metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[µ-3,5-bis(pyridin-2-yl)-1H-pyrazole]bis[dibromidoiron(III)]

Nagisa Katsuta,^a Akio Mishima,^a Akira Fuyuhiro,^b Shinya Hayami^c and Satoshi Kawata^a*

^aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, ^bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and ^cDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan

Correspondence e-mail: kawata@fukuoka-u.ac.jp

Received 9 September 2013; accepted 26 September 2013

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.004 Å; R factor = 0.023; wR factor = 0.060; data-to-parameter ratio = 17.9.

The title dinuclear complex, $[Fe_2Br_4(C_{13}H_9N_4)_2]$, which lies on an inversion center, features two approximately planar bis(pyridin-2-yl)pyrazole (bpypz⁻) ligands [maximum deviation = 0.082 (3) Å] and four bromide ions. Each Fe^{III} ion is octahedrally coordinated by four N atoms of two bpypz⁻ ligands and two Br ions. π - π stacking interactions [centroidcentroid distances = 3.7004(17)-4.0123(18) Å] are observed between pyridyl and pyrazole rings, and between pyridyl and pyridyl rings of adjacent complex molecules.

Related literature

For metal complexes of 3,5-bis(pyridin-2-yl)pyrazole, see: Yoneda, Adachi, Hayami et al. (2006); Yoneda, Adachi, Nishio et al. (2006); Ishikawa et al. (2010); Mishima et al. (2011); Washizaki et al. (2012).

Crystal data

$[Fe_2(C_{13}H_9N_4)_2Br_4]$	$V = 2834.7 (10) \text{ Å}^3$
$M_r = 873.79$	Z = 4
Monoclinic, C2/c	Mo $K\alpha$ radiation
a = 18.180 (4) Å	$\mu = 6.71 \text{ mm}^{-1}$
b = 14.857 (3) Å	$T = 110 { m K}$
c = 10.530 (3) Å	$0.10 \times 0.10 \times 0.10$ mm
$\beta = 94.646 \ (3)^{\circ}$	

Data collection

Rigaku Saturn724 diffractometer Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{\min} = 0.408, T_{\max} = 0.511$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	181 parameters
$wR(F^2) = 0.060$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
3246 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

16288 measured reflections

 $R_{\rm int} = 0.031$

3246 independent reflections

2730 reflections with $I > 2\sigma(I)$

Table 1

Selecte	d	bond	length	IS ((A)).	

Br1-Fe1	2.5119 (6)	Fe1-N2	2.070 (2)
Br2-Fe1	2.4652 (6)	Fe1-N3 ⁱ	2.0683 (19)
Fe1-N1	2.1882 (19)	Fe1-N4 ⁱ	2.183 (2)

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

This work was supported by the fund Grant-in-Aids for Science Research (No. 25410078) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5304).

References

- Ishikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139-11144.
- Mishima, A., Fuyuhiro, A., Kumagai, H. & Kawata, S. (2011). Acta Cryst. E67, m1523-m1524.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Washizaki, T., Ishikawa, R., Yoneda, K., Kitagawa, S., Kaizaki, S., Fuyuhiro, A. & Kawata, S. (2012). RSC Adv. 2, 12169-12172.
- Yoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45-47.
- Yoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459-5461.

supporting information

Acta Cryst. (2013). E69, m574 [doi:10.1107/S1600536813026573]

Bis[µ-3,5-bis(pyridin-2-yl)-1H-pyrazole]bis[dibromidoiron(III)]

Nagisa Katsuta, Akio Mishima, Akira Fuyuhiro, Shinya Hayami and Satoshi Kawata

S1. Comment

3,5-Bis(pyridin-2-yl)pyrazole[Hbpypz] is a versatile ligand in the construction of a series of mononuclear, dinuclear and polynuclear complexes (Yoneda, Adachi, Hayami *et al.*, 2006; Yoneda, Adachi, Nishio *et al.*, 2006; Ishikawa *et al.*, 2010). The dinuclear complexes show the structure where two bpypz⁻ ions are bridging two metal ions with the axial coordination sites. This kind of dinuclear complexes with transition metal ions were reported previously (Mishima *et al.*, 2011; Washizaki *et al.*, 2012). We have succeeded in synthesizing the title compound that contains iron(III) ion for the first time. To the best of our knowledge, similar compounds with the only iron(II) ions in it (Yoneda, Adachi, Hayami *et al.*, 2006; Yoneda, Adachi, Nishio *et al.*, 2006). In the dinuclear complex, four N donors from two deprotonated tetrahedral bridging bpypz⁻ ligands make an equatorial plane (Table 1). The iron(III) ions is strivalent. There are π - π stacking interactions between pyridyl and pyrazole rings and between pyridyl and pyridyl rings [centroid-centroid distances 3.7004 (17) Å, 4.0123 (18) Å and 4.0022 (18) Å] to form a three-dimensional structure.

