

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 4-Nitroanilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

#### P. K. Sivakumar,<sup>a</sup> M. Krishna Kumar,<sup>b</sup> G. Chakkaravarthi,<sup>c</sup>\* R. Mohan Kumar<sup>b</sup> and R. Kanagadurai<sup>b</sup>\*

<sup>a</sup>Department of Physics, M. N. M. Jain Engineering College, Chennai 600 097, India, <sup>b</sup>Department of Physics, Presidency College, Chennai 600 005, India, and <sup>c</sup>Department of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi\_2005@yahoo.com, srkanagadurai@yahoo.co.in

Received 22 September 2013; accepted 29 September 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.107; data-to-parameter ratio = 15.4.

In the title hydrated salt,  $C_6H_7N_2O_2^+ \cdot C_7H_5O_6S^- \cdot H_2O$ , the benzene ring of the cation makes a dihedral angle of 1.32 (19)° with the attached nitro group. In the anion, an intramolecular  $O-H \cdot \cdot \cdot O$  hydrogen bond with an S(6) ring motif is formed between the carboxyl and hydroxy groups; the dihedral angle between the carboxyl group and the benzene ring is 8.76 (8)°. The crystal structure exhibits intermolecular  $N-H \cdot \cdot \cdot O$ ,  $O-H \cdot \cdot \cdot O$ ,  $C-H \cdot \cdot \cdot O$ , and  $\pi - \pi$  [centroid–centroid distances = 3.6634 (9) and 3.7426 (9) Å] interactions to form a threedimensional network.

#### **Related literature**

For molecular compounds with nonlinear optical properties, see: Nalwa & Miyata (1997). For related structures, see: Asiri *et al.* (2010); Krishnakumar *et al.* (2012); Sudhahar *et al.* (2013).



#### Experimental

Crystal data  $C_6H_7N_2O_2^+ \cdot C_7H_5O_6S^- \cdot H_2O$   $M_r = 374.32$ Orthorhombic, *Pbca* a = 13.2676 (3) Å

b = 13.5572 (3) Å c = 17.1246 (4) Å V = 3080.23 (12) Å<sup>3</sup> Z = 8 Mo  $K\alpha$  radiation  $\mu = 0.27 \text{ mm}^{-1}$ 

#### Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{min} = 0.934, T_{max} = 0.949$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$   $wR(F^2) = 0.107$  S = 1.033640 reflections 236 parameters 2 restraints

## Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1 - H1A \cdots O9$                 | 0.89     | 1.99                    | 2.841 (2)    | 160                                  |
| $N1 - H1B \cdot \cdot \cdot O1$      | 0.89     | 1.95                    | 2.8357 (18)  | 171                                  |
| $O4-H4A\cdots O5$                    | 0.82     | 1.88                    | 2.6028 (18)  | 146                                  |
| C9−H9···O9                           | 0.93     | 2.57                    | 3.141 (3)    | 121                                  |
| $N1 - H1A \cdots O7^{i}$             | 0.89     | 2.40                    | 2.836 (2)    | 111                                  |
| $N1 - H1C \cdot \cdot \cdot O2^{ii}$ | 0.89     | 1.93                    | 2.8069 (18)  | 168                                  |
| $O4-H4A\cdots O2^{iii}$              | 0.82     | 2.38                    | 2.9494 (16)  | 128                                  |
| O6−H6···O3 <sup>iv</sup>             | 0.82     | 1.86                    | 2.6595 (17)  | 164                                  |
| $O9-H9A\cdots O2^{v}$                | 0.82(1)  | 2.33 (3)                | 3.005 (2)    | 139 (4)                              |
| $O9-H9A\cdots O3^{v}$                | 0.82(1)  | 2.48 (3)                | 3.151 (2)    | 140 (4)                              |
| $O9-H9B\cdots O4^{vi}$               | 0.82 (1) | 2.56 (3)                | 3.283 (2)    | 149 (4)                              |

Symmetry codes: (i)  $-x + \frac{1}{2}, -y, z + \frac{1}{2}$ ; (ii) -x + 1, -y, -z + 1; (iii)  $x - \frac{1}{2}, y, -z + \frac{1}{2}$ ; (iv)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (v)  $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ ; (vi)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank SAIF, IIT, Madras, for the data collection. MKK thanks the Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No.03 (1200)/11/EMR-II].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5308).

