

 $\beta = 95.507 (1)^{\circ}$ V = 3447.0 (2) Å³

Mo $K\alpha$ radiation

 $0.24 \times 0.21 \times 0.18 \text{ mm}$

23313 measured reflections

4178 independent reflections

3491 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.45 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.022$

272 parameters

 $\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.32 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -acetato- $\kappa^4 O:O'$ -bis[(1,10-phenanthroline- $\kappa^2 N, N'$)(trifluoromethanesulfonato- κO)copper(II)]

Nanthawat Wannarit,^a Chaveng Pakawatchai^b and Sujittra Youngme^a*

^aMaterials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, and ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand Correspondence e-mail: sujittra@kku.ac.th

Received 30 August 2013; accepted 4 October 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.034; wR factor = 0.102; data-to-parameter ratio = 15.4.

The complete molecule of the title compound, $[Cu_2(C_2H_3O_2)_2]$ - $(CF_3O_3S)_2(C_{12}H_8N_2)_2]$, is completed by the application of a twofold rotation and comprises two Cu^{II} ions, each of which is pentacoordinated by two N atoms from a bidentate 1,10phenanthroline (phen) ligand, two O atoms from acetate ligands and an O atom from a trifluoromethanesulfonate anion, forming a (4 + 1) distorted square-pyramidal coordination geometry. The Cu^{II} ions are connected by two acetate bridges in a syn-syn configuration. The F atoms of the trifluoromethanesulfonate ligands are disordered, with siteoccupation factors of 70 and 30. The molecular structure is stabilized by intramolecular face-to-face π - π interactions with centroid-centroid distances in the range 3.5654 (12)-3.8775(12) Å. The crystal structure is stabilized by C- $H \cdots O$ interactions, leading to a three-dimensional lattice structure.

Related literature

For general background to this work, see: Moreira *et al.* (2007); Calvo *et al.* (2011); Reinoso *et al.* (2005, 2007); Ritchie *et al.* (2006); Wang *et al.* (2006). For literature used in the synthetic procedures, see: Youngme *et al.* (2008). For a related crystal structure, see: Tokii *et al.* (1990). For potential applications, see: Hill & Brown (1986); Mansuy *et al.* (1991); Hill & Zhang (1995). For an explanation of the τ parameter, see: Addison *et al.* (1984). For spectroscopic properties, see: Castro *et al.* (1992); Sletten & Julve (1999).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Cu}_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2(\mathrm{C}-\\ \mathrm{F}_3\mathrm{O}_3\mathrm{S})_2(\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2)_2]\\ M_r=903.72\\ \mathrm{Monoclinic,}\ C2/c\\ a=13.1198\ (5)\ \text{\AA}\\ b=16.1282\ (6)\ \text{\AA}\\ c=16.3659\ (6)\ \text{\AA} \end{array}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{\rm min} = 0.872, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.102$ S = 1.044178 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	$I \cdots A$
$\begin{array}{c} C1 - H1 \cdots O5^{i} \\ C3 - H3 \cdots O4^{ii} \\ C8 - H8 \cdots O3^{iii} \end{array}$	0.93 0.93 0.93	2.43 2.34 2.56	3.229 (3 3.213 (3 3.421 (3	3) 144 3) 157 3) 154	
Symmetry codes: $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$	(i) - <i>x</i> +	-1, -y + 2, -z + 1;	(ii)	$\frac{y}{x-\frac{1}{2}, y-\frac{1}{2}, z;}$	(iii)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000) and *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *pubCIF* (Westrip, 2010).

The authors gratefully acknowledge financial support from the Thailand Research Fund, the Higher Education Research Promotion and National Research University Project of

metal-organic compounds

Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2439).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calvo, R., Abud, J. E., Sartoris, R. P. & Santana, R. C. (2011). *Phys. Rev. B*, 84, 104433, 1–13.
- Castro, I., Faus, J., Julve, M., Bois, C., Real, J. A. & Lloret, F. (1992). J. Chem. Soc. Dalton Trans. pp. 47–52.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hill, C. L. & Brown, R. B. (1986). J. Am. Chem. Soc. 108, 536-538.

