Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Butane-1,4-diyl bis(benzenecarbodithioate)

Daisuke Abe and Yuji Sasanuma*

Department of Applied Chemistry and Biotechnology, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba 263-8522, Japan
Correspondence e-mail: sasanuma@faculty.chiba-u.jp

Received 7 October 2013; accepted 8 October 2013

Monoclinic, $P 2_{1} / n$
$a=11.0205$ (6) \AA
$b=7.2535$ (5) \AA
$c=11.3090(7) \AA$
$\beta=110.805(2)^{\circ}$
$V=845.06(9) \AA^{3}$
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$\mu=5.09 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.40 \times 0.20 \times 0.01 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.235, T_{\text {max }}=0.951$
4872 measured reflections 1480 independent reflections 1468 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 100$ parameters
$w R\left(F^{2}\right)=0.100$
H -atom parameters constrained
$S=1.13$
1480 reflections
$\Delta \rho_{\max }=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.037 ; \omega R$ factor $=0.100$; data-to-parameter ratio $=14.8$.

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~S}_{4}$, which lies on an inversion center, adopts a trans-gauche ${ }^{+}$-trans-gauche ${ }^{-}-$trans $^{(t g}{ }^{+} \operatorname{tg}^{-} t$) conformation of the $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ bond sequence. In the crystal, a $\pi-\pi$ interaction with a centroidcentroid distance of 3.8797 (16) \AA is observed.

Related literature

For crystal structures and conformations of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(=\mathrm{S}) \mathrm{S}$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SC}(=\mathrm{S}) \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(=\mathrm{O}) \mathrm{S}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SC}(=\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}$, see: Abe et al. (2011, 2013). For related compounds, see: Sawanobori et al. (2001); Sasanuma et al. (2002). For the synthesis of piperidinium dithiobenzoate, see: Kato et al. (1973).

Experimental

Crystal data

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~S}_{4} \quad M_{r}=362.56
$$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

We thank Dr Masu and Dr Yagishita of the Center for Analytical Instrumentation, Chiba University, for helpful advice about the X-ray diffraction measurements. This study was partly supported by a Grant-in-Aid for Scientific Research (C) (22550190) from the Japan Society for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5312).

References

Abe, D., Sasanuma, Y. \& Sato, H. (2011). Acta Cryst. E67, o961. Abe, D. \& Sasanuma, Y. (2013). Acta Cryst. E69, o1612.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Kato, S., Mitani, T. \& Mizuta, M. (1973). Int. J. Sulfur Chem. 8, 359-366. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sasanuma, Y., Ohta, H., Touma, I., Matoba, H., Hayashi, Y. \& Kaito, A. (2001). Macromolecules, 35, 3748-3761.
Sawanobori, M., Sasanuma, Y. \& Kaito, A. (2001). Macromolecules, 34, 83218329.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1636 [doi:10.1107/S1600536813027529]

Butane-1,4-diyl bis(benzenecarbodithioate)

Daisuke Abe and Yuji Sasanuma

S1. Comment

The aromatic polyesters, $\left[-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C}=\mathrm{O})-\right]_{x}(n=2-4)$, have been mass-produced and used as fibers, films, bottles, and engineering plastics. In a series of our studies, we have investigated conformational characteristics and configurational properties of their analogs, $\left[-\mathrm{X}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}(\mathrm{C}=\mathrm{Y}) \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C}=\mathrm{Y})-\right]_{x}$, that is, polythioesters $(\mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{O}$, abbreviated herein as $\mathrm{P}_{n} \mathrm{TS}_{2}$) and polydithioesters ($\mathrm{X}=\mathrm{Y}=\mathrm{S}, \mathrm{P} n \mathrm{TS}_{4}$). As model compounds of ${\mathrm{P} n \mathrm{TS}_{2} \text { and } \mathrm{P} n \mathrm{TS}_{4} \text {, we }}^{\text {w }}$ have adopted oligomethylenedithiobenzoate ($n \mathrm{DBS}_{2}$) and oligomethylenetetrathiobenzoate ($n \mathrm{DBS}_{4}$), respectively. This paper describes synthesis and X-ray diffraction analysis of one of them, $4 \mathrm{DBS}_{4}$.