S2. Experimental

A methanolic solution of FeBr₃ (5 ml, 5 mmol L^{-1}) was transferred to a glass tube, and methanolic solution of Hbpypz (5 ml, 5 mmol L^{-1}) was poured into the glass tube without mixing the solutions. Black crystals began to form at ambient temperature within one week (yield 58%). Element analysis: calcd (%) for C₂₆H₁₈Fe₂N₈Br₄: C 35.74, H 2.08, N 12.83; found; C 35.97, H 2.26, N 12.67.

S3. Refinement

The C-bound hydrogen atoms in the bpypz⁻ ion were placed at calculated positions (C—H = 0.95 Å) and were treated as riding on their parent atoms with $U_{iso}(H)$ set to $1.2U_{eq}(C)$.

Figure 1

An ORTEP drawing of the title complex, showing 50% probability displacement elipsoids.

Figure 2

A packing diagram of the title compound, viewed along the *b* axis.

Bis[µ-3,5-bis(pyridin-2-yl)-1H-pyrazole]bis[dibromidoiron(III)]

Crystal data	
$[Fe_{2}(C_{13}H_{9}N_{4})_{2}Br_{4}]$ $M_{r} = 873.79$ Monoclinic, C2/c Hall symbol: -C 2yc a = 18.180 (4) Å b = 14.857 (3) Å c = 10.530 (3) Å $\beta = 94.646 (3)^{\circ}$ $V = 2834.7 (10) \text{ Å}^{3}$ Z = 4	F(000) = 1688.00 $D_x = 2.047 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 3978 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 6.71 \text{ mm}^{-1}$ T = 110 K Block, black $0.10 \times 0.10 \times 0.10 \text{ mm}$
Data collection Rigaku Saturn724 diffractometer Detector resolution: 7.111 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>BEO 4P</i> : Bigglag, 1908)	3246 independent reflections 2730 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.031$ $\theta_{max} = 27.5^{\circ}$ $h = -23 \rightarrow 23$ $k = -10 \rightarrow 18$
(REQAB; Rigaku, 1998) $T_{min} = 0.408, T_{max} = 0.511$ 16288 measured reflections	$k = -19 \rightarrow 18$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.023$	map
$wR(F^2) = 0.060$	Hydrogen site location: inferred from
S = 1.05	neighbouring sites
3246 reflections	H-atom parameters constrained
181 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.443797 (14)	0.261741 (15)	0.48610 (2)	0.01790 (7)
Br2	0.229060 (14)	0.271406 (15)	0.16980 (2)	0.01985 (8)
Fe1	0.323234 (19)	0.26281 (2)	0.35150 (3)	0.01290 (9)
N1	0.35940 (11)	0.39427 (12)	0.28651 (17)	0.0132 (4)
N2	0.27110 (11)	0.35166 (12)	0.46615 (17)	0.0127 (4)
N3	0.22342 (11)	0.34385 (12)	0.55761 (17)	0.0129 (4)
N4	0.13421 (11)	0.35514 (12)	0.74213 (18)	0.0142 (4)
C1	0.40369 (13)	0.41136 (16)	0.1936 (3)	0.0170 (5)
C2	0.42317 (13)	0.49806 (17)	0.1611 (3)	0.0189 (6)
C3	0.39704 (14)	0.56992 (16)	0.2285 (3)	0.0183 (5)
C4	0.35166 (13)	0.55314 (16)	0.3250 (3)	0.0162 (5)
C5	0.33295 (12)	0.46438 (15)	0.3509 (2)	0.0125 (5)
C6	0.28327 (13)	0.44061 (14)	0.4473 (2)	0.0115 (5)
C7	0.24257 (12)	0.49193 (15)	0.5276 (2)	0.0133 (5)
C8	0.20575 (12)	0.42818 (14)	0.5948 (2)	0.0116 (5)
C9	0.15481 (12)	0.43495 (15)	0.6951 (2)	0.0122 (5)
