

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[1,1'-Bis(diphenylphosphanyl)cobaltocenium- $\kappa^2 P, P'$](η^5 -cyclopentadienyl){2-[4-(4-ethynylphenyl)phenyl]ethynyl- κC }ruthenium(II) hexafluoridophosphate

Ling-Zhen Zeng,^a Yun-Ying Wu,^b Guang-Xuan Tian^a and Zhen Li^a*

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China, and ^bCollege of Resources and Environment, Yuxi Normal University, Kunming 653100, People's Republic of China Correspondence e-mail: Izokmail@163.com

Received 4 October 2013; accepted 14 October 2013

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.057; wR factor = 0.140; data-to-parameter ratio = 18.5.

In the title compound, $[CoRu(C_5H_5)(C_{16}H_9)(C_{17}H_{14}P)_2]PF_6$, the Ru^{II} atom is coordinated by a cyclopentadienyl ring in an η^5 -mode, one C atom from a 4,4'-diethynyl-1,1'-biphenyl ligand and two P atoms from a chelating 1,1'-bis(diphenylphosphanyl)cobaltocenium ligand, giving a three-legged piano-stool geometry. In the crystal, weak C-H···F hydrogen bonds link the complex cations and hexafluoridophosphate anions into a three-dimensional supramolecular structure.

Related literature

For the synthesis of related compounds, see: Blackmore *et al.* (1971); Oshima & Suzuki (1984); Wu *et al.* (2006). For the properties of related compounds, see: Domazetis *et al.* (1980); Gaughan *et al.* (1972); Nombel *et al.* (1999); Ziolo & Dori (1968). For related structures, see: Bruce *et al.* (2003); Hembre *et al.* (1996).

Experimental

Crystal data [CoRu(C₅H₅)(C₁₆H₉)(C₁₇H₁₄P)₂]-PF₆

 $M_r = 1069.80$ Monoclinic, $P2_1/c$

metal-organic comp

a = 14.481 (5) Å	Z = 4
h = 22.052.(7) Å	Z = 1 Mo K radiation
c = 14.482 (5) Å	$\mu = 0.85 \text{ mm}^{-1}$
$\beta = 92.937 \ (2)^{\circ}$	T = 292 K
$V = 4619 (3) Å^3$	$0.30 \times 0.20 \times 0.20$ mm

Data collection

Bruker APEX CCD diffractometer	53044 measured reflections
Absorption correction: multi-scan	10985 independent reflections
(SADABS; Sheldrick, 1996)	7027 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.784, \ T_{\max} = 0.848$	$R_{\rm int} = 0.124$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 595 parameters

 $wR(F^2) = 0.140$ H-atom parameters constrained

 S = 0.97 $\Delta \rho_{max} = 0.83 \text{ e Å}^{-3}$

 10985 reflections
 $\Delta \rho_{min} = -0.82 \text{ e Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots F5^{i}$ $C3-H3\cdots F6^{ii}$	0.98 0.98	2.43 2.54	3.189 (6) 3.383 (6)	134 144
$C7 - H7 \cdot \cdot \cdot F4^{i}$	0.98	2.47	3.383 (7)	155
$C9 - H9 \cdots F2^{n}$	0.98	2.32	2.993 (6)	125

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Joint Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20125303110002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2638).

References

Blackmore, T., Bruce, M. I. & Stone, F. C. (1971). J. Chem. Soc. 14, 2376–2382.
Bruce, M. I., Ellis, B. G., Low, P. J., Skelton, B. W. & White, A. H. (2003).
Organometallics, 22, 3184–3198.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Domazetis, G., Tarpey, B., Dolphin, D. & James, B. R. (1980). J. Chem. Soc. Chem. Commun. pp. 939–940.
- Gaughan, A. P., Bownan, K. S. & Dori, Z. (1972). Inorg. Chem. 11, 601–608. Hembre, R. T., McQueen, J. A. & Day, V. W. (1996). J. Am. Chem. Soc. 118,
- 798–803. Nombel P. Lugan N. Donnadieu, B. & Lavigne, G. (1990). Organometallics
- Nombel, P., Lugan, N., Donnadieu, B. & Lavigne, G. (1999). Organometallics, 18, 187–196.
- Oshima, N. & Suzuki, H. (1984). Chem. Lett. 13, 1161-1164.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, X.-H., Ren, Y., Yu, G.-A. & Liu, S.-H. (2006). Acta Cryst. E62, m426–m428.
- Ziolo, R. F. & Dori, Z. (1968). J. Am. Chem. Soc. 90, 6560-6561.

supporting information

Acta Cryst. (2013). E69, m607 [doi:10.1107/S1600536813028195]

[1,1'-Bis(diphenylphosphanyl)cobaltocenium- $\kappa^2 P, P'$](η^5 -cyclopentadienyl) {2-[4-(4-ethynylphenyl)phenyl]ethynyl- κC }ruthenium(II) hexafluoridophosphate

Ling-Zhen Zeng, Yun-Ying Wu, Guang-Xuan Tian and Zhen Li

S1. Comment

The fragment $[Cp^*Ru(PPh_3)_2Cl]$ ($Cp^* = cyclopentadienyl$) plays an important role in the development of organoruthenium chemistry and has been used as a versatile starting material for other compounds due to its stability and facile manipulation (Blackmore *et al.*, 1971; Oshima & Suzuki, 1984; Wu *et al.*, 2006). The interest in this fragment and related derivatives concerns its ability to act as a catalyst in a variety of reactions, such as decarbonylation of both aromatic and aliphatic aldehydes (Domazetis *et al.*, 1980) and hydroformylation reactions (Nombel *et al.*, 1999), as well as anti-Markovnikov hydration of terminal alkynes (Gaughan *et al.*, 1972; Ziolo & Dori, 1968). Herein we report the synthesis and structure of the title compound.

The structure of the title compound is shown in Fig. 1. The Ru—P bond lengths in the compound [2.2497 (12) and 2.2924 (12) Å] are slightly different from those in the neutral complexes, Cp^{*}Ru(dppm)Cl [2.282 (2) and 2.294 (2) Å; dppm = bis(diphenyphosphanyl)methane] and $Cp^*Ru(dppe)Cl [2.2882 (5) and 2.2812 (5) Å; dppe = bis(diphenyl$ phosphanyl)methane] (Bruce et al., 2003). The Ru-C(Cp*) bond lengths ranging from 2.222 (4) to 2.249 (4) Å are approximately the same with those in Cp*Ru(dppm)Cl and Cp*Ru(dppe)Cl, while Ru—C(4,4'-bisethynyl-1,1'-biphenyl) bond length [2.022 (4) Å] is slightly shorter. The Ru—Cg1, Co—Cg2 and Co—Cg3 distances are 1.9050 (2), 1.6225 (2) and 1.6245 (2) Å (Cg1 is the centroid of the Cp^{*} ring, and Cg2 and Cg3 are the centroids of C1–C5 ring and C6–C10 ring), which are not significantly different from those found in $Cp^*Ru(dppf)H [dppf = 1,10-bis(diphenyl$ phosphanyl)ferrocene] (Hembre et al., 1996). The P-Ru-P angle [99.30 (4)°] in the compound is larger than those found in the dppm and dppe complexes [71.53 (6) in Cp*Ru(dppm)Cl and 82.15 (2)° in Cp*Ru(dppe)Cl], possibly due to the steric demand of the chelating dppc [dppc = 1, 10-bis(diphenylphosphanyl)cobaltocenium] ligand in the title compound. The Cg2—P1—P2—Cg3 torsion angle is 5.54 (6)°. The C1–C5 and C6–C10 rings are arranged close to a synperiplanar eclipsed conformation, with a dihedral angle of 2.0 (2)°. The dihedral angle is 19.3 (2) between the benzene rings of the 4,4'-bisethynyl-1,1'-biphenyl ligand, which are not coplanar. In the crystal, weak C-H···F hydrogen bonds link the complex cations and hexafluoridophosphate anions into a three-dimensional supramolecular structure (Table 1 and Fig. 2).

S2. Experimental

To a solution of $[Cp^*Ru(dppc)Cl](PF_6)$ (0.9 g, 1.0 mmol) in 20 ml of CH₃OH was added 4,4'-bis[(trimethyl-silyl)ethynyl]-1,1'-biphenyl (0.17 g, 0.5 mmol) in CH₂Cl₂ (20 ml). The mixture was refluxed for 24 h. After removal of the solvent *in vacuo*, the desired product was chromatographed on alumina by elution with CH₂Cl₂/CH₃COCH₃ (10:1) to yield 0.23 g (43%) of a green solid (Oshima & Suzuki, 1984). The single crystals were obtained by the slow diffusion of n-hexane into a dichloromethane solution of the compound.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with the 30% probability displacement ellipsoids.