- Hill, C. L. & Zhang, X. (1995). Nature (London), 373, 324-326.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Mansuy, D., Bartoli, J. F., Battioni, P., Lyon, D. K. & Finke, R. G. (1991). J. Am. Chem. Soc. 113, 7222–7226.
- Moreira, I. P. R., Costa, R., Filatov, M. & Illas, F. (2007). J. Chem. Theory Comput. 3, 764–774.
- Reinoso, S., Vitoria, P., Felices, L. S., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2005). Chem. Eur. J. 11, 1538–1548.
- Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Madariaga, J. M., Felices, L. S. & Iturrospe, A. (2007). *Inorg. Chem.* 46, 4010–4021.
- Ritchie, C., Burkholder, E., Kögerler, P. & Cronin, L. (2006). Dalton Trans. pp. 1712–1714.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sletten, J. & Julve, M. (1999). Acta Chem. Scand. 53, 631-633.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, I. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.
- Wang, J.-P., Ren, Q., Zhao, J.-W. & Niu, J.-Y. (2006). Inorg. Chem. Commun. 9, 1281–1285.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Youngme, S., Cheansirisomboon, A., Danvirutai, C., Pakawatchai, C., Chaichit, N., Engkagul, C., van Albada, G. A., Costa, J. S. & Reedijk, J. (2008). *Polyhedron*, **27**, 1875–1882.

supporting information

Acta Cryst. (2013). E69, m591-m592 [doi:10.1107/S1600536813027323]

Di- μ -acetato- $\kappa^4 O:O'$ -bis[(1,10-phenanthroline- $\kappa^2 N, N'$)(trifluoromethane-sulfonato- κO)copper(II)]

Nanthawat Wannarit, Chaveng Pakawatchai and Sujittra Youngme

S1. Comment

The synthesis and characterization of polycarboxylato-bridged dinuclear copper(II) compounds namely dinuclear tetracarboxylato-bridged Cu^{II} compounds (paddlewheel-like structure) (*e.g.* Moreira *et al.*, 2007; Youngme *et al.*, 2008) and also dinuclear Cu^{II} compounds containing dicarboxylato-bridges (Tokii *et al.*, 1990; Reinoso *et al.*, 2005; Ritchie *et al.*, 2006) have attacted much attention in several years. These compounds have been prepared with the aim of studying their intramolecular magnetic properties which are determined predominantly by strong antiferromagnetic interactions. In addition, the dicarboxylato-bridged dinuclear Cu^{II} compounds have been frequently used as the models for the basic understanding of their magneto-structural correlations in theoretical studies (Moreira *et al.*, 2007; Calvo *et al.*, 2011). Copper(II) compounds containing doubly acetato-bridged dinuclear units, [Cu(phen)(μ -OOCCH₃)₂Cu(phen)]²⁺ (where phen = 1,10-phenanthroline), have also been shown to exhibit antiferromagnetic behavior (Tokii *et al.*, 1990). Furthermore, this type of dinuclear unit was used as the secondary building block in functionalized polyoxometalate (POMs) materials (Wang *et al.*, 2006; Reinoso *et al.*, 2007; Calvo *et al.*, 2011) to extend the dimensionality of structures leading to new hybrid materials and more selective applications, for example catalytic properties in organic oxidations (Hill & Brown, 1986; Mansuy *et al.*, 1991; Hill, & Zhang, 1995).

A new doubly acetato-bridged dinuclear Cu^{II} compound containing additional trifluoromethanesulfonate anions has been synthesized and its structural features are reported here. Compound I, bis((µ-acetato)(trifluoromethanesulfonato) (1,10-phenanthroline))dicopper(II) crystallized in the space group C2/c with an asymmetric unit containing one half of the dinuclear unit (Fig.1). This dinuclear unit has C_2 symmetry around the b axis with Cu. Cu distance of 3.0309 (4) Å. Structurally, compound I consists of two $[Cu(phen)(OSO_2CF_3)]^+$ cations connected together by two bridging acetato ligands in a syn-syn configuration. Both Cu^{II} atoms exhibit five coordination of CuN₂O₂O' chromophore, with the basal plane consisting of two phen N atoms [Cu—N = 2.0153 (18) and 1.9980 (18) Å] and two O atoms from acetate ligands [Cu—O = 1.9387 (17) and 1.9377 (18)]. Due to symmetry both square planes are parallel to one another. The apical position at Cu^{II} is occupied by an O atom from trifluoromethanesulfonate anion [Cu—O = 2.261 (2)], leading to the (4 + 1) square-pyramidal geometry. The square base of Cu^{II} chromophore is not perfectly planar, with the tetrahedral twist of 16.52 (7)° and Cu^{II} is situated above the basal plane by 0.14 (1) Å pointing towards the O atom of the trifluoromethanesulfonate anion. The distortion of a square pyramid can be best described by the structural parameter τ ($\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid (Addison *et al.*, 1984)), with $\tau = 0.23$ for the title compound. The molecular structure of I reveals intramolecular face-to-face π - π interaction between aromatic rings of phen ligands (Fig. 1). Phenanthroline molecules are parallel with an average contact and angle of phen planes of 3.63 (3) Å and 5.96 (3)°, respectively. In general, the ligands are featureless: neither of phen group departs significantly from planarity [maximum deviations: 0.082 Å for C11 and 0.099 Å for C10 of Cg3 ring(N2, C6, C9, C10, C11, C12)] and the C-O bonds in the