Figure 1 shows the molecular structure of $4 \mathrm{DBS}_{4}$. The $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ bonds lie in the trans- gauche -trans-gauche - trans $\left(\operatorname{tg}^{+} \operatorname{tg} t\right)$ conformation. On the other hand, $4 \mathrm{DBS}_{2}$, a model of ${\mathrm{P} 4 \mathrm{TS}_{2} \text {, crystallizes to form the } g^{+} \text {tttg }}^{-}$ conformation (Abe \& Sasanuma, 2013). In general, the $\mathrm{S}-\mathrm{CH}_{2}$ single bond prefers the gauche state (Sawanobori et al., 2001; Sasanuma et al., 2002). For instance, the crystalline $2 \mathrm{DBS}_{4}$ molecule adopts the $g^{+} t g^{-}$conformation in the $\mathrm{S}-\mathrm{CH}_{2-}$ $\mathrm{CH}_{2}-\mathrm{S}$ linkage (Abe et al., 2011). By contraries, the two $\mathrm{S}-\mathrm{CH}_{2}$ bonds of $4 \mathrm{DBS}_{4}$ were found here to be in the trans conformation. Our molecular orbital calculations at the MP2/6-311+G(2 d,p)/B3LYP/6-311+G(2 d,p) level for gaseous $4 \mathrm{DBS}_{4}$ yielded free energies (relative to the all-trans state) of the two conformers: $0.49 \mathrm{kcal} \mathrm{mol}^{-1}\left(\operatorname{tg}^{+} \operatorname{tg}^{-} t\right)$ and -0.86 kcal $\mathrm{mol}^{-1}\left(g^{+}\right.$tttg $)$. Therefore, $4 \mathrm{DBS}_{4}$ is not allowed to crystallize in the most stable conformation.
In differential scanning calorimetric measurements, a $4 \mathrm{DBS}_{4}$ sample, which was recrystallized from methanol, exhibited only one endothermic peak at $68^{\circ} \mathrm{C}$ on heating, whereas its melt-crystallized sample showed two endothermic peaks at 48 and $68^{\circ} \mathrm{C}$. The former and latter samples yielded powder X-ray diffraction patterns different from each other.
Interestingly, $n \mathrm{DBS}_{4}$'s ($n=2,3,4$, and 5) show odd-even effects in melting; $2 \mathrm{DBS}_{4}$ and $4 \mathrm{DBS}_{4}$, respectively, melt at 109 and $68^{\circ} \mathrm{C}$, whereas $3 \mathrm{DBS}_{4}$ and $5 \mathrm{DBS}_{4}$ are liquid at room temperature but exhibit grass transitions at $-51^{\circ} \mathrm{C}(n=3)$ and $-54^{\circ} \mathrm{C}(n=5)$.

S2. Experimental

Piperidinium dithiobenzoate ($1.26 \mathrm{~g}, 5.3 \mathrm{mmol}$) was prepared according to the literature (Kato et al., 1973). Dibromobutane ($0.54 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added dropwise into piperidinium dithiobenzoate dissolved in dimethylformamide (DMF, 15 ml) and then stirred for 8 h under nitrogen atmosphere. The reaction mixture was diluted with a mixture of ethyl acetate and n -hexane ($1: 4 \mathrm{in}$ volume) and washed thrice with water, and the organic layer was dried overnight over anhydrous magnesium sulfate. The solution was condensed, dissolved in a toluene/n-hexane mixture ($1: 2$ in volume), and fractionated by silica-gel chromatograph $\left(R_{\mathrm{f}}=0.3-0.5\right)$. The collected fractions were condensed and recrystallized from a methanol/n-hexane mixture ($1: 1$ in volume) to yield $4 \mathrm{DBS}_{4}(0.37 \mathrm{~g}, 41 \%$).
The product was dissolved in chloroform in an open vessel. The vessel was placed in a larger one containing n-hexane, a poor solvent for $4 \mathrm{DBS}_{4}$, to facilitate precipitation of crystals by vapor diffusion of n-hexane into the chloroform solution.