Figure 2

A view of the crystal packing. Hydrogen bonds are shown as dashed lines.

$[1,1'-Bis(diphenylphosphanyl)cobaltocenium-\kappa^2 P, P'](\eta^5-cyclopentadienyl){2-[4-(4-ethynylphenyl)phenyl]ethynyl- \kappa C}ruthenium(II) hexafluoridophosphate$

Crystal data

$[CoRu(C_5H_5)(C_{16}H_9)(C_{17}H_{14}P)_2]PF_6$	F(000) = 2168
$M_r = 1069.80$	$D_{\rm x} = 1.538 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9162 reflections
a = 14.481 (5) Å	$\theta = 2.2 - 24.8^{\circ}$
b = 22.052 (7) Å	$\mu=0.85~\mathrm{mm^{-1}}$
c = 14.482 (5) Å	T = 292 K
$\beta = 92.937 \ (2)^{\circ}$	Block, black
$V = 4619 (3) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20$ mm
Z = 4	

Data collection

Bruker APEX CCD	53044 measured reflections
diffractometer	10985 independent reflections
Radiation source: fine-focus sealed tube	7027 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.124$
φ and ω scans	$\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -29 \rightarrow 29$
$T_{\min} = 0.784, T_{\max} = 0.848$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 0.97	H-atom parameters constrained
10985 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0665P)^2]$
595 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.83$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.82$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.14140 (2)	0.117675 (14)	0.61008 (2)	0.03605 (11)	
Co1	0.39049 (4)	0.07678 (2)	0.78319 (4)	0.03828 (15)	
P1	0.19282 (7)	0.16321 (4)	0.74190 (7)	0.0360 (2)	
P2	0.20918 (7)	0.02449 (4)	0.63204 (7)	0.0337 (2)	
C1	0.3097 (3)	0.15053 (16)	0.7960 (3)	0.0380 (9)	
C2	0.3389 (3)	0.12705 (18)	0.8846 (3)	0.0462 (10)	
H2	0.2982	0.1124	0.9319	0.055*	
C3	0.4366 (3)	0.1275 (2)	0.8917 (3)	0.0581 (13)	
H3	0.4751	0.1129	0.9447	0.070*	
C4	0.4696 (3)	0.15178 (19)	0.8100 (3)	0.0567 (12)	
H4	0.5346	0.1569	0.7960	0.068*	
C5	0.3924 (3)	0.16604 (17)	0.7509 (3)	0.0436 (10)	
H5	0.3948	0.1828	0.6884	0.052*	
C6	0.3211 (3)	0.01700 (16)	0.6984 (3)	0.0350 (9)	
C7	0.3373 (3)	-0.00824 (17)	0.7877 (3)	0.0422 (10)	
H7	0.2898	-0.0221	0.8287	0.051*	

C8	0.4345 (3)	-0.00871 (17)	0.8086 (3)	0.0482 (11)
H8	0.4651	-0.0231	0.8664	0.058*
C9	0.4790 (3)	0.01508 (19)	0.7328 (3)	0.0477 (11)
H9	0.5458	0.0202	0.7281	0.057*
C10	0.4090 (3)	0.03187 (17)	0.6650(3)	0.0401 (9)
H10	0.4197	0.0506	0.6050	0.048*
C11	0.1157 (3)	0.15023 (18)	0.8351 (3)	0.0425 (10)
C12	0.0433 (3)	0.1898 (2)	0.8526 (3)	0.0553 (12)
H12	0.0391	0.2268	0.8220	0.066*
C13	-0.0219 (4)	0.1747 (3)	0.9148 (4)	0.0734 (16)
H13	-0.0703	0.2010	0.9256	0.088*
C14	-0.0144 (4)	0.1201 (3)	0.9607 (4)	0.0820 (18)
H14	-0.0580	0.1098	1.0030	0.098*
C15	0.0560 (4)	0.0811 (3)	0.9450 (3)	0.0680 (14)
H15	0.0605	0.0447	0.9774	0.082*
C16	0.1203 (3)	0.0950 (2)	0.8819 (3)	0.0544 (12)
H16	0.1671	0.0676	0.8704	0.065*
C17	0.2041 (3)	0.24636 (16)	0.7336 (3)	0.0400 (9)
C18	0.2074 (3)	0.27338 (18)	0.6493 (3)	0.0529 (11)
H18	0.2017	0.2498	0.5960	0.063*
C19	0.2189 (4)	0.3351 (2)	0.6418 (4)	0.0695 (15)
H19	0.2202	0.3531	0.5838	0.083*
C20	0.2283 (4)	0.3701 (2)	0.7201 (4)	0.0629 (13)
H20	0.2372	0.4117	0.7152	0.076*
C21	0.2247 (3)	0.34435 (19)	0.8036 (4)	0.0588 (12)
H21	0.2294	0.3684	0.8563	0.071*
C22	0.2141 (3)	0.28226 (17)	0.8121 (3)	0.0480 (10)
H22	0.2137	0.2646	0.8705	0.058*
C23	0.0623 (3)	-0.01639 (19)	0.7322 (3)	0.0487 (11)
H23	0.0452	0.0243	0.7325	0.058*
C24	0.0082 (3)	-0.0594 (2)	0.7768 (3)	0.0597 (13)
H24	-0.0447	-0.0474	0.8056	0.072*
C25	0.0341 (4)	-0.1183 (2)	0.7774 (3)	0.0622 (13)
H25	-0.0009	-0.1469	0.8074	0.075*
C26	0.1117 (4)	-0.1362 (2)	0.7340 (3)	0.0632 (13)
H26	0.1286	-0.1769	0.7343	0.076*
C27	0.1647 (3)	-0.09449 (18)	0.6902 (3)	0.0497 (11)
H27	0.2174	-0.1072	0.6617	0.060*
C28	0.1404 (3)	-0.03386 (16)	0.6880 (3)	0.0363 (9)
C29	0.2455 (3)	-0.01353 (16)	0.5262 (3)	0.0368 (9)
C30	0.3125 (3)	-0.05909 (19)	0.5276 (3)	0.0496 (11)
H30	0.3410	-0.0711	0.5836	0.059*
C31	0.3367 (3)	-0.0864 (2)	0.4472 (3)	0.0578 (12)
H31	0.3811	-0.1168	0.4489	0.069*
C32	0.2961 (3)	-0.0690 (2)	0.3658 (3)	0.0576 (13)
H32	0.3126	-0.0876	0.3114	0.069*
C33	0.2299 (4)	-0.0238 (2)	0.3626 (3)	0.0573 (13)
H33	0.2022	-0.0119	0.3061	0.069*