#### References

- Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, 01765.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, 03268.
- Nalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.

 $0.26 \times 0.24 \times 0.20 \text{ mm}$ 

15578 measured reflections

3640 independent reflections

3062 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

T = 295 K

 $R_{\rm int} = 0.024$ 

refinement  $\Delta \rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ 

# supporting information

Acta Cryst. (2013). E69, o1609 [doi:10.1107/S1600536813026779]

## 4-Nitroanilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

#### P. K. Sivakumar, M. Krishna Kumar, G. Chakkaravarthi, R. Mohan Kumar and R. Kanagadurai

#### S1. Comment

In continuation of our studies of molecular compounds with non-linear optical properties which are used in optoelectronic and photonic devices (Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound (I), (Fig. 1). The title compound consists of one  $C_6H_7N_2O_2^+$  cation, one  $C_7H_5O_6S^-$  anion and a water molecule in the asymmetric unit. The geometric parameters of the title compound are comparable with the reported structures (Asiri *et al.*, 2010; Krishnakumar *et al.*, 2012; Sudhahar *et al.*, 2013).

The dihedral angle between the two benzene rings (C1–C6) and (C8–C13) is 8.18 (7)°. The benzene ring (C1–C6) is planar [r.m.s. deviation = 0.0152 (17) Å] and makes a dihedral angle of 1.32 (19)° with the attached nitro group. The mean plane of carboxy group is inclined at an angle of 8.76 (8)° with the planar [r.m.s. deviation = 0.0137 (16) Å] benzene ring (C8–C13) of anion.

The crystal structure exhibits intermolecular N—H···O, O—H···O, C—H···O hydrogen bonds (Table 1 & Fig. 2) and  $\pi$ - $\pi$  interactions [[ $Cg1\cdots Cg2 = 3.7426$  (9)Å,  $Cg1\cdots Cg2^{i} = 3.6634$  (9)Å; (i) 1/2-x, 1/2+y, z; Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C8–C13), respectively] to form a three-dimensional molecular arrangement.

#### **S2.** Experimental

The title compound was synthesized in ethanol by using 4-nitroaniline (6.90 g) and 5-sulfosalicylic acid dihydrate (12.711 g) in equimolar ratio. The saturated solution was allowed to evaporating slowly at room temperature. After the evaporation period of three weeks the crystals were collected and used for X-ray data collection.

#### **S3. Refinement**

H atoms of the water molecule were located in a difference Fourier map and were refined; the O9—H9A and O9—H9B distances were restrained to 0.82 (1) Å. All other H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.89 Å and O—H = 0.82 Å) and refined using riding model with  $U_{iso}(H) = 1.2U_{eq}(C)$  and  $1.5U_{eq}(N, O)$ .



#### Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.



#### Figure 2

The packing of the title compound, viewed down the *b* axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

 $h = -15 \rightarrow 11$ 

 $k = -18 \rightarrow 12$ 

 $l = -22 \rightarrow 17$ 

#### 4-Nitrobenzeneaminium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

#### Crystal data

| F(000) = 1552                                                       |
|---------------------------------------------------------------------|
| $D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$                           |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å               |
| Cell parameters from 3844 reflections                               |
| $\theta = 2.4 - 28.4^{\circ}$                                       |
| $\mu=0.27~\mathrm{mm^{-1}}$                                         |
| T = 295  K                                                          |
| Block, colourless                                                   |
| $0.26 \times 0.24 \times 0.20 \text{ mm}$                           |
|                                                                     |
| 15578 measured reflections                                          |
| 3640 independent reflections                                        |
| 3062 reflections with $I > 2\sigma(I)$                              |
| $R_{\rm int} = 0.024$                                               |
| $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$ |
|                                                                     |

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{min} = 0.934, T_{max} = 0.949$ 