acetato bridging ligands display an almost perfect resonance [C13 \cdots O1 = 1.257 (3) Å and C13 \cdots O2 = 1.250 (3) Å]. The crystal structure of compound **I** is determined by intermolecular hydrogen bonding interactions between methyl groups of acetato ligands (H14A) or phen ligands (H7 as hydrogen bond donor sites and H10) and oxygen/fluoride accepetors at trifluoromethanesulfonate anions (O3, O5 and F3) (see Table 1), generating two-dimensional layers parallel to the *ab* plane (Fig. 2). Moreover, these two-dimensional sheets are interconnected by hydrogen bond interactions between C—H of phen ligands and oxygen atoms of trifluoromethanesulfonate anions [C1—H1 \cdots O5ⁱ; symetry code (i) = -*x*+1, -*y*+2, - *z*+1] (see Table 2) in direction of crystallographic *c* axis, leading to three-dimensional lattice structure (Fig. 3). Although containing the same [(phen)Cu(μ -OOCCH₃)₂Cu(phen)]²⁺ unit, the structural topology of **I** is distinct from that of the related compound [Cu(phen)(μ -O₂CCH₃)(H₂O)]₂(NO₃)₂.4H₂O (Tokii *et al.*, 1990) in which the apical position is occupied by water molecule. The dinuclear unit of this related compound also crystal lattice is mainly stabilized by intra- and intermolecular π - π interactions, generating a one-dimensional chain-like sructure. It is clear that the difference of the structural topology between compound **I** and the related compound caused by the effect of coordinated trifluoromethane-sulfonate anions whereas nitrate anions are not coordinated to Cu in the other structure.

The diffuse reflectance spectrum of **I** displays a broad band at 15400 cm⁻¹ and a lower energy shoulder at 14300 cm⁻¹. This feature corresponds to a dominantly distorted square pyramidal geometry of Cu^{II} ions and is consistent with the observed structural parameters. The transitions may be assigned as d_{xy} , d_{yz} , $d_{xz} \rightarrow d_{x2-y2}$ and $d_{z2} \rightarrow d_{x2-y2}$. The IR spectrum of **I**, in addition to the phen vibrations shows the broad and intense bands of the stretching of the ionic CF₃SO₃⁻ at 1276 v_{as} (S–O), 1158 v_{as} (C–F) and 1031 v_{s} (S–O) cm⁻¹ (Castro *et al.*, 1992). The IR spectrum also shows two broad and intense bands at 1567 and 1385 cm⁻¹, corresponding to the v_{as} (COO⁻) and v_{s} (COO⁻) vibrations of acetate bridging ligands. The latter spectral properties completely disappear for related mononuclear compounds as [Cu(phen)₃](CF₃SO₃)₂.H₂O (Sletten & Julve, 1999).

S2. Experimental

A warm ethanolic solution (25 ml) of phen (0.198 g, 1.0 mmol) was added to a warm aqueous solution (15 ml) of $Cu(CF_3SO_3)_2$ (0.370 g, 1.0 mmol). Then NaO₂CCH₃ solid (0.124 g, 1.0 mmol) was added to the mixture, yielding a clear dark blue solution. After a week, the blue rectangle-shaped crystals of compound I were obtained. The crystals were filtered off, washed with mother liquor and air-dried. Yield: *ca* 45%. Anal. Calc. for $Cu_2C_{30}H_{24}N_4O_{10}F_6S_2$: C, 39.78; H, 2.67; N, 6.19%. Found: C, 39.12; H, 2.51; N, 6.36%.

S3. Refinement

All H atoms were constrained to ideal positions, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for H atoms at phen and C —H = 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for H atoms of acetate groups. Fluorine atoms of the trifluoromethanesulfonato ligands are disordered with site occupation factors of 70:30%.

Figure 1

Molecular structure and atomic numbering scheme with thermal ellipsoids shown at 50% probability level.

Figure 2

The crystal packing. View of two-dimensional layer constructed by intermolecular hydrogen bonding and view of the intramolecular face-to-face π - π interactions between aromatic rings of phen ligands.

Figure 3

The crystal packing. View of three-dimensional framework (side view) constructued by intermolecular hydrogen bonding interactions between two-dimensional layers (C1—H1…O5ⁱ, symmetry code: (i) = -x+1, -y+2, -z+1).