C34	0.2053 (3)	0.00331 (18)	0.4428 (3)	0.0452 (10)
H34	0.1606	0.0336	0.4404	0.054*
C35	0.0200 (3)	0.1807 (2)	0.6062 (3)	0.0556 (12)
H35	0.0144	0.2174	0.6438	0.067*
C36	0.0550 (3)	0.1781 (2)	0.5183 (4)	0.0664 (14)
H36	0.0772	0.2126	0.4829	0.080*
C37	0.0423 (3)	0.1183 (3)	0.4852 (3)	0.0649 (14)
H37	0.0552	0.1037	0.4233	0.078*
C38	0.0024 (3)	0.0849 (2)	0.5544 (4)	0.0599 (13)
H38	-0.0164	0.0423	0.5493	0.072*
C39	-0.0132 (3)	0.1223 (2)	0.6284 (4)	0.0565 (12)
H39	-0.0450	0.1111	0.6841	0.068*
C40	0.2633 (3)	0.13775 (17)	0.5551 (3)	0.0408 (9)
C41	0.3350 (3)	0.14961 (19)	0.5204 (3)	0.0479 (10)
C42	0.4133 (3)	0.16157 (18)	0.4677 (3)	0.0448 (10)
C43	0.4693 (3)	0.2130 (2)	0.4812 (3)	0.0526 (11)
H43	0.4600	0.2384	0.5312	0.063*
C44	0.4361 (3)	0.1232 (2)	0.3974 (3)	0.0560 (12)
H44	0.4047	0.0866	0.3895	0.067*
C45	0.5371 (3)	0.2267 (2)	0.4227 (3)	0.0533 (11)
H45	0.5721	0.2615	0.4335	0.064*
C46	0.5042 (3)	0.1380 (2)	0.3387 (3)	0.0591 (13)
H46	0.5160	0.1114	0.2908	0.071*
C47	0.5560 (3)	0.19053 (17)	0.3475 (3)	0.0458 (10)
C48	0.6209 (3)	0.20920 (19)	0.2776 (3)	0.0468 (10)
C49	0.6845 (3)	0.2560 (2)	0.2922 (3)	0.0519 (11)
H49	0.6908	0.2740	0.3502	0.062*
C50	0.6177 (4)	0.1824 (2)	0.1926 (3)	0.0635 (13)
H50	0.5778	0.1499	0.1812	0.076*
C51	0.7380 (3)	0.2762 (2)	0.2233 (3)	0.0567 (12)
H51	0.7792	0.3079	0.2352	0.068*
C52	0.6720 (4)	0.2021 (2)	0.1229 (3)	0.0642 (13)
H52	0.6680	0.1826	0.0660	0.077*
C53	0.7318 (3)	0.2501 (2)	0.1363 (3)	0.0556 (12)
C54	0.7830 (3)	0.2735 (2)	0.0636 (3)	0.0574 (12)
C55	0.8215 (4)	0.2942 (2)	0.0036 (4)	0.0694 (14)
Н55	0.8526	0.3110	-0.0450	0.083*
F1	0.2865 (6)	0.6052 (2)	0.5944 (5)	0.277 (5)
F2	0.3473 (3)	0.5246 (4)	0.6470 (3)	0.229 (4)
F3	0.2045 (3)	0.5287 (2)	0.6172 (3)	0.1314 (16)
F4	0.2322 (3)	0.5580 (3)	0.4767 (3)	0.187 (3)
F5	0.2957 (5)	0.4787 (2)	0.5262 (4)	0.210 (3)
F6	0.3773 (3)	0.5565 (3)	0.5076 (3)	0.167 (2)
P3	0.29026 (9)	0.54231 (6)	0.56284 (9)	0.0591 (3)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Ru1	0.0413 (2)	0.03140 (18)	0.03518 (18)	0.00285 (14)	-0.00097 (13)	-0.00073 (13)
Col	0.0426 (3)	0.0310 (3)	0.0405 (3)	-0.0005 (2)	-0.0048 (2)	-0.0036 (2)
P1	0.0453 (6)	0.0263 (5)	0.0366 (6)	0.0007 (4)	0.0034 (4)	-0.0005 (4)
P2	0.0384 (6)	0.0290 (5)	0.0334 (5)	-0.0014 (4)	-0.0001 (4)	-0.0019 (4)
C1	0.048 (2)	0.0259 (19)	0.039 (2)	0.0005 (17)	-0.0038 (18)	-0.0064 (16)
C2	0.056 (3)	0.045 (2)	0.036 (2)	0.000 (2)	-0.004 (2)	-0.0086 (18)
C3	0.061 (3)	0.053 (3)	0.058 (3)	0.005 (2)	-0.020(2)	-0.019 (2)
C4	0.057 (3)	0.040 (3)	0.072 (3)	-0.008(2)	-0.007 (3)	-0.013 (2)
C5	0.050 (3)	0.028 (2)	0.052 (3)	-0.0030 (18)	0.000 (2)	-0.0036 (18)
C6	0.043 (2)	0.0270 (19)	0.035 (2)	0.0031 (17)	0.0010 (17)	-0.0065 (16)
C7	0.053 (3)	0.031 (2)	0.042 (2)	-0.0039 (19)	-0.0028 (19)	-0.0014 (17)
C8	0.055 (3)	0.033 (2)	0.055 (3)	0.008 (2)	-0.013 (2)	-0.0024 (19)
C9	0.039 (2)	0.042 (2)	0.061 (3)	0.0063 (19)	-0.001 (2)	-0.005 (2)
C10	0.048 (2)	0.040 (2)	0.033 (2)	-0.0005 (19)	0.0064 (18)	-0.0051 (17)
C11	0.051 (3)	0.038 (2)	0.039 (2)	-0.007 (2)	0.0022 (19)	-0.0083 (18)
C12	0.058 (3)	0.052 (3)	0.057 (3)	-0.001 (2)	0.011 (2)	-0.011 (2)
C13	0.058 (3)	0.085 (4)	0.079 (4)	-0.002 (3)	0.020 (3)	-0.028 (3)
C14	0.083 (4)	0.107 (5)	0.058 (3)	-0.036 (4)	0.022 (3)	-0.006 (3)
C15	0.080 (4)	0.068 (3)	0.057 (3)	-0.020 (3)	0.013 (3)	0.006 (3)
C16	0.065 (3)	0.049 (3)	0.051 (3)	-0.006 (2)	0.014 (2)	0.000 (2)
C17	0.049 (2)	0.0261 (19)	0.045 (2)	-0.0007 (17)	0.0024 (19)	-0.0019 (17)
C18	0.076 (3)	0.035 (2)	0.048 (3)	0.000 (2)	0.009 (2)	0.002 (2)
C19	0.104 (4)	0.043 (3)	0.062 (3)	0.004 (3)	0.011 (3)	0.015 (2)
C20	0.082 (4)	0.029 (2)	0.078 (4)	-0.004 (2)	0.007 (3)	-0.002 (2)
C21	0.070 (3)	0.036 (2)	0.070 (3)	0.001 (2)	-0.005 (3)	-0.007 (2)
C22	0.061 (3)	0.030 (2)	0.052 (3)	0.000 (2)	-0.003 (2)	-0.0024 (19)
C23	0.059 (3)	0.038 (2)	0.050 (3)	-0.006 (2)	0.008 (2)	0.000 (2)
C24	0.065 (3)	0.059 (3)	0.057 (3)	-0.006 (3)	0.019 (2)	0.006 (2)
C25	0.076 (4)	0.052 (3)	0.059 (3)	-0.025 (3)	0.002 (3)	0.015 (2)
C26	0.075 (4)	0.041 (3)	0.074 (3)	0.001 (2)	0.003 (3)	0.010 (2)
C27	0.054 (3)	0.038 (2)	0.057 (3)	0.001 (2)	0.006 (2)	0.004 (2)
C28	0.042 (2)	0.033 (2)	0.033 (2)	-0.0034 (17)	-0.0030 (17)	0.0000 (16)
C29	0.045 (2)	0.0270 (19)	0.039 (2)	-0.0061 (17)	0.0075 (18)	-0.0035 (16)
C30	0.057 (3)	0.046 (2)	0.045 (3)	0.012 (2)	0.000 (2)	-0.003 (2)
C31	0.063 (3)	0.052 (3)	0.060 (3)	0.004 (2)	0.011 (2)	-0.013 (2)
C32	0.079 (4)	0.047 (3)	0.049 (3)	-0.015 (3)	0.024 (3)	-0.015 (2)
C33	0.087 (4)	0.050 (3)	0.035 (2)	-0.015 (3)	0.008 (2)	-0.002(2)
C34	0.062 (3)	0.035 (2)	0.040 (2)	-0.002(2)	0.003 (2)	-0.0006 (18)
C35	0.053 (3)	0.048 (3)	0.065 (3)	0.016 (2)	-0.007(2)	-0.004(2)
C36	0.056 (3)	0.070 (4)	0.072 (4)	0.018 (3)	-0.005(3)	0.032 (3)
C37	0.063 (3)	0.092 (4)	0.038 (3)	0.025 (3)	-0.013 (2)	-0.006(3)
C38	0.047 (3)	0.053 (3)	0.077 (4)	0.002 (2)	-0.023 (2)	-0.012 (3)
C39	0.041 (3)	0.060 (3)	0.068 (3)	0.007 (2)	-0.004 (2)	-0.004 (3)
C40	0.054 (3)	0.030 (2)	0.037 (2)	0.0024 (19)	0.000 (2)	-0.0008 (17)
C41	0.053 (3)	0.042 (2)	0.049 (3)	0.001 (2)	0.002 (2)	0.003 (2)