Acta Cryst. (2013). E69, o1609

Refinement

| Refinement on $F^2$                              | Hydrogen site location: inferred from                          |
|--------------------------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full                       | neighbouring sites                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                  | H atoms treated by a mixture of independent                    |
| $wR(F^2) = 0.107$                                | and constrained refinement                                     |
| <i>S</i> = 1.03                                  | $w = 1/[\sigma^2(F_o^2) + (0.0571P)^2 + 1.2353P]$              |
| 3640 reflections                                 | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| 236 parameters                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                            |
| 2 restraints                                     | $\Delta  ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$          |
| Primary atom site location: structure-invariant  | $\Delta  ho_{ m min} = -0.34 \  m e \  m \AA^{-3}$             |
| direct methods                                   | Extinction correction: SHELXL97 (Sheldrick,                    |
| Secondary atom site location: difference Fourier | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| map                                              | Extinction coefficient: 0.0019 (4)                             |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|--------------|-----------------------------|
| C1  | 0.23376 (11) | 0.22732 (11)  | 0.36435 (9)  | 0.0324 (3)                  |
| H1  | 0.1676       | 0.2374        | 0.3805       | 0.039*                      |
| C2  | 0.31016 (11) | 0.22696 (11)  | 0.41813 (9)  | 0.0291 (3)                  |
| H2  | 0.2958       | 0.2364        | 0.4708       | 0.035*                      |
| C3  | 0.41012 (10) | 0.21236 (10)  | 0.39384 (8)  | 0.0249 (3)                  |
| C4  | 0.43237 (10) | 0.20070 (10)  | 0.31573 (8)  | 0.0267 (3)                  |
| H4  | 0.4989       | 0.1928        | 0.2998       | 0.032*                      |
| C5  | 0.35471 (11) | 0.20079 (11)  | 0.26038 (8)  | 0.0277 (3)                  |
| C6  | 0.25490 (11) | 0.21266 (11)  | 0.28527 (9)  | 0.0304 (3)                  |
| C7  | 0.37580 (12) | 0.18773 (12)  | 0.17625 (9)  | 0.0343 (3)                  |
| C8  | 0.10072 (13) | -0.02919 (13) | 0.38844 (10) | 0.0402 (4)                  |
| H8  | 0.0307       | -0.0320       | 0.3888       | 0.048*                      |
| C9  | 0.15443 (12) | -0.02301 (13) | 0.45736 (9)  | 0.0371 (4)                  |
| H9  | 0.1210       | -0.0220       | 0.5051       | 0.045*                      |
| C10 | 0.25815 (12) | -0.01838 (11) | 0.45470 (9)  | 0.0301 (3)                  |
| C11 | 0.31058 (12) | -0.02335 (11) | 0.38520 (10) | 0.0359 (4)                  |
| H11 | 0.3807       | -0.0228       | 0.3848       | 0.043*                      |
| C12 | 0.25710 (13) | -0.02920 (12) | 0.31634 (10) | 0.0391 (4)                  |
| H12 | 0.2905       | -0.0319       | 0.2686       | 0.047*                      |
| C13 | 0.15317 (13) | -0.03101 (12) | 0.31948 (9)  | 0.0361 (4)                  |
| N1  | 0.31299 (10) | -0.00774 (10) | 0.52813 (8)  | 0.0351 (3)                  |
| H1A | 0.2733       | 0.0208        | 0.5634       | 0.053*                      |
| H1B | 0.3674       | 0.0294        | 0.5205       | 0.053*                      |
| H1C | 0.3317       | -0.0670       | 0.5452       | 0.053*                      |
| N2  | 0.09540 (14) | -0.03548 (12) | 0.24631 (9)  | 0.0513 (4)                  |
| 01  | 0.47752 (9)  | 0.12506 (9)   | 0.51725 (7)  | 0.0434 (3)                  |
| O2  | 0.59937 (8)  | 0.18656 (10)  | 0.42481 (7)  | 0.0403 (3)                  |