C10	0.13052 (13)	0.51621 (15)	0.7420 (3)	0.0149 (5)
C11	0.08420 (13)	0.51551 (16)	0.8403 (3)	0.0181 (6)
C12	0.06344 (14)	0.43331 (16)	0.8892 (3)	0.0186 (5)
C13	0.08932 (14)	0.35518 (16)	0.8374 (3)	0.0186 (6)
H1	0.4224	0.3622	0.1484	0.0204*
H2	0.4539	0.5081	0.0936	0.0227*
Н3	0.4102	0.6299	0.2087	0.0220*
H4	0.3335	0.6013	0.3729	0.0195*
Н5	0.2406	0.5556	0.5347	0.0160*
H6	0.1455	0.5716	0.7070	0.0179*
H7	0.0670	0.5703	0.8737	0.0218*
H8	0.0320	0.4309	0.9569	0.0223*
Н9	0.0748	0.2991	0.8706	0.0224*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01636 (13)	0.01757 (13)	0.02030 (13)	0.00300 (9)	0.00476 (9)	-0.00269 (9)
Br2	0.02435 (15)	0.01322 (13)	0.02169 (14)	-0.00149 (10)	0.00004 (10)	0.00022 (9)
Fe1	0.01458 (18)	0.00915 (17)	0.01610 (17)	-0.00004 (13)	0.00820 (13)	-0.00050 (12)
N1	0.0134 (10)	0.0127 (10)	0.0140 (10)	-0.0010 (8)	0.0045 (8)	0.0016 (8)
N2	0.0145 (10)	0.0101 (9)	0.0147 (10)	0.0001 (8)	0.0079 (8)	-0.0001 (8)
N3	0.0127 (10)	0.0106 (10)	0.0163 (10)	0.0013 (8)	0.0067 (8)	-0.0006 (8)
N4	0.0158 (11)	0.0105 (9)	0.0172 (10)	0.0010 (8)	0.0066 (8)	-0.0020 (8)
C1	0.0157 (13)	0.0196 (13)	0.0164 (12)	-0.0010 (10)	0.0055 (10)	-0.0006 (10)
C2	0.0122 (12)	0.0284 (14)	0.0166 (12)	-0.0046 (11)	0.0033 (10)	0.0067 (11)
C3	0.0185 (13)	0.0155 (12)	0.0210 (13)	-0.0039 (10)	0.0010 (11)	0.0075 (10)
C4	0.0167 (13)	0.0126 (12)	0.0194 (13)	-0.0008 (10)	0.0013 (10)	0.0021 (10)
C5	0.0121 (12)	0.0124 (12)	0.0132 (12)	-0.0008 (9)	0.0011 (9)	0.0021 (9)
C6	0.0102 (12)	0.0097 (11)	0.0144 (11)	-0.0002 (9)	0.0005 (9)	-0.0001 (9)
C7	0.0141 (12)	0.0100 (11)	0.0157 (12)	0.0010 (9)	0.0005 (10)	-0.0003 (9)
C8	0.0105 (12)	0.0095 (11)	0.0148 (11)	0.0016 (9)	0.0022 (9)	-0.0022 (9)
C9	0.0088 (11)	0.0133 (11)	0.0146 (11)	-0.0010 (9)	0.0016 (9)	-0.0010 (9)
C10	0.0141 (12)	0.0127 (11)	0.0182 (12)	-0.0007 (10)	0.0026 (10)	-0.0022 (9)
C11	0.0150 (13)	0.0178 (13)	0.0219 (13)	0.0028 (10)	0.0032 (10)	-0.0070 (10)
C12	0.0159 (13)	0.0223 (13)	0.0189 (12)	0.0017 (10)	0.0092 (10)	-0.0026 (10)
C13	0.0196 (13)	0.0158 (12)	0.0217 (13)	-0.0011 (10)	0.0089 (11)	-0.0008 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—Fe1	2.5119 (6)	C5—C6	1.456 (4)
Br2—Fe1	2.4652 (6)	C6—C7	1.395 (4)
Fe1—N1	2.1882 (19)	C7—C8	1.386 (4)
Fe1—N2	2.070 (2)	C8—C9	1.464 (4)
Fe1—N3 ⁱ	2.0683 (19)	C9—C10	1.390 (4)
Fe1—N4 ⁱ	2.183 (2)	C10—C11	1.387 (4)
N1-C1	1.340 (4)	C11—C12	1.389 (4)
N1-C5	1.352 (3)	C12—C13	1.381 (4)
N2—N3	1.352 (3)	C1—H1	0.950
N2—C6	1.357 (3)	C2—H2	0.950
N3—C8	1.359 (3)	C3—H3	0.950
N4—C9	1.350 (3)	C4—H4	0.950
N4—C13	1.344 (4)	С7—Н5	0.950
C1—C2	1.386 (4)	С10—Н6	0.950
C2—C3	1.387 (4)	С11—Н7	0.950
C3—C4	1.382 (4)	С12—Н8	0.950
C4—C5	1.394 (4)	С13—Н9	0.950
N1…C3	2.778 (3)	Br1…H7 ^{viii}	3.2176
$N2 \cdots N2^i$	3.211 (3)	Br1…H8 ^{ix}	3.3070
N2…C9	3.555 (3)	Br1…H9 ^{ix}	2.9039
N3…N3 ⁱ	3.221 (3)	Br2…H4 ⁱⁱ	2.7927