C42	0.046 (2)	0.038 (2)	0.050 (3)	0.0045 (19)	0.001 (2)	0.0121 (19)
C43	0.060 (3)	0.048 (3)	0.050 (3)	-0.007 (2)	0.008 (2)	0.000 (2)
C44	0.059 (3)	0.041 (3)	0.070 (3)	-0.002 (2)	0.018 (2)	-0.003 (2)
C45	0.061 (3)	0.043 (3)	0.057 (3)	-0.010 (2)	0.005 (2)	0.003 (2)
C46	0.069 (3)	0.040 (2)	0.071 (3)	0.002 (2)	0.023 (3)	-0.007 (2)
C47	0.051 (3)	0.030 (2)	0.057 (3)	0.0036 (19)	0.008 (2)	0.0073 (19)
C48	0.050 (3)	0.039 (2)	0.051 (3)	0.005 (2)	0.006 (2)	0.002 (2)
C49	0.056 (3)	0.046 (3)	0.054 (3)	0.002 (2)	0.008 (2)	-0.003 (2)
C50	0.087 (4)	0.049 (3)	0.055 (3)	-0.012 (3)	0.008 (3)	0.001 (2)
C51	0.053 (3)	0.042 (3)	0.076 (3)	-0.006 (2)	0.006 (2)	0.002 (2)
C52	0.080 (4)	0.060 (3)	0.053 (3)	-0.009 (3)	0.009 (3)	-0.004 (2)
C53	0.056 (3)	0.051 (3)	0.061 (3)	0.006 (2)	0.012 (2)	0.010 (2)
C54	0.052 (3)	0.059 (3)	0.062 (3)	-0.001 (2)	0.014 (2)	0.001 (2)
C55	0.064 (3)	0.073 (4)	0.072 (4)	-0.001 (3)	0.013 (3)	0.003 (3)
F1	0.482 (12)	0.096 (4)	0.273 (8)	-0.076 (6)	0.206 (9)	-0.089 (4)
F2	0.097 (3)	0.505 (12)	0.081 (3)	0.065 (5)	-0.039 (2)	-0.003 (5)
F3	0.096 (3)	0.205 (5)	0.095 (3)	-0.009 (3)	0.025 (2)	0.032 (3)
F4	0.115 (3)	0.350 (8)	0.095 (3)	0.060 (4)	0.009 (3)	0.076 (4)
F5	0.354 (9)	0.087 (3)	0.196 (5)	0.015 (4)	0.078 (6)	-0.036 (3)
F6	0.098 (3)	0.277 (6)	0.130 (4)	-0.060 (4)	0.047 (3)	-0.045 (4)
P3	0.0619 (8)	0.0657 (9)	0.0492 (7)	-0.0020 (7)	-0.0004 (6)	-0.0108 (6)

Geometric parameters (Å, °)

Ru1—C40	2.022 (4)	C23—C28	1.383 (6)
Ru1—C36	2.222 (4)	C23—C24	1.408 (6)
Ru1—C35	2.240 (4)	С23—Н23	0.9300
Ru1—C38	2.248 (4)	C24—C25	1.353 (6)
Ru1—C37	2.249 (4)	C24—H24	0.9300
Ru1—P1	2.2497 (12)	C25—C26	1.374 (7)
Ru1—C39	2.271 (5)	С25—Н25	0.9300
Ru1—P2	2.2924 (12)	C26—C27	1.373 (6)
Co1-C10	2.008 (4)	C26—H26	0.9300
Co1—C2	2.014 (4)	C27—C28	1.383 (5)
Co1—C3	2.015 (4)	С27—Н27	0.9300
Co1—C8	2.017 (4)	C29—C34	1.365 (5)
Co1—C1	2.018 (4)	C29—C30	1.396 (5)
Co1—C5	2.024 (4)	C30—C31	1.372 (6)
Co1—C7	2.029 (4)	С30—Н30	0.9300
Co1—C9	2.030 (4)	C31—C32	1.346 (6)
Col—C6	2.032 (4)	C31—H31	0.9300
Co1—C4	2.038 (4)	C32—C33	1.381 (7)
P1-C11	1.818 (4)	С32—Н32	0.9300
P1—C17	1.845 (4)	C33—C34	1.370 (6)
P1—C1	1.850 (4)	С33—Н33	0.9300
P2—C28	1.840 (4)	С34—Н34	0.9300
P2—C29	1.847 (4)	C35—C36	1.395 (7)
Р2—С6	1.849 (4)	C35—C39	1.418 (6)

C1—C2	1.427 (5)	С35—Н35	0.9800
C1—C5	1.435 (6)	C36—C37	1.412 (7)
C2—C3	1.414 (6)	С36—Н36	0.9800
С2—Н2	0.9800	C37—C38	1.392 (7)
C3—C4	1,403 (7)	C37—H37	0.9800
C3—H3	0.9800	C38—C39	1 379 (6)
C4-C5	1 408 (6)	C38—H38	0.9800
C4—H4	0.9800	C39—H39	0.9800
С5—Н5	0.9800	C40-C41	1 205 (6)
C6	1 416 (5)	C41 - C42	1.205(0) 1.424(6)
C_{0}	1.410(5) 1.423(5)	$C_{41} = C_{42}$	1.424(0) 1 378(6)
C_{7}	1.423(5)	C_{42} C_{43}	1.378 (0)
C_{7}	0.0800	C42 - C45	1.402(0)
$C^{2} = C^{2}$	0.9800	$C_{43} = C_{43}$	1.303(0)
	1.402 (6)	C43—H43	0.9300
C8—H8	0.9800	C44—C46	1.374 (6)
C9—C10	1.423 (5)	C44—H44	0.9300
С9—Н9	0.9800	C45—C47	1.388 (6)
C10—H10	0.9800	C45—H45	0.9300
C11—C16	1.393 (6)	C46—C47	1.383 (6)
C11—C12	1.397 (6)	C46—H46	0.9300
C12—C13	1.379 (7)	C47—C48	1.474 (6)
C12—H12	0.9300	C48—C50	1.365 (6)
C13—C14	1.377 (8)	C48—C49	1.392 (6)
C13—H13	0.9300	C49—C51	1.368 (6)
C14—C15	1.362 (8)	C49—H49	0.9300
C14—H14	0.9300	C50—C52	1.380 (6)
C15—C16	1.374 (6)	С50—Н50	0.9300
С15—Н15	0.9300	C51—C53	1.384 (6)
C16—H16	0.9300	C51—H51	0.9300
C17—C18	1.362 (5)	C52—C53	1.374 (7)
C17—C22	1.387 (5)	С52—Н52	0.9300
C18—C19	1.377 (6)	C53—C54	1.416 (6)
C18—H18	0.9300	C54—C55	1.151 (6)
C19—C20	1.372 (7)	С55—Н55	0.9300
С19—Н19	0.9300	F1—P3	1.461 (5)
C20—C21	1.339 (6)	F2—P3	1.489 (4)
C20—H20	0.9300	F3—P3	1.534 (4)
$C_{21} - C_{22}$	1 384 (6)	F4—P3	1 508 (4)
C21—H21	0.9300	F5P3	1.500(1) 1.502(5)
C22—H22	0.9300	F6—P3	1.552(5) 1.558(4)
022 1122	0.9500	10 10	1.556 (1)
C40—Ru1—C36	96 27 (18)	C14—C13—C12	119 2 (5)
C40 - Ru1 - C35	123 65 (17)	C14—C13—H13	120.4
$C_{36} = R_{11} = C_{35}$	36 45 (17)	C12_C13_H13	120.1
C40 = Ru1 = C38	135 43 (18)	C12 - C13 - III3	120.4
$C_{10} = Ru1 = C_{10}$	60.78 (10)	$C_{15} = C_{14} = C_{15}$	120.0 (3)
$C_{35} = Ru1 = C_{38}$	60.70(17)	C13 C14 H14	119.0
$C_{40} = R_{u1} = C_{50}$	102.46(17)	C14 $C15$ $C16$	120 6 (5)
U_{40} $- K_{01}$ $- U_{3}$	102.40 (10)	014-010-010	120.0 (3)