S3. Refinement

All C-H hydrogen atoms were geometrically positioned with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for the aromatic and methylene groups, respectively, and refined as riding by $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

Molecular structure of S, S^{\prime}-butane-1,4-diyl bis(benzenecarbodithioate) $\left(4 \mathrm{DBS}_{4}\right)$. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2

Packing diagrams of $4 \mathrm{DBS}_{4}$, viewed down the $a(\mathrm{a}), b(\mathrm{~b})$, and c (c) axes.

Butane-1,4-diyl bis(benzenecarbodithioate)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~S}_{4} \\
& M_{r}=362.56 \\
& \text { Monoclinic, } P 2_{1} / n \\
& \text { Hall symbol: }-\mathrm{P} 2 \mathrm{yn} \\
& a=11.0205(6) \AA \\
& b=7.2535(5) \AA \\
& c=11.3090(7) \AA \\
& \beta=110.805(2)^{\circ} \\
& V=845.06(9) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=380 \\
& D_{\mathrm{x}}=1.425 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 341 \mathrm{~K} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 5003 \text { reflections } \\
& \theta=4.8-67.8^{\circ} \\
& \mu=5.09 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Plate, pink } \\
& 0.40 \times 0.20 \times 0.01 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: Bruker TXS fine-focus rotating anode
Bruker Helios multilayer confocal mirror monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.13$
1480 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& T_{\min }=0.235, T_{\max }=0.951 \\
& 4872 \text { measured reflections } \\
& 1480 \text { independent reflections } \\
& 1468 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.028 \\
& \theta_{\max }=68.1^{\circ}, \theta_{\min }=4.8^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-8 \rightarrow 7 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0393 P)^{2}+1.0478 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$-0.0082(2)$	$0.2157(3)$	$0.3798(2)$	$0.0226(5)$
C2	$0.0225(2)$	$0.2350(4)$	$0.5097(2)$	$0.0271(5)$
H2	0.1068	0.2029	0.5658	0.033^{*}
C3	$-0.0686(2)$	$0.3004(4)$	$0.5579(2)$	$0.0309(5)$
H3	-0.0463	0.3138	0.6467	0.037^{*}
C4	$-0.1921(2)$	$0.3461(4)$	$0.4770(3)$	$0.0314(6)$
H4	-0.2547	0.3904	0.5100	0.038^{*}
C5	$-0.2237(2)$	$0.3270(4)$	$0.3480(3)$	$0.0347(6)$
H5	-0.3085	0.3581	0.2923	0.042^{*}
C6	$-0.1329(2)$	$0.2628(4)$	$0.2992(2)$	$0.0300(5)$
H6	-0.1556	0.2508	0.2103	0.036^{*}
C7	$0.0885(2)$	$0.1450(3)$	$0.3270(2)$	$0.0222(5)$
C8	$0.3424(2)$	$0.0498(4)$	$0.3534(2)$	$0.0288(5)$
H8A	0.3123	-0.0796	0.3375	0.035^{*}
H8B	0.3313	0.1080	0.2710	0.035^{*}