N3…C5	3.552 (3)	Br2…H5 ⁱⁱⁱ	2.9531
N4…C11	2.779 (3)	Br2…H6 ⁱⁱⁱ	2.8284
C1…C4	2.731 (4)	N1···H5 ⁱⁱⁱ	3.3653
C2…C5	2.732 (4)	N2····H3 ^{vi}	3.4557
C4…C7	3.162 (4)	N2····H6 ⁱⁱⁱ	3.5987
C7…C10	3.181 (4)	N3····H7 ⁱⁱⁱ	3.5460
C9…C12	2.736 (4)	C1…H1 ^{iv}	3.5269
C10····C13	2.723 (4)	C1····H2 ^{iv}	3.5841
Br2····C4 ⁱⁱ	3.562 (3)	C1···H4 ⁱⁱⁱ	3.5173
C1····C7 ⁱⁱⁱ	3.587 (4)	C1···H5 ⁱⁱⁱ	3.3217
C2····C2 ^{iv}	3.235 (4)	C2····H2 ^{iv}	3.2792
C2····C3 ^{iv}	3.544 (4)	C2···H5 ⁱⁱⁱ	3.5654
C2···C5 ⁱⁱⁱ	3.578 (4)	C3····H2 ^{iv}	3.2970
C2···C6 ⁱⁱⁱ	3.382 (4)	C4····H2 ^{vi}	3.3814
C2····C7 ⁱⁱⁱ	3.468 (4)	C5····H2 ^{vi}	3.2600
C3····C2 ^{iv}	3.544 (4)	C6…H2 ^{vi}	3.4358
C3····C6 ⁱⁱⁱ	3.476 (4)	C6…H6 ⁱⁱⁱ	3.4177
C3····C7 ⁱⁱⁱ	3.499 (4)	C7…H7 ⁱⁱⁱ	3.5827
C4…Br2 ^v	3.562 (3)	C8····H7 ⁱⁱⁱ	3.2916
C4···C8 ⁱⁱⁱ	3.456 (4)	C10····H8 ⁱⁱⁱ	3.4589
C5····C2 ^{vi}	3.578 (4)	C11····H5 ^{vi}	3.5274
C6…C2 ^{vi}	3.382 (4)	C11····H7 ^{vii}	3.5058
C6····C3 ^{vi}	3.476 (4)	C11…H8 ^x	3.2231
C6…C10 ⁱⁱⁱ	3.438 (4)	C12…H5 ^{vi}	3.4559
C7…C1 ^{vi}	3.587 (4)	C12····H6 ^{vi}	3.5530
C7····C2 ^{vi}	3.468 (4)	C12…H7 ^x	3.5799
C7····C3 ^{vi}	3.499 (4)	C12…H8 ^x	3.1884
C7…C10 ⁱⁱⁱ	3.496 (4)	C13…H5 ^{vi}	3.5645
C7…C11 ⁱⁱⁱ	3.357 (4)	H1···Br1 ^{iv}	3.2719
C8····C4 ^{vi}	3.456 (4)	H1…C1 ^{iv}	3.5269
C8…C11 ⁱⁱⁱ	3.436 (4)	$H1 \cdots H1^{iv}$	3.3987
C10····C6 ^{vi}	3.438 (4)	H1…H4 ⁱⁱⁱ	3.2504
C10…C7 ^{vi}	3.496 (4)	H2····C1 ^{iv}	3.5841
C11····C7 ^{vi}	3.357 (4)	H2···C2 ^{iv}	3.2792
C11····C8 ^{vi}	3.436 (4)	H2····C3 ^{iv}	3.2970
C11····C11 ^{vii}	3.471 (4)	H2…C4 ⁱⁱⁱ	3.3814
C12····C12 ^{vii}	3.580 (4)	H2···C5 ⁱⁱⁱ	3.2600
Fe1…H1	3.2605	H2···C6 ⁱⁱⁱ	3.4358
Fe1…H9 ⁱ	3.2336	H2…H2 ^{iv}	3.5717
N1…H2	3.2407	H2…H2 ^{xi}	2.7001
N1…H4	3.2527	H2····H3 ^{iv}	3.5888
N1…H9 ⁱ	3.5694	H2…H4 ⁱⁱⁱ	3.4658
N2…H5	3.1742	H3…Br1 ⁱⁱⁱ	2.9480
N3…H5	3.1726	H3…N2 ⁱⁱⁱ	3.4557
N4…H6	3.2453	H3…H2 ^{iv}	3.5888
N4…H8	3.2424	H3…H3 ^{iv}	3.3113
С1…Н3	3.2521	H4…Br2 ^v	2.7927
C1…H9 ⁱ	3.2291	H4…C1 ^{vi}	3.5173