C36—Ru1—C37	36.80 (18)	C14—C15—H15	119.7
C35—Ru1—C37	60.56 (17)	С16—С15—Н15	119.7
C38—Ru1—C37	36.06 (17)	C15—C16—C11	120.1 (5)
C40—Ru1—P1	88.78 (11)	C15—C16—H16	119.9
C36—Ru1—P1	113.07 (16)	C11—C16—H16	119.9
C35—Ru1—P1	88.27 (13)	C18—C17—C22	118.6 (4)
C38—Ru1—P1	134.33 (14)	C18—C17—P1	120.0 (3)
C37—Ru1—P1	148.10 (13)	C22—C17—P1	121.3 (3)
C40—Ru1—C39	157.25 (17)	C17—C18—C19	120.9 (4)
C36—Ru1—C39	60.98 (18)	C17—C18—H18	119.6
C35—Ru1—C39	36.65 (16)	C19—C18—H18	119.6
C38—Ru1—C39	35.53 (16)	C20—C19—C18	119.8 (5)
C37—Ru1—C39	60.11 (18)	С20—С19—Н19	120.1
P1—Ru1—C39	99.58 (13)	С18—С19—Н19	120.1
C40—Ru1—P2	82.80 (11)	C21—C20—C19	120.1 (4)
C36—Ru1—P2	147.61 (16)	C21—C20—H20	119.9
C35—Ru1—P2	152.84 (13)	С19—С20—Н20	119.9
C38—Ru1—P2	97.53 (13)	C20—C21—C22	120.6 (4)
C37— $Ru1$ — $P2$	111.58 (14)	C20—C21—H21	119.7
P1—Ru1—P2	99.30 (4)	C_{22} C_{21} H_{21}	119.7
C39—Ru1—P2	116.20 (12)	C_{21} C_{22} C_{17}	119.9 (4)
C10-Co1-C2	164.59 (17)	C21—C22—H22	120.0
C10—Co1—C3	152.30 (19)	C17—C22—H22	120.0
C2—Co1—C3	41.09 (18)	C28—C23—C24	120.8 (4)
C10—Co1—C8	68.88 (17)	C28—C23—H23	119.6
C2—Co1—C8	120.47 (18)	C24—C23—H23	119.6
C3—Co1—C8	106.76 (18)	C25—C24—C23	119.4 (5)
C10—Co1—C1	125.43 (16)	C25—C24—H24	120.3
C2—Co1—C1	41.45 (15)	C23—C24—H24	120.3
C3—Co1—C1	69.56 (17)	C24—C25—C26	120.4 (4)
C8—Co1—C1	156.28 (18)	C24—C25—H25	119.8
C10—Co1—C5	106.20 (17)	С26—С25—Н25	119.8
C2—Co1—C5	69.07 (17)	C27—C26—C25	120.6 (4)
C3—Co1—C5	68.38 (19)	С27—С26—Н26	119.7
C8—Co1—C5	160.57 (17)	С25—С26—Н26	119.7
C1—Co1—C5	41.59 (16)	C26—C27—C28	120.8 (4)
C10—Co1—C7	68.86 (16)	С26—С27—Н27	119.6
C2—Co1—C7	109.24 (17)	С28—С27—Н27	119.6
C3—Co1—C7	126.84 (19)	C27—C28—C23	118.1 (4)
C8—Co1—C7	41.21 (16)	C27—C28—P2	122.9 (3)
C1—Co1—C7	121.26 (17)	C23—C28—P2	118.9 (3)
C5—Co1—C7	156.32 (16)	C34—C29—C30	118.2 (4)
C10—Co1—C9	41.28 (16)	C34—C29—P2	119.0 (3)
C2—Co1—C9	153.59 (17)	C30—C29—P2	122.8 (3)
C3—Co1—C9	117.55 (18)	C31—C30—C29	120.7 (4)
C8—Co1—C9	40.54 (17)	С31—С30—Н30	119.6
C1—Co1—C9	162.37 (17)	С29—С30—Н30	119.6
C5—Co1—C9	123.54 (18)	C32—C31—C30	120.0 (4)

C7—Co1—C9	68.90 (17)	С32—С31—Н31	120.0
C10—Co1—C6	41.26 (15)	С30—С31—Н31	120.0
C2—Co1—C6	127.39 (16)	C31—C32—C33	120.4 (4)
C3—Co1—C6	164.92 (19)	C31—C32—H32	119.8
C8—Co1—C6	69.25 (16)	С33—С32—Н32	119.8
C1—Co1—C6	107.91 (15)	C34—C33—C32	119.8 (4)
C5—Co1—C6	120.24 (16)	С34—С33—Н33	120.1
C7—Co1—C6	40.83 (15)	С32—С33—Н33	120.1
C9—Co1—C6	69.50 (16)	C29—C34—C33	120.9 (4)
C10—Co1—C4	117.67 (18)	C29—C34—H34	119.6
C_{2} — C_{01} — C_{4}	68 91 (19)	C33—C34—H34	119.6
C_{3} — C_{01} — C_{4}	40 51 (18)	$C_{36} - C_{35} - C_{39}$	108.2(4)
C_{2}^{8} C_{2}^{1} C_{4}^{2}	123 68 (19)	$C_{36} = C_{35} = R_{11}$	711(3)
C_1 C_2 C_4	60 50 (18)	$C_{30} = C_{35} = R_{11}$	71.1(3) 72.0(3)
$C_{1} = C_{01} = C_{4}$	40.56 (17)	$C_{35} = C_{35} = R_{u1}$	12.5 (3)
$C_{3} = C_{01} = C_{4}$	40.30(17)	$C_{30} = C_{33} = H_{33}$	125.8
$C_{}C_{01} - C_{4}$	102.01(18)	С 39—С 35—Н 35	125.8
$C_{9} = C_{01} = C_{4}$	104.68 (19)	Ru1—C35—H35	125.8
C_{0}	153.82 (18)	$C_{35} = C_{36} = C_{37}$	107.5 (5)
CII—PI—CI7	105.32 (18)	C35—C36—Rul	72.5 (3)
C11—P1—C1	104.20 (19)	C37—C36—Rul	72.7 (3)
C17—P1—C1	95.50 (17)	С35—С36—Н36	126.0
C11—P1—Ru1	111.73 (13)	С37—С36—Н36	126.0
C17—P1—Ru1	114.52 (13)	Ru1—C36—H36	126.0
C1—P1—Ru1	123.24 (12)	C38—C37—C36	107.5 (4)
C28—P2—C29	103.37 (17)	C38—C37—Ru1	71.9 (3)
C28—P2—C6	100.88 (17)	C36—C37—Ru1	70.5 (3)
C29—P2—C6	96.40 (17)	С38—С37—Н37	126.2
C28—P2—Ru1	116.76 (13)	С36—С37—Н37	126.2
C29—P2—Ru1	115.46 (13)	Ru1—C37—H37	126.2
C6—P2—Ru1	120.66 (12)	C39—C38—C37	109.6 (4)
C2—C1—C5	106.3 (4)	C39—C38—Ru1	73.1 (3)
C2—C1—P1	131.2 (3)	C37—C38—Ru1	72.0 (3)
C5—C1—P1	122.6 (3)	С39—С38—Н38	125.1
C2—C1—Co1	69.1 (2)	С37—С38—Н38	125.1
C5-C1-Co1	69.4 (2)	Ru1—C38—H38	125.1
P1-C1-Co1	127.24(19)	C_{38} C_{39} C_{35}	107.1 (5)
$C_{3}-C_{2}-C_{1}$	108.2 (4)	C38—C39—Ru1	71.4 (3)
$C_3 - C_2 - C_0 l$	69 5 (2)	$C_{35} = C_{39} = R_{11}$	70.5(3)
$C_1 - C_2 - C_0 $	69.4 (2)	C_{38} C_{39} H_{39}	126.4
$C_3 = C_2 = H_2$	125.9	C_{35} C_{39} H_{39}	126.4
$C_1 C_2 H_2$	125.9	Ru1 C30 H30	126.4
$C_1 = C_2 = H_2$	125.9	$C_{41} = C_{40} = P_{11}$	120.4
$C_0 = C_2 = C_2$	123.9	C40 C41 C42	178.0(4)
$C_{1} = C_{2} = C_{2}$	107.0(4)	$C_{40} = C_{41} = C_{42}$	1/2.2(3)
$C_{4} = C_{2} = C_{2}$	(0.0(3))	$C_{44} = C_{42} = C_{43}$	110.3(4)
$C_2 = C_3 = C_0 I$	09.4 (2)	$C_{44} - C_{42} - C_{41}$	120.0 (4)
C4-C3-H3	125.5	C43 - C42 - C41	125.1 (4)
С2—С3—Н3	125.5	C45—C43—C42	121.4 (4)
Co1-C3-H3	125.5	C45—C43—H43	119.3