$\text{Di-}\mu\text{-}acetato-\kappa^4O:O'\text{-}bis[(1,10\text{-}phenanthroline-\kappa^2N,N')(trifluoromethanesulfonato-\kappaO)copper(II)]$

F(000) = 1816

 $\theta = 2.3 - 26.4^{\circ}$

 $\mu = 1.45 \text{ mm}^{-1}$

 $0.24 \times 0.21 \times 0.18 \text{ mm}$

T = 293 K

Block, blue

 $D_{\rm x} = 1.741 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 8485 reflections

Crystal data

 $\begin{bmatrix} Cu_2(C_2H_3O_2)_2(CF_3O_3S)_2(C_{12}H_8N_2)_2 \end{bmatrix}$ $M_r = 903.72$ Monoclinic, C2/cHall symbol: -C 2yc a = 13.1198 (5) Å b = 16.1282 (6) Å c = 16.3659 (6) Å $\beta = 95.507$ (1)° V = 3447.0 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD	23313 measured reflections
diffractometer	4178 independent reflections
Radiation source: fine-focus sealed tube	3491 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
phi and ω scans	$\theta_{\rm max} = 28.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(SADABS; Sheldrick, 2000)	$k = -21 \rightarrow 21$
$T_{\min} = 0.872, \ T_{\max} = 1.000$	$l = -21 \rightarrow 21$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.04	H-atom parameters constrained
4178 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0624P)^2 + 1.5014P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
S = 1.04 4178 reflections 272 parameters 0 restraints Primary atom site location: structure-invariant direct methods	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0624P)^2 + 1.5014P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.59608 (2)	0.99743 (1)	0.70547 (2)	0.0458 (1)	
S1	0.78035 (4)	1.01647 (3)	0.56674 (3)	0.0539 (2)	
F1	0.8335 (6)	0.8733 (4)	0.6161 (4)	0.176 (4)	0.700
F2	0.9340 (5)	0.9174 (4)	0.5429 (4)	0.137 (2)	0.700
F3	0.9359 (6)	0.9687 (6)	0.6618 (6)	0.199 (4)	0.700
01	0.63242 (11)	1.07473 (9)	0.79413 (10)	0.0626 (5)	
O2	0.51246 (12)	1.08054 (9)	0.64547 (10)	0.0608 (5)	
O3	0.73435 (13)	1.03226 (11)	0.64052 (11)	0.0712 (6)	
04	0.8331 (2)	1.08491 (14)	0.53822 (17)	0.1123 (10)	

O5	0.7149 (2)	0.97542 (18)	0.50650 (17)	0.1224 (11)	
N1	0.53445 (12)	0.90229 (9)	0.63975 (10)	0.0449 (5)	
N2	0.68014 (12)	0.90588 (10)	0.76211 (9)	0.0472 (5)	
C1	0.46043 (16)	0.90316 (14)	0.57797 (12)	0.0556 (7)	
C2	0.41990 (18)	0.83081 (17)	0.54255 (14)	0.0640 (8)	
C3	0.45639 (18)	0.75590 (15)	0.56951 (15)	0.0633 (8)	
C4	0.53672 (15)	0.75244 (12)	0.63350 (13)	0.0509 (6)	
C5	0.57234 (13)	0.82808 (11)	0.66659 (11)	0.0423 (5)	
C6	0.65295 (13)	0.82997 (11)	0.73215 (11)	0.0430 (5)	
C7	0.58190 (18)	0.67773 (13)	0.66651 (17)	0.0649 (8)	
C8	0.65946 (18)	0.67936 (13)	0.72685 (16)	0.0642 (8)	
C9	0.69878 (15)	0.75606 (13)	0.76071 (13)	0.0526 (6)	
C10	0.78116 (18)	0.76280 (16)	0.82166 (15)	0.0664 (8)	
C11	0.81020 (18)	0.83952 (18)	0.85040 (15)	0.0701 (8)	
C12	0.75733 (17)	0.91011 (15)	0.82085 (13)	0.0605 (7)	
C13	0.57629 (16)	1.10508 (11)	0.84421 (13)	0.0514 (6)	
C14	0.6188 (2)	1.17618 (14)	0.89565 (17)	0.0706 (8)	
C15	0.8783 (3)	0.9414 (2)	0.5977 (2)	0.0953 (14)	
F3A	0.9596 (9)	0.9817 (7)	0.6337 (13)	0.153 (7)	0.300
F1A	0.8515 (8)	0.8809 (8)	0.6463 (7)	0.083 (3)	0.300
F2A	0.9048 (15)	0.9173 (13)	0.5189 (12)	0.193 (8)	0.300
H1	0.43520	0.95390	0.55800	0.0670*	
H2	0.36750	0.83360	0.50010	0.0770*	
Н3	0.42880	0.70730	0.54610	0.0760*	
H7	0.55740	0.62700	0.64600	0.0780*	
H12	0.77660	0.96160	0.84290	0.0730*	
H14A	0.68970	1.18380	0.88760	0.1060*	
H14B	0.61240	1.16460	0.95250	0.1060*	
H14C	0.58140	1.22570	0.87990	0.1060*	
H8	0.68800	0.62970	0.74680	0.0770*	
H10	0.81550	0.71570	0.84220	0.0800*	
H11	0.86560	0.84480	0.89000	0.0840*	