C2…H4	3.2519	$H4\cdots H1^{vi}$	3.2504
C3…H1	3.2422	H4····H2 ^{vi}	3.4658
C4…H2	3.2513	H5…Br2 ^{vi}	2.9531
C4…H5	3.1113	H5…N1 ^{vi}	3.3653
С5…Н1	3.1713	H5····C1 ^{vi}	3.3217
С5…Н3	3.2556	H5····C2 ^{vi}	3.5654
С5…Н5	2.9888	H5…C11 ⁱⁱⁱ	3.5274
С6…Н4	2.6951	H5…C12 ⁱⁱⁱ	3.4559
C7…H4	2.9097	H5…C13 ⁱⁱⁱ	3.5645
С7…Н6	2.9367	H6…Br2 ^{vi}	2.8284
С8…Н6	2.7104	H6…N2 ^{vi}	3.5987
С9…Н5	2.9872	H6···C6 ^{vi}	3.4177
С9…Н7	3.2585	H6…C12 ⁱⁱⁱ	3.5530
С9…Н9	3.1692	H6…H8 ⁱⁱⁱ	3.2113
С10…Н5	3.1329	H7…Br1 ^{xii}	3.2176
С10…Н8	3.2546	H7…N3 ^{vi}	3.5460
С11…Н9	3.2375	H7····C7 ^{vi}	3.5827
С12…Н6	3.2537	H7···C8 ^{vi}	3.2916
C13···H1 ⁱ	3.2409	H7···C11 ^{vii}	3.5058
С13…Н7	3.2484	H7···C12 ^x	3.5799
H1…H2	2.3264	H7…H7 ^{vii}	3.4188
H1…H9 ⁱ	2.4051	H7···H8 ^x	2.6342
Н2…Н3	2.3513	H8····Br1 ^{xiii}	3.3070
H3…H4	2.3459	H8····C10 ^{vi}	3.4589
H4…H5	2.5858	H8…C11 ^x	3.2231
Н5…Н6	2.6162	H8…C12 ^x	3.1884
H6…H7	2.3505	H8····H6 ^{vi}	3.2113
H7…H8	2.3563	H8····H7 ^x	2.6342
H8…H9	2.3194	H8····H8 ^x	2.5629
Br1…H1 ^{iv}	3.2719	H9…Br1 ^{xiii}	2.9039
Br1…H3 ^{vi}	2.9480	H9····H9 ^{vii}	3.5667
Br1—Fe1—Br2	163.258 (18)	C4—C5—C6	122.7 (2)
Br1—Fe1—N1	84.93 (5)	N2—C6—C5	117.1 (2)
Br1—Fe1—N2	95.44 (6)	N2—C6—C7	110.0 (2)
Br1—Fe1—N3 ⁱ	96.08 (6)	C5—C6—C7	132.8 (2)
Br1—Fe1—N4 ⁱ	85.69 (6)	C6—C7—C8	103.8 (2)
Br2—Fe1—N1	85.32 (5)	N3—C8—C7	110.3 (2)
Br2—Fe1—N2	95.60 (6)	N3—C8—C9	116.7 (2)
Br2—Fe1—N3 ⁱ	96.53 (6)	C7—C8—C9	132.9 (2)
Br2—Fe1—N4 ⁱ	86.58 (6)	N4—C9—C8	114.5 (2)
N1—Fe1—N2	77.09 (8)	N4—C9—C10	121.8 (3)
$N1$ —Fe1— $N3^{i}$	166.76 (8)	C8—C9—C10	123.6 (2)
N1—Fe1—N4 ⁱ	116.67 (8)	C9—C10—C11	119.2 (3)
N2—Fe1—N3 ⁱ	89.68 (8)	C10—C11—C12	118.9 (3)
N2—Fe1—N4 ⁱ	166.23 (8)	C11—C12—C13	118.8 (3)
$N3^{i}$ —Fe1—N4 ⁱ	76.56 (8)	N4—C13—C12	122.8 (3)
Fe1—N1—C1	127.64 (16)	N1—C1—H1	118.756