| O3  | 0.50743 (9)  | 0.30034 (8)   | 0.50523 (7)  | 0.0391 (3)   |
|-----|--------------|---------------|--------------|--------------|
| 04  | 0.17634 (9)  | 0.21175 (11)  | 0.23553 (7)  | 0.0485 (4)   |
| H4A | 0.1969       | 0.2027        | 0.1909       | 0.073*       |
| 05  | 0.30993 (9)  | 0.17648 (13)  | 0.12778 (7)  | 0.0580 (4)   |
| O6  | 0.47157 (9)  | 0.18949 (11)  | 0.15782 (7)  | 0.0489 (3)   |
| H6  | 0.4778       | 0.1818        | 0.1106       | 0.073*       |
| 07  | 0.14092 (17) | -0.03731 (18) | 0.18586 (9)  | 0.1005 (8)   |
| 08  | 0.00426 (13) | -0.03699 (16) | 0.24947 (10) | 0.0834 (6)   |
| 09  | 0.16700 (15) | 0.10629 (14)  | 0.60925 (13) | 0.0740 (5)   |
| S1  | 0.50511 (2)  | 0.20521 (3)   | 0.46557 (2)  | 0.02593 (12) |
| H9A | 0.152 (3)    | 0.149 (2)     | 0.5775 (18)  | 0.143 (16)*  |
| H9B | 0.186 (3)    | 0.136 (3)     | 0.6481 (16)  | 0.167 (19)*  |
|     | ( )          |               |              | × ,          |

Atomic displacement parameters  $(Å^2)$ 

|            | <b>1</b> 711 | <b>I</b> 722 | <b>1</b> 733    | I /12        | <i>T</i> 713 | 1 /23        |
|------------|--------------|--------------|-----------------|--------------|--------------|--------------|
|            | 0            | 0            | U <sup>22</sup> | 0            |              | 0            |
| C1         | 0.0208 (7)   | 0.0399 (8)   | 0.0365 (8)      | 0.0032 (6)   | 0.0027 (6)   | -0.0022 (6)  |
| C2         | 0.0273 (7)   | 0.0328 (7)   | 0.0273 (7)      | 0.0014 (6)   | 0.0032 (6)   | -0.0012 (6)  |
| C3         | 0.0228 (7)   | 0.0278 (7)   | 0.0240 (7)      | -0.0001(5)   | -0.0020(5)   | 0.0014 (5)   |
| C4         | 0.0208 (6)   | 0.0333 (7)   | 0.0260 (7)      | 0.0000 (5)   | 0.0008 (5)   | 0.0018 (6)   |
| C5         | 0.0250 (7)   | 0.0336(7)    | 0.0245 (7)      | -0.0008 (6)  | -0.0022 (5)  | 0.0009 (6)   |
| C6         | 0.0227 (7)   | 0.0364 (8)   | 0.0323 (8)      | 0.0010 (6)   | -0.0050 (6)  | 0.0002 (6)   |
| C7         | 0.0281 (8)   | 0.0483 (9)   | 0.0266 (7)      | -0.0008 (6)  | -0.0025 (6)  | 0.0017 (7)   |
