

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[*u*-chlorido-*u*-[2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol- $\kappa^2 N^4$: $N^{4'}$]-zinc] chloride dihvdrate]

Gang-Hong Pan, Jin-Niu Tang, Shi-Hua Xu, Zhong-Jing Huang* and Bo-Fa Mo

College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China Correspondence e-mail: pgh1919@163.com

Received 9 September 2013; accepted 25 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.015 Å; R factor = 0.080; wR factor = 0.306; data-to-parameter ratio = 12.3.

The title compound, $\{[ZnCl(C_{13}H_{12}F_2N_6O)_2]Cl\cdot 2H_2O\}_n$, is a two-dimensional coordination polymer. The Zn^{II} atom is sixcoordinated by four N atoms from four 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol (HFlu) ligands and by two Cl atoms in a distorted octahedral geometry. Two Cl atoms bridge two Zn^{II} atoms, forming a centrosymmetric dinuclear unit. The HFlu ligands connect the dinuclear units into a 4⁴ net parallel to (001) when the dinuclear unit is considered as a node. $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds link the cationic layer, free chloride anions and lattice water molecules. Intralayer $\pi - \pi$ interactions between the triazole rings are observed [centroid–centroid distance = 3.716(6) Å].

Related literature

For background to this class of compounds, see: Han et al. (2006a,b). For related structures, see: Gao et al. (2001); Zhang et al. (2007).

Experimental

Crystal data $[ZnCl(C_{13}H_{12}F_2N_6O)_2]Cl \cdot 2H_2O$ $M_r = 784.89$ a = 10.2310 (6) Å b = 11.8118 (6) Å c = 14.3588 (9) Å

 $\alpha = 91.191 \ (7)^{\circ}$ $\beta = 107.481 \ (5)^{\circ}$ $\gamma = 106.074 \ (6)^{\circ}$

Triclinic, $P\overline{1}$

Data collection

Bruker SMART 1000 CCD	8374 measured reflections
diffractometer	5465 independent reflections
Absorption correction: multi-scan	3137 reflections with $I > 2\sigma($
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.064$
$T_{\min} = 0.784, \ T_{\max} = 0.813$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.080$	444 parameters
$wR(F^2) = 0.306$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
5465 reflections	$\Delta \rho_{\rm min} = -1.09 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···Cl2 ⁱ	0.82	2.29	3.103 (7)	172
$O2-H2\cdots O4^{i}$	0.82	1.87	2.653 (9)	160
$O3-H3A\cdots Cl2^{ii}$	0.85	2.32	3.163 (11)	170
$O3-H3B\cdots Cl1^{iii}$	0.85	2.38	3.221 (10)	170
$O4-H4A\cdots O2^{iv}$	0.85	2.24	2.784 (9)	122
$O4-H4B\cdots Cl2$	0.85	2.29	3.101 (8)	160
Commentation and and (i)		1 - 1 (3)		- 1. (:::)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) x - 1, y + 1, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the Innovation Project of Guangxi University for Nationalities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2637).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Gao, J.-S., Ma, D.-S., Ma, Z.-G., Chen, G.-R., Hou, Y.-J. & Ye, L. (2001). Chin. J. Mol. Sci. 17, 17-22.
- Han, H., Song, Y., Hou, H., Fan, Y. & Zhu, Y. (2006a). Dalton Trans. pp. 1972-1980
- Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006b). Eur. J. Inorg. Chem. pp. 1594-1600.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, L., Ling, Y., Peng, F. & Du, M. (2007). J. Mol. Struct. 829, 161-167.

metal-organic compounds

7 - 2

V = 1580.11 (18) Å³

 $0.25 \times 0.25 \times 0.21 \text{ mm}$

 $> 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.03 \text{ mm}^{-1}$

T = 296 K

supporting information

Acta Cryst. (2013). E69, m573 [doi:10.1107/S1600536813026524]

Poly[[μ -chlorido- μ -[2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol- $\kappa^2 N^4$: N^4 ']-zinc] chloride dihydrate]

Gang-Hong Pan, Jin-Niu Tang, Shi-Hua Xu, Zhong-Jing Huang and Bo-Fa Mo

S1. Comment

Fluconazole 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl) propan-2-ol, which is a 1,2,4-triazole derivative, is not only a widely used antifungal medicine but also a good flexible ligand to construct metal-organic polymers with optical properties and medical applications (Han *et al.*, 2006*a*,*b*). Fluconazole can coordinate to metal ions in different configurations. We here report a new coordination polymer based on fluconazole.

The asymmetric unit of the title compound contains one Zn^{II} ion, two 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1yl)propan-2-ol (HFlu) ligands, one coordinated Cl⁻¹ anion, one free Cl⁻¹ anion and two free water molecules. As shown in Fig. 1, the Zn^{II} ion is six-coordinated by four N atoms from four HFlu ligands and two bridging Cl⁻¹ anions. The Zn—N bond lengths range from 2.127 (8) to 2.197 (7) Å, and the Zn—Cl bond distances are 2.418 (3) and 2.732 (3) Å. The Zn —N bond lengths are in the normal range as observed in other Zn(II) complexes (Zhang *et al.*, 2007). However, the Zn— Cl bond distances are longer than those as observed in other Zn(II) complexe (Gao *et al.*, 2001). Two Zn^{II} ions are connected by two HFlu ligands, forming a Zn₂(HFlu)₂ macrocycle, in which the Zn···Zn distance is 11.297 (2)Å. The other two HFlu ligands link the macrocycle along the *a* axis with a Zn···Zn distance of 10.231 (2) Å to form a grid unit with dimensions of 11.30 × 10.23 Å² (Fig. 2a). These grid units are further connected by two Cl⁻¹ anions with a Zn···Zn distance of 3.879 (1) Å into a two-dimensional structure (Fig. 2b), in which another type of grid with dimensions of 10.231 (2) × 3.879 (1) Å² is formed.