C3—C4—C5	107.6 (4)	C42—C43—H43	119.3
C3—C4—Co1	68.9 (3)	C46—C44—C42	121.1 (4)
C5—C4—Co1	69.2 (2)	C46—C44—H44	119.4
C3—C4—H4	126.2	C42—C44—H44	119.4
C5—C4—H4	126.2	C43—C45—C47	122.6 (4)
Co1—C4—H4	126.2	C43—C45—H45	118.7
C4—C5—C1	109.0 (4)	C47—C45—H45	118.7
C4—C5—Co1	70.3 (2)	C44—C46—C47	123.1 (4)
C1C5C01	69.0 (2)	C44—C46—H46	118.4
C4—C5—H5	125.5	C47—C46—H46	118.4
C1-C5-H5	125.5	C46-C47-C45	115.1 (4)
Co1-C5-H5	125.5	C46-C47-C48	1222(4)
C7 - C6 - C10	125.5 107.0(3)	C45 - C47 - C48	122.2(4) 122.4(4)
C7 - C6 - P2	107.0(3) 127.5(3)	C_{50} C_{48} C_{49}	122.4(4) 116.7(4)
$C_{10} C_{6} P_{2}$	127.3(3) 125.3(3)	$C_{50} = C_{40} = C_{47}$	110.7(4) 120.3(4)
$C_{10} = C_{0} = 12$	125.5(3)	C_{30} C_{48} C_{47}	120.3(4)
$C_{10} = C_{0} = C_{01}$	(9.3(2))	C49 - C40 - C47	122.9 (4)
C10-C0-C01	08.4(2)	C51 - C49 - C48	121.7 (4)
P2 - C0 - C01	130.49 (19)	C11-C49-H49	119.1
$C_{0} - C_{1} - C_{8}$	108.2 (4)	C48—C49—H49	119.1
	69.7 (2)	C48—C50—C52	121.9 (5)
	69.0 (2)	C48—C50—H50	119.0
С6—С7—Н7	125.9	C52—C50—H50	119.0
С8—С7—Н7	125.9	C49—C51—C53	121.1 (4)
Со1—С7—Н7	125.9	C49—C51—H51	119.5
C9—C8—C7	108.7 (4)	C53—C51—H51	119.5
C9—C8—Co1	70.2 (2)	C53—C52—C50	121.2 (5)
C7—C8—Co1	69.8 (2)	C53—C52—H52	119.4
С9—С8—Н8	125.7	C50—C52—H52	119.4
С7—С8—Н8	125.7	C52—C53—C51	117.3 (4)
Co1—C8—H8	125.7	C52—C53—C54	121.8 (5)
C8—C9—C10	107.3 (4)	C51—C53—C54	120.9 (4)
C8—C9—Co1	69.2 (2)	C55—C54—C53	177.0 (6)
C10-C9-Co1	68.5 (2)	С54—С55—Н55	180.0
С8—С9—Н9	126.3	F1—P3—F2	91.3 (4)
С10—С9—Н9	126.3	F1—P3—F5	177.3 (4)
Со1—С9—Н9	126.3	F2—P3—F5	90.4 (4)
C9—C10—C6	108.8 (3)	F1—P3—F4	90.7 (5)
C9—C10—Co1	70.2 (2)	F2—P3—F4	178.0 (4)
C6—C10—Co1	70.3 (2)	F5—P3—F4	87.7 (4)
C9—C10—H10	125.6	F1—P3—F3	88.9 (3)
C6-C10-H10	125.6	F2—P3—F3	87.6 (3)
$C_01-C_10-H_{10}$	125.6	F5—P3—F3	93 2 (3)
C_{16} $-C_{11}$ $-C_{12}$	118 3 (4)	F4—P3—F3	92,1 (2)
C16-C11-P1	118.9 (3)	F1—P3—F6	90.9(3)
C_{12} C_{11} P_{1}	122 1 (3)	F2F6	92.5(3)
C_{13} C_{12} C_{11} C_{13} C_{12} C_{11}	122.1(5) 120.9(5)	F5F6	87 0 (3)
$C_{13} = C_{12} = C_{11}$	119.6	F4F6	87.8 (3)
C11 - C12 - H12	119.6	F3F6	179 8 (3)
UII UI2 III2	117.0	15 15 10	1/2.0(3)

C40—Ru1—P1—C11	-170.70 (18)	C6C7C8Co1	58.8 (3)
C36—Ru1—P1—C11	93.0 (2)	C10—Co1—C8—C9	38.0 (2)
C35—Ru1—P1—C11	65.6 (2)	C2—Co1—C8—C9	-155.6 (2)
C38—Ru1—P1—C11	22.0 (2)	C3—Co1—C8—C9	-113.0 (3)
C37—Ru1—P1—C11	77.3 (3)	C1—Co1—C8—C9	169.8 (4)
C39—Ru1—P1—C11	30.58 (19)	C5—Co1—C8—C9	-40.7 (6)
P2—Ru1—P1—C11	-88.19 (15)	C7—Co1—C8—C9	119.6 (4)
C40—Ru1—P1—C17	69.67 (18)	C6—Co1—C8—C9	82.3 (3)
C36—Ru1—P1—C17	-26.6 (2)	C4—Co1—C8—C9	-71.9(3)
C35—Ru1—P1—C17	-54.06 (19)	C10—Co1—C8—C7	-81.6 (3)
C38—Ru1—P1—C17	-97.6 (2)	C2—Co1—C8—C7	84.7 (3)
C37—Ru1—P1—C17	-42.3 (3)	C3—Co1—C8—C7	127.3 (3)
C39—Ru1—P1—C17	-89.06 (19)	C1—Co1—C8—C7	50.1 (5)
P2—Ru1—P1—C17	152.17 (15)	C5—Co1—C8—C7	-160.3(5)
C40—Ru1—P1—C1	-45.47 (19)	C9—Co1—C8—C7	-119.6 (4)
C36—Ru1—P1—C1	-141.8 (2)	C6—Co1—C8—C7	-37.3(2)
C35—Ru1—P1—C1	-169.2 (2)	C4—Co1—C8—C7	168.5 (3)
C38—Ru1—P1—C1	147.2 (2)	C7—C8—C9—C10	1.4 (5)
C37—Ru1—P1—C1	-157.4 (3)	Co1—C8—C9—C10	-58.1 (3)
C39—Ru1—P1—C1	155.8 (2)	C7—C8—C9—Co1	59.5 (3)
P2—Ru1—P1—C1	37.03 (16)	C10—Co1—C9—C8	-119.4 (4)
C40—Ru1—P2—C28	179.47 (17)	C2—Co1—C9—C8	53.1 (5)
C36—Ru1—P2—C28	-90.2 (3)	C3—Co1—C9—C8	83.7 (3)
C35—Ru1—P2—C28	-12.7 (3)	C1—Co1—C9—C8	-166.3 (5)
C38—Ru1—P2—C28	-45.49 (19)	C5—Co1—C9—C8	164.9 (2)
C37—Ru1—P2—C28	-79.9 (2)	C7—Co1—C9—C8	-37.9(2)
P1—Ru1—P2—C28	91.89 (14)	C6—Co1—C9—C8	-81.7(3)
C39—Ru1—P2—C28	-13.7 (2)	C4—Co1—C9—C8	125.1 (3)
C40—Ru1—P2—C29	-58.74 (18)	C2—Co1—C9—C10	172.6 (3)
C36—Ru1—P2—C29	31.6 (3)	C3—Co1—C9—C10	-156.9 (3)
C35—Ru1—P2—C29	109.1 (3)	C8—Co1—C9—C10	119.4 (4)
C38—Ru1—P2—C29	76.3 (2)	C1—Co1—C9—C10	-46.9 (6)
C37—Ru1—P2—C29	41.9 (2)	C5-Co1-C9-C10	-75.6 (3)
P1—Ru1—P2—C29	-146.32 (14)	C7—Co1—C9—C10	81.6 (3)
C39—Ru1—P2—C29	108.1 (2)	C6—Co1—C9—C10	37.8 (2)
C40—Ru1—P2—C6	56.46 (18)	C4—Co1—C9—C10	-115.4 (3)
C36—Ru1—P2—C6	146.8 (3)	C8—C9—C10—C6	-1.3 (4)
C35—Ru1—P2—C6	-135.7 (3)	Co1—C9—C10—C6	-59.9 (3)
C38—Ru1—P2—C6	-168.5 (2)	C8—C9—C10—Co1	58.6 (3)
C37—Ru1—P2—C6	157.1 (2)	C7—C6—C10—C9	0.8 (4)
P1—Ru1—P2—C6	-31.11 (15)	P2-C6-C10-C9	-175.0 (3)
C39—Ru1—P2—C6	-136.7 (2)	Co1-C6-C10-C9	59.8 (3)
C11—P1—C1—C2	9.0 (4)	C7—C6—C10—Co1	-59.0 (2)
C17—P1—C1—C2	116.4 (4)	P2-C6-C10-Co1	125.2 (3)
Ru1—P1—C1—C2	-119.5 (3)	C2-Co1-C10-C9	-167.5 (6)
C11—P1—C1—C5	-169.1 (3)	C3—Co1—C10—C9	48.6 (5)
C17—P1—C1—C5	-61.8 (3)	C8—Co1—C10—C9	-37.4 (2)