Fe1—N1—C5	113.76 (15)	C2—C1—H1	118.757
C1—N1—C5	118.6 (2)	C1—C2—H2	120.548
Fe1—N2—N3	135.33 (14)	C3—C2—H2	120.549
Fe1—N2—C6	116.60 (16)	С2—С3—Н3	120.420
N3—N2—C6	108.03 (18)	С4—С3—Н3	120.433
Fe1 ⁱ —N3—N2	134.91 (14)	C3—C4—H4	120.531
Fe1 ⁱ —N3—C8	117.24 (16)	С5—С4—Н4	120.537
N2—N3—C8	107.84 (18)	С6—С7—Н5	128.129
$Fe1^{i}$ N4—C9	114.88 (16)	C8—C7—H5	128.117
$Fe1^{i}$ N4—C13	126.62 (16)	C9—C10—H6	120.378
C9—N4—C13	118 5 (2)	C11—C10—H6	120.397
N1-C1-C2	122 5 (3)	C10-C11-H7	120.557
C1 - C2 - C3	1122.5(3) 118.9(3)	C_{12} C_{11} H_7	120.505
$C_{1}^{2} = C_{2}^{2} = C_{4}^{2}$	119.1 (3)	C11 - C12 - H8	120.574
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	119.1(3) 118.9(3)	C_{13} C_{12} H_8	120.010
C_{3} C_{4} C_{5} C_{4}	110.9(3) 121.9(2)	NA C13 H0	120.000
N1_C5_C6	121.9(2) 115.4(2)	117 - 12 - 117 -	110.394
NI-C5-C0	115.4 (2)	С12—С13—Н9	110.309
Br1—Fe1—N1—C1	84.08 (14)	Fe1—N2—N3—C8	-177.09(13)
Br1 - Fe1 - N1 - C5	-95 49 (11)	Fe1 - N2 - C6 - C5	-14(3)
Br1 - Fe1 - N2 - N3	-99.09(17)	Fe1 - N2 - C6 - C7	17779(11)
Br1 - Fe1 - N2 - C6	83 63 (12)	N3—N2—C6—C5	-17943(16)
$Br1$ Fe1 $N2^{i}$ $N2^{i}$	98 43 (16)	$N_{3} N_{2} C_{6} C_{7}$	-0.2(3)
$Br1_Fe1_N3^{i}_C8^{i}$	-83.02(12)	$C_{6}N_{2}N_{3}E_{1}i$	-17829(16)
$Br1 = Fe1 = NJ^{i} = C0^{i}$	93.02(12)	C6 N2 N3 C8	178.29(10)
$\mathbf{Pr1} \mathbf{Fe1} \mathbf{N4}^{i} \mathbf{C12}^{i}$	-83.63(14)	$C_0 N_2 N_3 C_8 C_7$	0.4(2) 178 53 (11)
$BI1 - Fe1 - N4 - C13$ $Dr2 = E_2 1 - N1 - C1$	-83.03(14)	FeI - N3 - C6 - C7 $FeI N2 - C8 - C0$	1/0.55(11)
$B12 - Fe1 - N1 - C1$ $Dr2 - E_21 - N1 - C5$	-62.30(14)	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	-0.3(3)
Br2 = Fe1 = N1 = C5	98.15 (11)	$N_2 = N_3 = C_8 = C_7$	-0.4(3)
Br2 - Fe1 - N2 - K5	95.51 (17)	$N_2 - N_3 - C_8 - C_9$	-1/9.40(10)
Br2 - FeI - N2 - Cb	-83.77(12)	Fel1 N4 C9 C8	-3.6(3)
$Br2 - FeI - N3^{2} - N2^{2}$	-92.60 (16)	$Fel^{-} N4 - C9 - C10$	1/8.0/(13)
Br2 - FeI - N3' - C8'	85.95 (12)	FelN4C13C12	-1/8.31 (13)
Br2—Fe1—N4 ⁱ —C9 ⁱ	-100.13 (12)	C9—N4—C13—C12	-0.0 (4)
$Br2$ — $Fe1$ — $N4^{i}$ — $C13^{i}$	81.51 (14)	C13—N4—C9—C8	177.94 (18)
N1—Fe1—N2—N3	177.39 (18)	C13—N4—C9—C10	-0.4 (3)
N1—Fe1—N2—C6	0.12 (12)	N1—C1—C2—C3	1.2 (4)
N2—Fe1—N1—C1	-179.14 (16)	C1—C2—C3—C4	-0.8(4)
N2—Fe1—N1—C5	1.29 (11)	C2—C3—C4—C5	-0.6(4)
N1—Fe1—N4 ⁱ —C9 ⁱ	176.84 (11)	C3—C4—C5—N1	1.7 (4)
$N1$ —Fe1— $N4^{i}$ —C13 ⁱ	-1.51 (18)	C3—C4—C5—C6	-177.58 (19)
N4 ⁱ —Fe1—N1—C1	1.50 (17)	N1—C5—C6—N2	2.6 (3)
N4 ⁱ —Fe1—N1—C5	-178.07 (10)	N1—C5—C6—C7	-176.4 (2)
$N2$ —Fe1— $N3^{i}$ — $N2^{i}$	3.00 (17)	C4—C5—C6—N2	-178.08 (19)
N2—Fe1—N3 ⁱ —C8 ⁱ	-178.45 (13)	C4—C5—C6—C7	2.9 (4)
$N3^{i}$ —Fe1—N2—N3	-3.02 (17)	N2—C6—C7—C8	-0.0 (3)
N3 ⁱ —Fe1—N2—C6	179.70 (13)	C5—C6—C7—C8	179.0 (3)
$N3^{i}$ —Fe1—N4 ⁱ —C9 ⁱ	-2.58 (12)	C6—C7—C8—N3	0.3 (3)
$N3^{i}$ —Fe1—N4 ⁱ —C13 ⁱ	179.07 (16)	C6—C7—C8—C9	179.0 (2)