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	<i>U</i> ¹²	U ¹³	<i>U</i> ²³
<u> </u>	0.0501.(2)		0 0522 (2)		0 0111 (1)	0.0044 (1)
Cul	0.0501 (2)	0.0364 (1)	0.0522 (2)	0.0032(1)	0.0111 (1)	-0.0044 (1)
S 1	0.0583 (3)	0.0503 (3)	0.0537 (3)	0.0031 (2)	0.0083 (2)	0.0036 (2)
F1	0.280 (8)	0.069 (3)	0.194 (7)	0.081 (4)	0.099 (6)	0.051 (4)
F2	0.115 (3)	0.157 (5)	0.152 (4)	0.072 (3)	0.077 (4)	0.039 (4)
F3	0.128 (6)	0.280 (9)	0.172 (5)	0.051 (5)	-0.073 (5)	0.031 (5)
01	0.0620 (9)	0.0553 (8)	0.0732 (10)	-0.0075 (7)	0.0200 (7)	-0.0240 (7)
O2	0.0659 (9)	0.0482 (7)	0.0716 (9)	0.0163 (7)	0.0235 (7)	0.0118 (7)
03	0.0704 (10)	0.0658 (10)	0.0820 (11)	0.0007 (8)	0.0305 (9)	-0.0070 (9)
O4	0.135 (2)	0.0787 (14)	0.1311 (19)	-0.0137 (13)	0.0530 (16)	0.0345 (13)
05	0.127 (2)	0.131 (2)	0.0992 (18)	0.0116 (17)	-0.0404 (16)	-0.0369 (16)
N1	0.0464 (8)	0.0425 (8)	0.0464 (8)	0.0047 (6)	0.0076 (6)	-0.0021 (6)
N2	0.0475 (8)	0.0505 (9)	0.0444 (8)	0.0024 (7)	0.0084 (6)	-0.0017 (6)

C1	0.0570 (11)	0.0594 (12)	0.0500 (11)	0.0093 (9)	0.0027 (9)	-0.0019 (9)
C2	0.0589 (12)	0.0782 (16)	0.0539 (12)	-0.0017 (10)	-0.0005 (9)	-0.0116 (10)
C3	0.0647 (13)	0.0629 (13)	0.0634 (13)	-0.0117 (10)	0.0125 (10)	-0.0195 (10)
C4	0.0527 (10)	0.0442 (9)	0.0586 (11)	-0.0023 (8)	0.0194 (9)	-0.0061 (8)
C5	0.0433 (8)	0.0400 (8)	0.0458 (9)	0.0023 (7)	0.0154 (7)	-0.0022 (7)
C6	0.0423 (8)	0.0433 (9)	0.0456 (9)	0.0042 (7)	0.0154 (7)	0.0017 (7)
C7	0.0725 (14)	0.0384 (10)	0.0869 (16)	-0.0017 (9)	0.0240 (13)	-0.0038 (10)
C8	0.0719 (14)	0.0399 (10)	0.0845 (16)	0.0131 (9)	0.0271 (12)	0.0100 (10)
C9	0.0505 (10)	0.0547 (11)	0.0554 (11)	0.0112 (8)	0.0189 (9)	0.0101 (9)
C10	0.0628 (13)	0.0766 (15)	0.0608 (13)	0.0211 (11)	0.0104 (10)	0.0149 (11)
C11	0.0553 (12)	0.1009 (19)	0.0528 (12)	0.0110 (12)	-0.0016 (10)	0.0062 (12)
C12	0.0567 (11)	0.0728 (14)	0.0515 (11)	-0.0018 (10)	0.0028 (9)	-0.0072 (10)
C13	0.0623 (11)	0.0364 (8)	0.0575 (11)	-0.0067 (8)	0.0154 (9)	-0.0053 (8)
C14	0.0791 (15)	0.0531 (12)	0.0838 (16)	-0.0205 (11)	0.0291 (13)	-0.0256 (11)
C15	0.083 (2)	0.098 (2)	0.109 (3)	0.0357 (18)	0.0305 (19)	0.0181 (19)
F3A	0.046 (3)	0.082 (5)	0.32 (2)	0.000 (3)	-0.039 (7)	0.004 (8)
F1A	0.093 (4)	0.075 (5)	0.087 (5)	0.038 (3)	0.042 (3)	0.038 (4)
F2A	0.165 (14)	0.234 (16)	0.185 (14)	0.086 (10)	0.037 (10)	-0.120 (12)

Geometric parameters (Å, °)