| C8         | 0.0297 (8)   | 0.0515 (10)  | 0.0396 (9)      | -0.0019 (7)  | -0.0032 (7)  | 0.0014 (7)   |
| C9         | 0.0310 (8)   | 0.0503 (10)  | 0.0301 (8)      | -0.0037 (7)  | 0.0030 (6)   | 0.0015 (7)   |
| C10        | 0.0304 (8)   | 0.0277 (7)   | 0.0322 (7)      | -0.0013 (6)  | -0.0031 (6)  | 0.0043 (6)   |
| C11        | 0.0295 (8)   | 0.0346 (8)   | 0.0436 (9)      | -0.0011 (6)  | 0.0052 (7)   | 0.0011 (7)   |
| C12        | 0.0455 (9)   | 0.0387 (8)   | 0.0332 (8)      | -0.0023 (7)  | 0.0086 (7)   | 0.0014 (7)   |
| C13        | 0.0426 (9)   | 0.0348 (8)   | 0.0307 (8)      | -0.0011 (7)  | -0.0049 (7)  | 0.0024 (6)   |
| N1         | 0.0306 (7)   | 0.0385 (7)   | 0.0362 (7)      | -0.0016 (5)  | -0.0047 (5)  | 0.0027 (6)   |
| N2         | 0.0630(11)   | 0.0556 (10)  | 0.0354 (8)      | -0.0016 (8)  | -0.0099 (7)  | 0.0018 (7)   |
| O1         | 0.0402 (6)   | 0.0507 (7)   | 0.0394 (6)      | -0.0103 (5)  | -0.0074 (5)  | 0.0197 (6)   |
| O2         | 0.0242 (5)   | 0.0657 (8)   | 0.0310 (6)      | 0.0081 (5)   | 0.0021 (4)   | 0.0055 (5)   |
| O3         | 0.0451 (7)   | 0.0419 (7)   | 0.0302 (6)      | -0.0013 (5)  | -0.0072 (5)  | -0.0047 (5)  |
| O4         | 0.0238 (6)   | 0.0848 (10)  | 0.0370 (7)      | 0.0052 (6)   | -0.0083 (5)  | -0.0074 (6)  |
| 05         | 0.0323 (7)   | 0.1114 (12)  | 0.0304 (6)      | -0.0045 (7)  | -0.0071 (5)  | -0.0088 (7)  |
| O6         | 0.0289 (6)   | 0.0934 (10)  | 0.0243 (6)      | -0.0025 (6)  | 0.0010 (5)   | 0.0018 (6)   |
| 07         | 0.0957 (14)  | 0.176 (2)    | 0.0304 (8)      | -0.0207 (14) | -0.0011 (8)  | 0.0029 (10)  |
| 08         | 0.0567 (11)  | 0.1344 (19)  | 0.0590 (10)     | 0.0062 (10)  | -0.0251 (8)  | -0.0088 (11) |
| 09         | 0.0787 (12)  | 0.0606 (10)  | 0.0827 (13)     | 0.0281 (9)   | -0.0161 (10) | -0.0100(10)  |
| <b>S</b> 1 | 0.0221 (2)   | 0.0348 (2)   | 0.02094 (19)    | -0.00090(13) | -0.00073(12) | 0.00349 (13) |
|            |              | (=)          | ()              | (-0)         |              | (            |