Ru1—P1—C1—C5	62.4 (3)	C1—Co1—C10—C9	164.3 (2)
C11—P1—C1—Co1	103.1 (3)	C5-Co1-C10-C9	122.8 (3)
C17—P1—C1—Co1	-149.6 (3)	C7—Co1—C10—C9	-81.7 (3)
Ru1—P1—C1—Co1	-25.4 (3)	C6—Co1—C10—C9	-119.6 (3)
C10-Co1-C1-C2	169.0 (2)	C4—Co1—C10—C9	80.6 (3)
C3—Co1—C1—C2	-37.5 (3)	C2—Co1—C10—C6	-47.9 (7)
C8—Co1—C1—C2	47.7 (5)	C3—Co1—C10—C6	168.1 (4)
C5—Co1—C1—C2	-117.6 (3)	C8—Co1—C10—C6	82.2 (2)
C7—Co1—C1—C2	84.0 (3)	C1—Co1—C10—C6	-76.2 (3)
C9—Co1—C1—C2	-154.7 (5)	C5—Co1—C10—C6	-117.7 (2)
C6—Co1—C1—C2	126.7 (2)	C7—Co1—C10—C6	37.9 (2)
C4—Co1—C1—C2	-80.9 (3)	C9—Co1—C10—C6	119.6 (3)
C10-Co1-C1-C5	-73.4 (3)	C4—Co1—C10—C6	-159.8 (2)
C2—Co1—C1—C5	117.6 (3)	C17—P1—C11—C16	-155.7 (3)
C3—Co1—C1—C5	80.1 (3)	C1—P1—C11—C16	-55.8 (4)
C8—Co1—C1—C5	165.3 (4)	Ru1—P1—C11—C16	79.4 (3)
C7—Co1—C1—C5	-158.4(2)	C17—P1—C11—C12	33.6 (4)
C9—Co1—C1—C5	-37.1 (6)	C1—P1—C11—C12	133.5 (3)
C6—Co1—C1—C5	-115.7 (2)	Ru1—P1—C11—C12	-91.3 (3)
C4—Co1—C1—C5	36.7 (2)	C16—C11—C12—C13	0.0 (7)
C10-Co1-C1-P1	42.5 (3)	P1-C11-C12-C13	170.7 (4)
C2—Co1—C1—P1	-126.5 (4)	C11—C12—C13—C14	0.8 (7)
C3—Co1—C1—P1	-164.0 (3)	C12—C13—C14—C15	-0.4 (8)
C8—Co1—C1—P1	-78.8 (5)	C13—C14—C15—C16	-1.0(8)
C5—Co1—C1—P1	115.9 (4)	C14—C15—C16—C11	1.8 (8)
C7—Co1—C1—P1	-42.6 (3)	C12—C11—C16—C15	-1.3 (7)
C9—Co1—C1—P1	78.8 (6)	P1—C11—C16—C15	-172.4 (4)
C6—Co1—C1—P1	0.2 (3)	C11—P1—C17—C18	-141.5 (4)
C4—Co1—C1—P1	152.6 (3)	C1—P1—C17—C18	112.2 (4)
C5—C1—C2—C3	-1.0 (4)	Ru1—P1—C17—C18	-18.3 (4)
P1-C1-C2-C3	-179.3 (3)	C11—P1—C17—C22	41.9 (4)
Co1—C1—C2—C3	58.8 (3)	C1—P1—C17—C22	-64.5 (4)
C5-C1-C2-Co1	-59.8 (2)	Ru1—P1—C17—C22	165.0 (3)
P1-C1-C2-Co1	121.8 (3)	C22-C17-C18-C19	-1.0 (7)
C10—Co1—C2—C3	-155.4 (6)	P1-C17-C18-C19	-177.8 (4)
C8—Co1—C2—C3	80.5 (3)	C17—C18—C19—C20	0.8 (8)
C1—Co1—C2—C3	-119.7 (4)	C18—C19—C20—C21	-1.2 (8)
C5—Co1—C2—C3	-80.7 (3)	C19—C20—C21—C22	1.8 (8)
C7—Co1—C2—C3	124.5 (3)	C20-C21-C22-C17	-2.1 (7)
C9—Co1—C2—C3	43.4 (5)	C18—C17—C22—C21	1.7 (7)
C6—Co1—C2—C3	166.6 (3)	P1—C17—C22—C21	178.4 (4)
C4—Co1—C2—C3	-37.1 (3)	C28—C23—C24—C25	1.0 (7)
C10—Co1—C2—C1	-35.7 (7)	C23—C24—C25—C26	-0.7 (8)
C3—Co1—C2—C1	119.7 (4)	C24—C25—C26—C27	0.6 (8)
C8—Co1—C2—C1	-159.8 (2)	C25—C26—C27—C28	-0.7 (7)
C5—Co1—C2—C1	39.0 (2)	C26—C27—C28—C23	0.9 (6)
C7—Co1—C2—C1	-115.8 (2)	C26—C27—C28—P2	179.0 (3)
C9—Co1—C2—C1	163.1 (4)	C24—C23—C28—C27	-1.1 (6)

C6—Co1—C2—C1	-73.7 (3)	C24—C23—C28—P2	-179.2 (3)
C4—Co1—C2—C1	82.6 (3)	C29—P2—C28—C27	39.7 (4)
C1—C2—C3—C4	1.0 (5)	C6—P2—C28—C27	-59.7 (4)
Co1—C2—C3—C4	59.8 (3)	Ru1—P2—C28—C27	167.6 (3)
C1-C2-C3-Co1	-58.8 (3)	C29—P2—C28—C23	-142.2(3)
C10—Co1—C3—C4	46.3 (5)	C6—P2—C28—C23	118.4 (3)
C2—Co1—C3—C4	-120.0 (4)	Ru1—P2—C28—C23	-14.3 (4)
C8—Co1—C3—C4	122.6 (3)	C28—P2—C29—C34	107.2 (3)
C1—Co1—C3—C4	-82.1 (3)	C6—P2—C29—C34	-150.0(3)
C5—Co1—C3—C4	-37.4 (3)	Ru1—P2—C29—C34	-21.5 (4)
C7—Co1—C3—C4	163.5 (3)	C28—P2—C29—C30	-72.7 (4)
C9—Co1—C3—C4	80.2 (3)	C6—P2—C29—C30	30.1 (4)
C6—Co1—C3—C4	-165.1 (6)	Ru1—P2—C29—C30	158.6 (3)
C10—Co1—C3—C2	166.2 (3)	C34—C29—C30—C31	-0.4 (6)
C8—Co1—C3—C2	-117.4 (3)	P2-C29-C30-C31	179.5 (3)
C1—Co1—C3—C2	37.8 (3)	C29—C30—C31—C32	0.4 (7)
C5—Co1—C3—C2	82.5 (3)	C30—C31—C32—C33	0.0 (7)
C7—Co1—C3—C2	-76.5 (3)	C31—C32—C33—C34	-0.3(7)
C9—Co1—C3—C2	-159.9(3)	C30—C29—C34—C33	0.1 (6)
C6—Co1—C3—C2	-45.2 (8)	P2-C29-C34-C33	-179.8(3)
C4—Co1—C3—C2	120.0 (4)	C32—C33—C34—C29	0.2 (7)
C2—C3—C4—C5	-0.6(5)	C40—Ru1—C35—C36	47.1 (4)
Co1—C3—C4—C5	58.5 (3)	C38—Ru1—C35—C36	-80.1(3)
C2-C3-C4-Co1	-59.1 (3)	C37—Ru1—C35—C36	-38.4(3)
C10—Co1—C4—C3	-157.7 (3)	P1—Ru1—C35—C36	134.5 (3)
C2—Co1—C4—C3	37.6 (3)	C39—Ru1—C35—C36	-116.9 (4)
C8—Co1—C4—C3	-75.7 (3)	P2—Ru1—C35—C36	-118.3 (4)
C1—Co1—C4—C3	82.1 (3)	C40—Ru1—C35—C39	164.0 (3)
C5—Co1—C4—C3	119.7 (4)	C36—Ru1—C35—C39	116.9 (4)
C7—Co1—C4—C3	-49.5 (7)	C38—Ru1—C35—C39	36.7 (3)
C9—Co1—C4—C3	-115.4 (3)	C37—Ru1—C35—C39	78.5 (3)
C6—Co1—C4—C3	171.3 (3)	P1—Ru1—C35—C39	-108.6(3)
C10—Co1—C4—C5	82.6 (3)	P2—Ru1—C35—C39	-1.5 (5)
C2—Co1—C4—C5	-82.1 (3)	C39—C35—C36—C37	0.9 (5)
C3—Co1—C4—C5	-119.7 (4)	Ru1—C35—C36—C37	64.7 (3)
C8—Co1—C4—C5	164.6 (3)	C39—C35—C36—Ru1	-63.8 (3)
C1—Co1—C4—C5	-37.6 (3)	C40—Ru1—C36—C35	-142.2 (3)
C7—Co1—C4—C5	-169.2 (5)	C38—Ru1—C36—C35	78.4 (3)
C9—Co1—C4—C5	124.9 (3)	C37—Ru1—C36—C35	115.4 (4)
C6—Co1—C4—C5	51.6 (5)	P1—Ru1—C36—C35	-50.8 (3)
C3—C4—C5—C1	0.0 (5)	C39—Ru1—C36—C35	37.5 (3)
Co1—C4—C5—C1	58.2 (3)	P2—Ru1—C36—C35	131.4 (3)
C3—C4—C5—Co1	-58.3 (3)	C40—Ru1—C36—C37	102.4 (3)
C2—C1—C5—C4	0.6 (4)	C35—Ru1—C36—C37	-115.4 (4)
P1—C1—C5—C4	179.2 (3)	C38—Ru1—C36—C37	-37.0 (3)
Co1—C1—C5—C4	-59.0 (3)	P1—Ru1—C36—C37	-166.2 (3)
C2—C1—C5—Co1	59.6 (3)	C39—Ru1—C36—C37	-77.9 (3)
P1-C1-C5-Co1	-121.8 (3)	P2—Ru1—C36—C37	16.0 (5)
	× /		. /