	155 40 (10)		2.7.(2)
$N4^{i}$ —FeI—N 3^{i} —N 2^{i}	-17/.49 (18)	N3—C8—C9—N4	2.7 (3)
$N4^{i}$ —Fe1—N 3^{i} —C 8^{i}	1.06 (12)	N3—C8—C9—C10	-178.92 (17)
Fe1—N1—C1—C2	-179.70 (13)	C7—C8—C9—N4	-176.0 (2)
Fe1—N1—C5—C4	178.28 (13)	C7—C8—C9—C10	2.3 (4)
Fe1—N1—C5—C6	-2.4 (2)	N4—C9—C10—C11	0.4 (4)
C1—N1—C5—C4	-1.3 (3)	C8—C9—C10—C11	-177.79 (18)
C1—N1—C5—C6	177.99 (17)	C9-C10-C11-C12	0.0 (4)
C5—N1—C1—C2	-0.2 (3)	C10-C11-C12-C13	-0.4 (4)
Fe1—N2—N3—Fe1 ⁱ	4.3 (4)	C11—C12—C13—N4	0.4 (4)

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x, -y+1, z-1/2; (iv) -x+1, y, -z+1/2; (v) -x+1/2, y+1/2, -z+1/2; (vi) x, -y+1, z+1/2; (vi) -x, y, -z+3/2; (vii) -x+1/2, y-1/2, -z+3/2; (ix) x+1/2, -y+1/2, z-1/2; (x) -x, -y+1, -z+2; (xi) -x+1, -y+1, -z; (xii) -x+1/2, y+1/2, -z+3/2; (xiii) x-1/2, -y+1/2, z-1/2; (x) -x, -y+1, -z+2; (xi) -x+1, -y+1, -z; (xii) -x+1/2, y+1/2, -z+3/2; (xiii) x-1/2, -y+1/2, z+1/2.