H10	109.5
C4-C3-C2	121.02(10) 121.33(17)	C_{5} C_{10} H_{11}	109.5
C4 - C3 - C2	110.3	H_{0}	109.5
$C_{1}^{2} = C_{2}^{3} = H_{1}^{3}$	119.5	H10 C10 H11	109.5
$C_2 = C_3 = \Pi_1$	119.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
03-04-05	125.79 (10)	C_2 C_{11} C_{13}	111.77(13)
03-04-05	115.01 (16)	C_2 — C_{11} — C_{12}	111.54 (15)
C3-C4-C5	121.20 (16)		110.65 (17)
C6-C5-C4	117.32 (16)	C2—C11—H12	107.5
C6-C5-C10	121.61 (18)	C13—C11—H12	107.5
C4—C5—C10	121.07 (17)	C12—C11—H12	107.5
C1—C6—C5	121.23 (17)	C11—C12—H13	109.5
C1—C6—H2	119.4	C11—C12—H14	109.5
С5—С6—Н2	119.4	H13—C12—H14	109.5
O2—C7—O1	122.63 (18)	C11—C12—H15	109.5
O2—C7—C8	125.96 (19)	H13—C12—H15	109.5
O1—C7—C8	111.41 (18)	H14—C12—H15	109.5
С7—С8—Н3	109.5	C11—C13—H16	109.5
С7—С8—Н4	109.5	C11—C13—H17	109.5
H3—C8—H4	109.5	H16—C13—H17	109.5
С7—С8—Н5	109.5	C11—C13—H19	109.5
H3—C8—H5	109.5	H16—C13—H19	109.5
H4—C8—H5	109.5	H17—C13—H19	109.5
O3-C9-H6	109.5		
	109.0		
C7 - 01 - C1 - C2	-959(2)	C3 - C4 - C5 - C6	13(3)
$C_{7} = 01 = C_{1} = C_{6}$	88 2 (2)	03-C4-C5-C10	0.3(3)
C_{1} C_{1} C_{2} C_{3}	0.2(2)	$C_3 C_4 C_5 C_{10}$	-170.34(18)
$C_1 C_1 C_2 C_3$	-174.89(14)	$C_2 = C_1 = C_5 = C_{10}$	-0.3(3)
$C_{1} = C_{1} = C_{2} = C_{3}$	-179.47(17)	$C_2 - C_1 - C_0 - C_3$	175 57 (16)
$C_{0} = C_{1} = C_{2} = C_{11}$	1/9.4/(1/)	$C_{1} = C_{1} = C_{0} = C_{3}$	-0.8(3)
01 - 01 - 02 - 01	4.0(2)	$C_{4} = C_{5} = C_{0} = C_{1}$	-0.8(3)
C1 - C2 - C3 - C4	-0.5(2)	C10 - C3 - C0 - C1	(1/9.83(19))
$C_1 - C_2 - C_3 - C_4$	1/9.98 (10)	$C_1 = 0_1 = 0_7 = 0_2$	0.1(3)
03 - 03 - 04 - 03	-7.0(3)	C1 = C1 = C1 = C12	-1/4.65 (16)
03 - 03 - 04 - 03	1/3.38 (16)	C1 - C2 - C11 - C13	-118.73 (19)
C2—C3—C4—O3	179.64 (15)	C3—C2—C11—C13	61.0 (2)
C2—C3—C4—C5	-0.8 (3)	C1—C2—C11—C12	116.80 (19)
O3—C4—C5—C6	-179.06 (15)	C3—C2—C11—C12	-63.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C3—H1···O2 ⁱ	0.93	2.60	3.523 (3)	171

Symmetry code: (i) x, -y-1/2, z-1/2.