### Geometric parameters (Å, °)

| C1—C2 | 1.370 (2)   | C10-C11 | 1.380 (2)   |
|-------|-------------|---------|-------------|
| C1—C6 | 1.397 (2)   | C10—N1  | 1.4599 (19) |
| C1—H1 | 0.9300      | C11—C12 | 1.378 (2)   |
| C2—C3 | 1.4040 (19) | C11—H11 | 0.9300      |
|       |             |         |             |

| С?—Н?                     | 0.9300                 | C12_C13                    | 1380(2)                |
|---------------------------|------------------------|----------------------------|------------------------|
| $C_2  C_2$                | 1 379 (2)              | C12 H12                    | 0.0300                 |
| $C_3 = C_4$               | 1.579(2)<br>1.7625(14) | C12—1112<br>C13 N2         | 1.470(2)               |
| C4_C5                     | 1.7023(14)             |                            | 1.470(2)               |
| C4 - C3                   | 1.400 (2)              |                            | 0.8900                 |
| C4—H4                     | 0.9300                 | NI—HIB                     | 0.8900                 |
| C5—C6                     | 1.400 (2)              | NI—HIC                     | 0.8900                 |
| C5—C7                     | 1.478 (2)              | N2—O7                      | 1.199 (2)              |
| C6—O4                     | 1.3462 (18)            | N2—O8                      | 1.211 (2)              |
| C7—O5                     | 1.2150 (19)            | O1—S1                      | 1.4484 (12)            |
| C7—O6                     | 1.309 (2)              | O2—S1                      | 1.4544 (11)            |
| C8—C13                    | 1.371 (2)              | O3—S1                      | 1.4579 (12)            |
| C8—C9                     | 1.381 (2)              | O4—H4A                     | 0.8200                 |
| С8—Н8                     | 0.9300                 | O6—H6                      | 0.8200                 |
| C9—C10                    | 1.378 (2)              | О9—Н9А                     | 0.821 (10)             |
| С9—Н9                     | 0.9300                 | O9—H9B                     | 0.815 (10)             |
|                           |                        |                            |                        |
| C2-C1-C6                  | 120.18 (13)            | C11—C10—N1                 | 119.75 (14)            |
| C2-C1-H1                  | 119.9                  | C12—C11—C10                | 118.75 (15)            |
| C6-C1-H1                  | 119.9                  | C12 - C11 - H11            | 120.6                  |
| C1 - C2 - C3              | 120.03 (13)            | C10-C11-H11                | 120.6                  |
| C1 - C2 - H2              | 120.05 (15)            | $C_{11}$ $C_{12}$ $C_{13}$ | 118 81 (15)            |
| $C_1 = C_2 = H_2$         | 120.0                  | $C_{11} = C_{12} = C_{13}$ | 120.6                  |
| $C_3 = C_2 = C_2$         | 120.0<br>120.20(12)    | $C_{12} = C_{12} = H_{12}$ | 120.0                  |
| C4 - C3 - C2              | 120.39(13)             | $C_{13} - C_{12} - H_{12}$ | 120.0                  |
| C4 - C3 - S1              | 121.11(11)             | $C_{8}$ $C_{12}$ $N_{2}$   | 122./1 (16)            |
| $C_2 = C_3 = S_1$         | 118.47 (11)            | C8 - C13 - N2              | 118.05 (16)            |
| C3—C4—C5                  | 119.94 (13)            | C12—C13—N2                 | 119.24 (16)            |
| C3—C4—H4                  | 120.0                  | C10—N1—H1A                 | 109.5                  |
| C5—C4—H4                  | 120.0                  | C10—N1—H1B                 | 109.5                  |
| C4—C5—C6                  | 119.34 (13)            | H1A—N1—H1B                 | 109.5                  |
| C4—C5—C7                  | 121.36 (13)            | C10—N1—H1C                 | 109.5                  |
| C6—C5—C7                  | 119.30 (13)            | H1A—N1—H1C                 | 109.5                  |
| O4—C6—C1                  | 117.34 (13)            | H1B—N1—H1C                 | 109.5                  |
| O4—C6—C5                  | 122.58 (14)            | O7—N2—O8                   | 122.79 (19)            |
| C1—C6—C5                  | 120.08 (13)            | O7—N2—C13                  | 118.31 (19)            |
| O5—C7—O6                  | 122.38 (15)            | O8—N2—C13                  | 118.91 (17)            |
| O5—C7—C5                  | 123.01 (15)            | C6—O4—H4A                  | 109.5                  |
| O6—C7—C5                  | 114.61 (13)            | С7—О6—Н6                   | 109.5                  |
| C13 - C8 - C9             | 118 38 (16)            | H9A                        | 106 (4)                |
| $C_{13} = C_{8} = H_{8}$  | 120.8                  | 01 - 1 - 02                | 112 34 (7)             |
| C9-C8-H8                  | 120.8                  | 01 - 51 - 03               | 112.51(7)<br>112.60(8) |
| $C_{10}$ $C_{9}$ $C_{8}$  | 110.32 (15)            | $O_2 S_1 O_3$              | 112.00(0)              |
| $C_{10} = C_{9} = C_{8}$  | 119.52 (15)            | 02 - 51 - 05               | 111.05(7)              |
| $C_{10} C_{9} H_{9}$      | 120.5                  | 01 - 31 - 03               | 100.04(7)              |
| $C_0 = C_1 = C_1 = C_1$   | 120.3<br>121.07.(15)   | 02 - 51 - 05               | 100.00(7)              |
| $C_{2} = C_{10} = C_{11}$ | 121.97 (13)            | 03-51-03                   | 100.93 (7)             |
| C9—C10—N1                 | 118.28 (14)            |                            |                        |
|                           | 0.2 (2)                |                            | 177 40 (15)            |
| $C_0 - C_1 - C_2 - C_3$   | 0.3 (2)                | C8—C9—C10—N1               | 1/7.48 (15)            |
| C1-C2-C3-C4               | 1.6 (2)                | C9—C10—C11—C12             | 2.6 (2)                |