Cu1—O1	1.9376 (16)	C3—C4	1.414 (3)
Cu1—O2	1.9385 (16)	C4—C5	1.397 (3)
Cu1—O3	2.2597 (18)	C4—C7	1.426 (3)
Cu1—N1	1.9995 (15)	С5—С6	1.433 (2)
Cu1—N2	2.0148 (16)	C6—C9	1.395 (3)
S1—O3	1.4237 (18)	С7—С8	1.349 (4)
S1—O4	1.406 (2)	C8—C9	1.431 (3)
S1—O5	1.409 (3)	C9—C10	1.403 (3)
S1—C15	1.803 (4)	C10-C11	1.365 (4)
F1—C15	1.295 (8)	C11—C12	1.395 (4)
F1A—C15	1.327 (13)	C13—C14	1.498 (3)
F2—C15	1.270 (7)	C1—H1	0.9302
F2A—C15	1.42 (2)	C2—H2	0.9304
F3—C15	1.309 (10)	С3—Н3	0.9304
F3A—C15	1.337 (15)	С7—Н7	0.9299
O1—C13	1.253 (3)	C8—H8	0.9300
O2-C13 ⁱ	1.256 (3)	C10—H10	0.9295
N1—C1	1.333 (3)	C11—H11	0.9301
N1—C5	1.353 (2)	C12—H12	0.9307
N2—C12	1.329 (3)	C14—H14A	0.9598
N2C6	1.354 (2)	C14—H14B	0.9605
C1—C2	1.386 (3)	C14—H14C	0.9596
C2—C3	1.358 (4)		
Cu1…O5	3.760 (3)	O4····H3 ^{iv}	2.3363
Cu1…O1 ⁱ	3.2474 (15)	O4…H11 ^v	2.7477
$Cu1{\cdots}O2^i$	3.2315 (16)	O5…H14B ^v	2.7315

Cu1…N1 ⁱ	3.5407 (16)	O5…H1 ^{vi}	2.4275
Cu1…N2 ⁱ	3.9955 (16)	N1…Cu1 ⁱ	3.5407 (16)
Cu1…C1 ⁱ	3.991 (2)	N2…F1A	3.103 (11)
Cu1···C5 ⁱ	4.1970 (18)	N2…Cu1 ⁱ	3.9955 (16)
Cu1···H8 ⁱⁱ	3.5723	N2…C1 ⁱ	3.344 (3)
F1…O3	2.920 (7)	C1…C12 ⁱ	3.439 (3)
F1O5	2.796 (7)	C1···O5 ^{vi}	3.229 (3)
F1…C6	3.251 (8)	C1···N2 ⁱ	3.344 (3)
F1…C14 ⁱⁱⁱ	3.249 (7)	C1…C13 ⁱ	3.546 (3)
F1A···N2	3.103 (11)	C1…Cu1 ⁱ	3.991 (2)
F1A····C6	3.184 (11)	C3···O4 ^{vii}	3.213 (3)
F1A…C12	3.254 (11)	C3···C9 ⁱ	3.599 (3)
F1A05	3 160 (12)	C5···C6 ⁱ	3 525 (2)
F1A···O3	2 881 (12)	C5…Cu1 ⁱ	4 1970 (18)
F205	3.027(7)	$C5 \cdots C5^{i}$	3 472 (2)
$F_2 \cdots O_4$	3,006 (7)	C6···C5 ⁱ	3.172(2) 3.525(2)
$F_2 \Delta \cdots \Delta A$	2.89(2)	C6E1 A	3.323(2)
F2A 05	2.09(2)	C6F1	3 251 (8)
F304	2.03(2)		3.251(0)
F302	2.963(10)		3.230(3)
F3.404	2.020(0) 2.733(16)		3.399(3)
F2 AO2	2.733(10) 2.078(12)	C12C1i	3.293(4)
	3.078(12)		3.439(3)
	2.0273		5.234 (11) 2.512 (2)
$F I A \cdots H I 4 C^{\cdots}$	2.7015	C12C13	3.512(3)
	2.0700		3.346 (3)
	3.256 (3)		3.335 (3)
	3.2474 (15)		3.228 (4)
02Cul ¹	3.2315 (16)		3.249 (7)
03F3	2.826 (8)		3.0447
03F1	2.920 (7)	C8···H14A ^m	2.8533
O3···F3A	3.078 (12)	C13···H1 ¹	2.9284
O3…F1A	2.881 (12)	$H1\cdots C13^{1}$	2.9284
O4…F3	2.983 (10)	H1…O5 ^{v1}	2.4275
O4…C3 ^{IV}	3.213 (3)	H1···O2	2.6401
O4…F2	3.006 (7)	Н3…Н7	2.5822
O4···C11 ^v	3.293 (4)	H3…O4 ^{vii}	2.3363
O4…F2A	2.89 (2)	H7…F3A ^{vii}	2.6700
O4…F3A	2.733 (16)	Н7…Н3	2.5822
O5…Cu1	3.760 (3)	H8…H10	2.5804
O5…F2A	2.65 (2)	H8…Cu1 ⁱⁱⁱ	3.5723
O5…C13 ^v	3.335 (3)	H8…O1 ⁱⁱⁱ	2.6624
O5…C14 ^v	3.228 (4)	H8…O3 ⁱⁱⁱ	2.5589
O5…F2	3.027 (7)	H10…H8	2.5804
O5…F1A	3.160 (12)	H11····O4 ^{viii}	2.7477
O5…F1	2.796 (7)	H12…O1	2.6934
O5…C1 ^{vi}	3.229 (3)	H14A…C8 ⁱⁱ	2.8533
O1…H12	2.6934	H14B····C2 ^{viii}	3.0447
O1…H8 ⁱⁱ	2.6624	H14B…O5 ^{viii}	2.7315