C9	$0.4854(2)$	$0.0543(4)$	$0.4385(2)$	$0.0270(5)$
H9A	0.5121	0.1841	0.4594	0.032^{*}
H9B	0.5381	0.0031	0.3913	0.032^{*}
S1	$0.04887(5)$	$0.05242(9)$	$0.18505(5)$	$0.0286(2)$
S2	$0.24732(5)$	$0.17228(9)$	$0.42927(5)$	$0.0278(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0177(10)$	$0.0217(12)$	$0.0276(11)$	$-0.0011(9)$	$0.0072(9)$	$0.0005(9)$
C2	$0.0197(11)$	$0.0330(13)$	$0.0271(11)$	$0.0003(10)$	$0.0064(9)$	$0.0023(10)$
C3	$0.0304(12)$	$0.0364(14)$	$0.0286(12)$	$-0.0004(11)$	$0.0136(10)$	$-0.0013(11)$
C4	$0.0255(12)$	$0.0310(14)$	$0.0429(14)$	$0.0014(10)$	$0.0186(11)$	$-0.0034(11)$
C5	$0.0189(11)$	$0.0430(16)$	$0.0389(14)$	$0.0067(11)$	$0.0063(10)$	$-0.0015(12)$
C6	$0.0210(11)$	$0.0391(15)$	$0.0269(11)$	$0.0026(10)$	$0.0047(9)$	$-0.0026(10)$
C7	$0.0169(10)$	$0.0228(12)$	$0.0255(11)$	$0.0010(8)$	$0.0058(8)$	$0.0044(9)$
C8	$0.0178(11)$	$0.0406(15)$	$0.0283(11)$	$0.0071(10)$	$0.0087(9)$	$-0.0003(10)$
C9	$0.0172(11)$	$0.0335(14)$	$0.0312(12)$	$0.0040(9)$	$0.0097(9)$	$0.0022(10)$
S1	$0.0211(3)$	$0.0387(4)$	$0.0246(3)$	$-0.0006(2)$	$0.0062(2)$	$-0.0052(2)$
S2	$0.0143(3)$	$0.0394(4)$	$0.0271(3)$	$0.0035(2)$	$0.0040(2)$	$-0.0065(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C2	1.392 (3)	C6-H6	0.9500
C1-C6	1.395 (3)	C7-S1	1.649 (2)
C1-C7	1.487 (3)	C7-S2	1.732 (2)
C2-C3	1.386 (4)	C8-C9	1.527 (3)
C2-H2	0.9500	C8-S2	1.807 (2)
C3-C4	1.383 (4)	C8-H8A	0.9900
C3-H3	0.9500	C8-H8B	0.9900
C4-C5	1.381 (4)	C9-C9 ${ }^{\text {i }}$	1.530 (5)
C4-H4	0.9500	C9-H9A	0.9900
C5-C6	1.384 (3)	C9-H9B	0.9900
C5-H5	0.9500		
C2-C1-C6	118.6 (2)	C1-C6-H6	119.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	121.2 (2)	C1-C7-S 1	123.48 (16)
C6- $\mathrm{C} 1-\mathrm{C} 7$	120.2 (2)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 2$	113.01 (16)
C3-C2-C1	120.7 (2)	S1-C7-S2	123.51 (13)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6	C9-C8-S2	109.43 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6	C9-C8-H8A	109.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.1 (2)	S2-C8-H8A	109.8
C4-C3-H3	120.0	C9-C8-H8B	109.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.0	S2-C8-H8B	109.8
C5-C4-C3	119.6 (2)	H8A-C8-H8B	108.2
C5-C4-H4	120.2	C8-C9-C9 ${ }^{\text {i }}$	113.5 (2)
C3-C4-H4	120.2	C8-C9-H9A	108.9
C4-C5-C6	120.5 (2)	C9-C9-H9A	108.9

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.4(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(4)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.5(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.1(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.1(4)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.4(2)$

C8-C9-H9B	108.9
C9i-C9-H9B	108.9
H9A-C9-H9B	107.7
C7-S2-C8	104.20 (11)
C2-C1-C7-S 1	158.30 (19)
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 1$	-21.2 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 2$	-22.3 (3)
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{S} 2$	158.2 (2)
S2-C8-C9-C9 ${ }^{\text {i }}$	66.7 (3)
C1-C7-S2-C8	172.54 (17)
S1-C7-S2-C8	-8.11 (19)
C9-C8-S2-C7	-176.88 (17)

Symmetry code: (i) $-x+1,-y,-z+1$.