| C1-C2-C3-S1 $C2-C3-C4-C5$ $S1-C3-C4-C5$ $C3-C4-C5-C6$ $C3-C4-C5-C7$ $C2-C1-C6-04$ $C2-C1-C6-C5$ $C4-C5-C6-04$ $C7-C5-C6-04$ $C4-C5-C6-C1$ $C7-C5-C6-C1$ $C4-C5-C7-05$ | -176.32 (11)<br>-1.7 (2)<br>176.15 (10)<br>-0.1 (2)<br>-179.54 (14)<br>178.63 (14)<br>-2.1 (2)<br>-178.81 (14)<br>0.7 (2)<br>2.0 (2)<br>-178.55 (14)<br>171.57 (17) | $\begin{array}{c} N1 - C10 - C11 - C12 \\ C10 - C11 - C12 - C13 \\ C9 - C8 - C13 - C12 \\ C9 - C8 - C13 - N2 \\ C11 - C12 - C13 - N2 \\ C11 - C12 - C13 - N2 \\ C8 - C13 - N2 - O7 \\ C12 - C13 - N2 - O7 \\ C12 - C13 - N2 - O8 \\ C12 - C13 - N2 - O8 \\ C12 - C13 - N2 - O8 \\ C4 - C3 - S1 - O1 \\ C2 - C3 - S1 - O1 \\ C2 - C3 - S1 - O1 \\ \end{array}$ | -177.29 (14)<br>-0.7 (2)<br>1.5 (3)<br>-178.74 (15)<br>-1.3 (3)<br>178.93 (14)<br>-179.8 (2)<br>-0.1 (3)<br>0.3 (3)<br>-179.96 (18)<br>-120.21 (13)<br>57 67 (13) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C7C5C6C1<br>C7C5C6C1<br>C4C5C7O5                                                                                                                                      | 0.7 (2)<br>2.0 (2)<br>-178.55 (14)<br>171.57 (17)                                                                                                                   | $C_{3}$ $C_{13}$ $N_{2}$ $O_{8}$<br>$C_{12}$ $C_{13}$ $N_{2}$ $O_{8}$<br>$C_{4}$ $C_{3}$ $S_{1}$ $O_{1}$<br>$C_{2}$ $C_{3}$ $S_{1}$ $O_{1}$                                                                                                                                                                                                                   | -179.96 (18)<br>-120.21 (13)<br>57.67 (13)                                                                                                                        |
| C6-C5-C7-O5  C4-C5-C7-O6  C6-C5-C7-O6  C13-C8-C9-C10  C8-C9-C10  C11                                                                                                  | -7.9 (3)<br>-8.6 (2)<br>171.95 (14)<br>0.3 (3)<br>2.4 (2)                                                                                                           | C4-C3-S1-O2<br>C2-C3-S1-O2<br>C4-C3-S1-O3<br>C2-C3-S1-O3                                                                                                                                                                                                                                                                                                      | 0.12 (14)<br>178.00 (11)<br>119.10 (12)<br>-63.02 (13)                                                                                                            |
|                                                                                                                                                                       | 2.7 (3)                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A    | $D^{\dots}A$ | D—H···A |
|------------------------------------|-------------|----------|--------------|---------|
| N1—H1A…O9                          | 0.89        | 1.99     | 2.841 (2)    | 160     |
| N1—H1 <i>B</i> …O1                 | 0.89        | 1.95     | 2.8357 (18)  | 171     |
| O4—H4 <i>A</i> …O5                 | 0.82        | 1.88     | 2.6028 (18)  | 146     |
| С9—Н9…О9                           | 0.93        | 2.57     | 3.141 (3)    | 121     |
| N1—H1A····O7 <sup>i</sup>          | 0.89        | 2.40     | 2.836 (2)    | 111     |
| N1—H1 <i>C</i> ···O2 <sup>ii</sup> | 0.89        | 1.93     | 2.8069 (18)  | 168     |
| O4—H4A···O2 <sup>iii</sup>         | 0.82        | 2.38     | 2.9494 (16)  | 128     |
| O6—H6…O3 <sup>iv</sup>             | 0.82        | 1.86     | 2.6595 (17)  | 164     |
| O9—H9 <i>A</i> ···O2 <sup>v</sup>  | 0.82(1)     | 2.33 (3) | 3.005 (2)    | 139 (4) |
| O9—H9 <i>A</i> ···O3 <sup>v</sup>  | 0.82(1)     | 2.48 (3) | 3.151 (2)    | 140 (4) |
| O9—H9 <i>B</i> ⋯O4 <sup>vi</sup>   | 0.82 (1)    | 2.56 (3) | 3.283 (2)    | 149 (4) |
|                                    |             |          |              |         |

Symmetry codes: (i) -x+1/2, -y, z+1/2; (ii) -x+1, -y, -z+1; (iii) x-1/2, y, -z+1/2; (iv) x, -y+1/2, z-1/2; (v) x-1/2, -y+1/2, -z+1; (vi) x, -y+1/2, z+1/2.