C10-Co1-C5-C4	-113.9 (3)	C35—C36—C37—C38	-1.8 (5)
C2—Co1—C5—C4	81.6 (3)	Ru1—C36—C37—C38	62.8 (3)
C3—Co1—C5—C4	37.4 (3)	C35—C36—C37—Ru1	-64.6 (3)
C8—Co1—C5—C4	-41.6 (6)	C40—Ru1—C37—C38	159.4 (3)
C1—Co1—C5—C4	120.5 (4)	C36—Ru1—C37—C38	-116.8 (4)
C7—Co1—C5—C4	172.0 (4)	C35—Ru1—C37—C38	-78.8 (3)
C9—Co1—C5—C4	-72.1 (3)	P1—Ru1—C37—C38	-92.3 (4)
C6—Co1—C5—C4	-156.4 (3)	C39—Ru1—C37—C38	-36.4(3)
C10-Co1-C5-C1	125.6 (2)	P2—Ru1—C37—C38	72.3 (3)
C2—Co1—C5—C1	-38.9 (2)	C40—Ru1—C37—C36	-83.8 (3)
C3—Co1—C5—C1	-83.2 (3)	C35—Ru1—C37—C36	38.0 (3)
C8—Co1—C5—C1	-162.1 (5)	C38—Ru1—C37—C36	116.8 (4)
C7—Co1—C5—C1	51.4 (5)	P1—Ru1—C37—C36	24.5 (5)
C9—Co1—C5—C1	167.3 (2)	C39—Ru1—C37—C36	80.5 (3)
C6—Co1—C5—C1	83.1 (3)	P2—Ru1—C37—C36	-170.9(3)
C4—Co1—C5—C1	-120.5(4)	C36—C37—C38—C39	2.0 (5)
C28—P2—C6—C7	-21.7 (4)	Ru1—C37—C38—C39	63.9 (3)
C29—P2—C6—C7	-126.7(3)	C36—C37—C38—Ru1	-61.9(3)
Ru1—P2—C6—C7	108.6 (3)	C40—Ru1—C38—C39	-147.1 (3)
C28—P2—C6—C10	153.3 (3)	C36—Ru1—C38—C39	-80.0(3)
C29—P2—C6—C10	48.3 (3)	C35—Ru1—C38—C39	-37.9(3)
Ru1—P2—C6—C10	-76.4 (3)	C37—Ru1—C38—C39	-117.8 (4)
C28—P2—C6—Co1	-116.0(3)	P1—Ru1—C38—C39	14.6 (4)
C29—P2—C6—Co1	139.0 (3)	P2—Ru1—C38—C39	125.5 (3)
Ru1—P2—C6—Co1	14.3 (3)	C40—Ru1—C38—C37	-29.3(4)
C10—Co1—C6—C7	118.9 (3)	C36—Ru1—C38—C37	37.8 (3)
C2—Co1—C6—C7	-75.5 (3)	C35—Ru1—C38—C37	79.9 (3)
C3—Co1—C6—C7	-39.6 (7)	P1—Ru1—C38—C37	132.4 (3)
C8—Co1—C6—C7	37.6 (2)	C39—Ru1—C38—C37	117.8 (4)
C1—Co1—C6—C7	-117.4 (2)	P2—Ru1—C38—C37	-116.7 (3)
C5—Co1—C6—C7	-161.2 (2)	C37—C38—C39—C35	-1.5 (5)
C9—Co1—C6—C7	81.1 (3)	Ru1-C38-C39-C35	61.8 (3)
C4—Co1—C6—C7	162.6 (4)	C37—C38—C39—Ru1	-63.2 (3)
C2-Co1-C6-C10	165.6 (2)	C36—C35—C39—C38	0.3 (5)
C3—Co1—C6—C10	-158.5 (6)	Ru1-C35-C39-C38	-62.3 (3)
C8—Co1—C6—C10	-81.2 (3)	C36—C35—C39—Ru1	62.7 (3)
C1—Co1—C6—C10	123.7 (2)	C40—Ru1—C39—C38	80.3 (5)
C5—Co1—C6—C10	79.9 (3)	C36—Ru1—C39—C38	79.4 (3)
C7—Co1—C6—C10	-118.9 (3)	C35—Ru1—C39—C38	116.7 (4)
C9—Co1—C6—C10	-37.8 (2)	C37—Ru1—C39—C38	36.9 (3)
C4—Co1—C6—C10	43.7 (5)	P1—Ru1—C39—C38	-169.4 (3)
C10—Co1—C6—P2	-118.7 (4)	P2—Ru1—C39—C38	-64.0 (3)
C2—Co1—C6—P2	46.9 (3)	C40—Ru1—C39—C35	-36.4 (6)
C3—Co1—C6—P2	82.8 (7)	C36—Ru1—C39—C35	-37.3 (3)
C8—Co1—C6—P2	160.0 (3)	C38—Ru1—C39—C35	-116.7 (4)
C1—Co1—C6—P2	5.0 (3)	C37—Ru1—C39—C35	-79.8 (3)
C5—Co1—C6—P2	-38.8 (3)	P1—Ru1—C39—C35	73.8 (3)
C7—Co1—C6—P2	122.4 (4)	P2—Ru1—C39—C35	179.2 (2)

C9—Co1—C6—P2	-156.5 (3)	C44—C42—C43—C45	5.5 (6)
C4 - C01 - C6 - P2	-75.0(5)	$C_{41} = C_{42} = C_{43} = C_{45}$	-1/2.3(4)
C10 - C6 - C7 - C8	0.0 (4)	C43 - C42 - C44 - C46	-6.0 (7)
P2	175.7 (3)	C41—C42—C44—C46	171.8 (4)
Co1—C6—C7—C8	-58.4 (3)	C42—C43—C45—C47	-1.0 (7)
C10-C6-C7-Co1	58.4 (2)	C42—C44—C46—C47	2.1 (8)
P2-C6-C7-Co1	-125.9 (3)	C44—C46—C47—C45	2.5 (7)
C10—Co1—C7—C6	-38.3 (2)	C44—C46—C47—C48	-172.5 (5)
C2—Co1—C7—C6	125.4 (2)	C43—C45—C47—C46	-3.1 (7)
C3—Co1—C7—C6	168.0 (2)	C43—C45—C47—C48	172.0 (4)
C8—Co1—C7—C6	-119.9 (4)	C46—C47—C48—C50	14.1 (7)
C1—Co1—C7—C6	81.2 (3)	C45—C47—C48—C50	-160.5 (4)
C5—Co1—C7—C6	43.8 (5)	C46—C47—C48—C49	-169.0 (4)
C9—Co1—C7—C6	-82.7 (2)	C45—C47—C48—C49	16.3 (6)
C4—Co1—C7—C6	-153.8 (6)	C50-C48-C49-C51	3.1 (7)
C10-Co1-C7-C8	81.7 (3)	C47—C48—C49—C51	-173.9 (4)
C2—Co1—C7—C8	-114.6 (3)	C49—C48—C50—C52	-2.6 (7)
C3—Co1—C7—C8	-72.0 (3)	C47—C48—C50—C52	174.5 (4)
C1—Co1—C7—C8	-158.8 (2)	C48—C49—C51—C53	-0.9 (7)
C5—Co1—C7—C8	163.8 (4)	C48—C50—C52—C53	-0.2 (8)
C9—Co1—C7—C8	37.3 (2)	C50—C52—C53—C51	2.5 (7)
C6—Co1—C7—C8	119.9 (4)	C50—C52—C53—C54	-175.5 (5)
C4—Co1—C7—C8	-33.9 (7)	C49—C51—C53—C52	-2.0 (7)
C6—C7—C8—C9	-0.9 (4)	C49—C51—C53—C54	176.1 (4)
Co1—C7—C8—C9	-59.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H···A	D···A	<i>D</i> —H… <i>A</i>
C2—H2…F5 ⁱ	0.98	2.43	3.189 (6)	134
C3—H3…F6 ⁱⁱ	0.98	2.54	3.383 (6)	144
C7— $H7$ ···F4 ⁱ	0.98	2.47	3.383 (7)	155
C9—H9…F2 ⁱⁱ	0.98	2.32	2.993 (6)	125

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y-1/2, -z+3/2.