O2…H1	2.6401	H14C…F1 ⁱⁱ	2.6275
O3…H8 ⁱⁱ	2.5589	H14C…F1A ⁱⁱ	2.7013
O1—Cu1—O2	91.21 (6)	C8—C9—C10	124.5 (2)
O1—Cu1—O3	92.37 (6)	C9—C10—C11	119.1 (2)
01—Cu1—N1	162.62 (7)	C10—C11—C12	120.5 (2)
O1—Cu1—N2	92.44 (6)	N2—C12—C11	121.8 (2)
O2—Cu1—O3	91.76 (7)	O1—C13—C14	117.14 (19)
O2—Cu1—N1	94.48 (6)	O1—C13—O2 ⁱ	125.13 (18)
O2—Cu1—N2	176.35 (6)	O2 ⁱ —C13—C14	117.73 (19)
O3—Cu1—N1	103.84 (7)	S1—C15—F1	107.9 (4)
O3-Cu1-N2	88 28 (6)	S1-C15-F2	1167(4)
N1-Cu1-N2	81.97 (6)	S1 - C15 - F3	109.9(5)
03 - 81 - 04	11379(13)	S1 - C15 - F1A	116.1.(5)
03 - 51 - 05	113.45 (13)	S1 - C15 - F2A	99 1 (8)
03 - S1 - C15	103 33 (13)	S1 = C15 = F2A	108.3(5)
04 $1 $ 05	105.55(15) 115.02(16)	51 - C15 - F3A	108.5(5) 102.1(5)
04 - 51 - 05	105.02 (10)	F1 = C15 = F2 F1 = C15 = F2	102.1(5) 100.8(6)
04 - 51 - 015	103.09 (10)	F1 - C15 - F3	109.8 (0)
03-s1-01	104.55(10) 128.57(14)	F2 - C13 - F3	110.0(0)
Cul=01=C13	128.57 (14)	FIA = C15 = F2A	116.4 (10)
$Cu1 = 02 = C13^4$	129.53 (14)	F1A = C15 = F3A	109.8 (9)
	141.19(11)	F2A—C15—F3A	106.2 (12)
Cul—NI—Cl	128.86 (14)	NI—CI—HI	118.98
Cu1—N1—C5	112.78 (12)	C2—C1—H1	118.97
C1—N1—C5	118.28 (16)	C1—C2—H2	119.86
Cu1—N2—C6	112.49 (12)	C3—C2—H2	119.87
Cu1—N2—C12	129.82 (15)	С2—С3—Н3	120.32
C6—N2—C12	117.66 (17)	C4—C3—H3	120.31
N1—C1—C2	122.0 (2)	C4—C7—H7	119.34
C1—C2—C3	120.3 (2)	C8—C7—H7	119.47
C2—C3—C4	119.4 (2)	С7—С8—Н8	119.37
C3—C4—C5	116.78 (18)	С9—С8—Н8	119.37
C3—C4—C7	124.6 (2)	C9—C10—H10	120.49
C5—C4—C7	118.66 (19)	C11—C10—H10	120.44
N1C5C4	123.22 (17)	C10-C11-H11	119.78
N1—C5—C6	116.49 (16)	C12—C11—H11	119.74
C4—C5—C6	120.29 (17)	N2-C12-H12	119.07
N2—C6—C5	116.13 (16)	C11—C12—H12	119.09
N2—C6—C9	124.13 (17)	C13—C14—H14A	109.53
С5—С6—С9	119.74 (17)	C13—C14—H14B	109.45
C4—C7—C8	121.2 (2)	C13—C14—H14C	109.45
C7—C8—C9	121.3 (2)	H14A—C14—H14B	109.50
C6-C9-C8	118.75 (19)	H14A—C14—H14C	109.50
C6-C9-C10	116 73 (19)	H14B— $C14$ — $H14C$	109 39
	110.75 (17)		107.37
02-01-01-013	68 10 (18)	Cu1 - N1 - C1 - C2	-17467(16)
03 - Cu1 = 01 - C13	159 91 (17)	C_{5} N1 C_{1} C_{2}	18(3)
N_{2} C_{11} O_{1} O_{13}	-11171(17)	Cu1 - N1 - C5 - C4	176 12 (15)
THE CHI OI CIJ			1/0.12(12)

O1-Cu1-O2-C13 ⁱ	-78.62 (18)	Cu1—N1—C5—C6	-4.0 (2)
O3—Cu1—O2—C13 ⁱ	-171.03 (18)	C1—N1—C5—C4	-0.9 (3)
N1—Cu1—O2—C13 ⁱ	84.94 (18)	C1—N1—C5—C6	178.99 (17)
O1—Cu1—O3—S1	-175.37 (18)	Cu1—N2—C6—C5	0.7 (2)
O2—Cu1—O3—S1	-84.09 (18)	Cu1—N2—C6—C9	-179.80 (15)
N1—Cu1—O3—S1	10.96 (19)	C12—N2—C6—C5	-177.49 (17)
N2—Cu1—O3—S1	92.26 (18)	C12—N2—C6—C9	2.0 (3)
O2—Cu1—N1—C1	-0.85 (18)	Cu1—N2—C12—C11	-176.94 (16)
O2—Cu1—N1—C5	-177.49 (13)	C6—N2—C12—C11	0.9 (3)
O3—Cu1—N1—C1	-93.78 (17)	N1—C1—C2—C3	-1.1 (3)
O3—Cu1—N1—C5	89.58 (13)	C1—C2—C3—C4	-0.6 (3)
N2—Cu1—N1—C1	-180.00 (18)	C2—C3—C4—C5	1.4 (3)
N2—Cu1—N1—C5	3.37 (13)	C2—C3—C4—C7	-179.5 (2)
O1—Cu1—N2—C6	161.25 (13)	C3—C4—C7—C8	179.0 (2)
O1—Cu1—N2—C12	-20.80 (18)	C5—C4—C7—C8	-1.9 (3)
O3—Cu1—N2—C6	-106.45 (13)	C7—C4—C5—C6	0.2 (3)
O3—Cu1—N2—C12	71.50 (18)	C3—C4—C5—N1	-0.7 (3)
N1—Cu1—N2—C6	-2.21 (12)	C3—C4—C5—C6	179.43 (18)
N1—Cu1—N2—C12	175.74 (18)	C7—C4—C5—N1	-179.86 (19)
O4—S1—O3—Cu1	146.81 (18)	C4—C5—C6—C9	2.6 (3)
O5—S1—O3—Cu1	12.8 (2)	N1C5	2.2 (2)
C15—S1—O3—Cu1	-99.8 (2)	N1-C5-C6-C9	-177.30 (17)
O3—S1—C15—F1	67.4 (4)	C4C5	-177.90 (17)
O3—S1—C15—F2	-178.4 (4)	N2-C6-C9-C10	-3.1 (3)
O3—S1—C15—F3	-52.3 (5)	C5—C6—C9—C8	-3.8 (3)
O4—S1—C15—F1	-173.0 (4)	C5-C6-C9-C10	176.37 (18)
O4—S1—C15—F2	-58.8 (4)	N2—C6—C9—C8	176.76 (19)
O4—S1—C15—F3	67.2 (5)	C4—C7—C8—C9	0.6 (4)
O5—S1—C15—F1	-51.5 (4)	C7—C8—C9—C6	2.2 (3)
O5—S1—C15—F2	62.7 (4)	C7—C8—C9—C10	-178.0 (2)
O5—S1—C15—F3	-171.3 (5)	C8—C9—C10—C11	-178.5 (2)
Cu1—O1—C13—C14	-167.96 (15)	C6—C9—C10—C11	1.3 (3)
Cu1—O1—C13—O2 ⁱ	12.1 (3)	C9—C10—C11—C12	1.4 (4)
$Cu1 - O2 - C13^{i} - O1^{i}$	-5.3 (3)	C10-C11-C12-N2	-2.6 (4)
$Cu1 - O2 - C13^{i} - C14^{i}$	174.68 (15)		

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (ii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iv) *x*+1/2, *y*+1/2, *z*; (v) *x*, -*y*+2, *z*-1/2; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) *x*-1/2, *y*-1/2, *z*; (viii) *x*, -*y*+2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C1—H1···O5 ^{vi}	0.93	2.43	3.229 (3)	144
C3—H3····O4 ^{vii}	0.93	2.34	3.213 (3)	157
C8—H8····O3 ⁱⁱⁱ	0.93	2.56	3.421 (3)	154

Symmetry codes: (iii) -x+3/2, y-1/2, -z+3/2; (vi) -x+1, -y+2, -z+1; (vii) x-1/2, y-1/2, z.