Free water molecules and free Cl⁻¹ anions are accommodated in the residual empties to shrink the void space and stabilize the structure. Moreover, there are intermolecular O—H···O and O—H···Cl hydrogen bonds involving the cationic layer, free Cl⁻¹ anions and water molecules (Table 1, Fig. 3). These interactions further stabilize the structural framework.

S2. Experimental

A mixture of fluconazole (153 mg, 0.5 mmol), $ZnCl_2$ (136 mg, 1.0 mmol), 15 ml H₂O, and 3 ml ethanol was placed in a Parr Teflon-lined stainless steel vessel (30 ml), and then the vessel was sealed and heated at 423 K for 3 days. After the mixture was slowly cooled to room temperature, colorless block-shaped crystals of the title compound was obtained. Analysis, calculated for $C_{26}H_{28}Cl_2F_4N_{12}O_4Zn$: C 39.79, H 3.60, N 21.42%; found: C 39.66, H 3.52, N 21.28%.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97(methylene) and O —H = 0.82 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for hydroxyl})U_{eq}(C,O)$. H atoms of the water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. The maximum remaining electron density was found 1.00 Å from Zn1 and the minimum density 0.83 Å from Zn1.

Figure 1

The coordination environment around the Zn^{II} atom in the title compound (uncoordinated Cl atom, water molecules and H atoms have been omitted for clarity). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) 1+x, y, z; (B) 2-x, -y, 1-z; (C) 3-x, 1-y, 1-z.]

Figure 2

(a) A view of the grid unit in the title compound. (b) A view of the two-dimensional framework. H atoms and difluorophenyl groups of HFlu are omitted for clarity.

Figure 3

A view of hydrogen bonding interactions (dashed lines) in the title compound. H atoms and difluorophenyl groups of HFlu are omitted for clarity.

Poly[[μ -chlorido- μ -[2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol- $\kappa^2 N^4$: N^4]-zinc] chloride dihydrate]

Crystal data	
$[ZnCl(C_{13}H_{12}F_2N_6O)_2]Cl·2H_2O$ $M_r = 784.89$ Triclinic, <i>P</i> I Hall symbol: -P 1 a = 10.2310 (6) Å b = 11.8118 (6) Å c = 14.3588 (9) Å a = 91.191 (7)° $\beta = 107.481$ (5)° $\gamma = 106.074$ (6)° V = 1580.11 (18) Å ³	Z = 2 F(000) = 800 $D_x = 1.650 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 859 reflections $\theta = 2.2-22.1^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.25 \times 0.25 \times 0.21 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.784, T_{\max} = 0.813$

8374 measured reflections	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
5465 independent reflections	$h = -12 \rightarrow 12$
3137 reflections with $I > 2\sigma(I)$	$k = -14 \rightarrow 12$
$R_{\rm int} = 0.064$	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.080$	Hydrogen site location: inferred from
$wR(F^2) = 0.306$	neighbouring sites
S = 1.07	H-atom parameters constrained
5465 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1513P)^2 + 4.0805P]$
444 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.92 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.09 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	1.32995 (12)	0.41377 (10)	0.39336 (8)	0.0404 (4)	
Cl1	1.4508 (3)	0.6199 (2)	0.45651 (17)	0.0448 (6)	
Cl2	0.4395 (3)	0.9322 (2)	0.6822 (2)	0.0584 (8)	
F1	0.7971 (10)	-0.0762 (7)	-0.0678 (5)	0.086 (2)	
F2	0.6122 (9)	0.2436 (7)	-0.0664 (4)	0.083 (2)	
F3	0.8098 (7)	0.2576 (6)	0.7540 (4)	0.0657 (18)	
F4	1.2544 (8)	0.3386 (7)	0.9953 (4)	0.079 (2)	
N1	0.5148 (8)	0.3554 (8)	0.1793 (5)	0.043 (2)	
N2	0.5348 (9)	0.4724 (7)	0.1718 (6)	0.048 (2)	
N3	0.4536 (8)	0.4152 (7)	0.2976 (5)	0.041 (2)	
N4	1.1903 (9)	0.4025 (7)	0.4804 (5)	0.041 (2)	
N5	1.0061 (8)	0.3403 (6)	0.5307 (5)	0.0335 (18)	
N6	1.0891 (8)	0.4430 (6)	0.5911 (5)	0.0345 (18)	
N7	1.1616 (8)	0.4340 (7)	0.2632 (5)	0.041 (2)	
N8	1.0182 (9)	0.4016 (9)	0.1051 (6)	0.054 (2)	
N9	0.9478 (8)	0.4220 (7)	0.1671 (5)	0.0388 (19)	
N10	0.7509 (8)	-0.2201 (7)	0.6379 (5)	0.0393 (19)	
N11	0.8367 (9)	-0.0419 (7)	0.7239 (6)	0.048 (2)	
N12	0.7677 (8)	-0.0339 (7)	0.6293 (5)	0.0381 (19)	
01	0.7534 (7)	0.2765 (6)	0.2468 (4)	0.0446 (17)	
H1	0.6956	0.2212	0.2602	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O2	0.9802 (7)	0.1089 (6)	0.5651 (4)	0.0417 (16)
H2	0.9323	0.0797	0.5087	0.063*
O3	0.5759 (12)	0.8041 (10)	0.3197 (8)	0.106 (4)
H3A	0.5660	0.8728	0.3247	0.127*
H3B	0.5394	0.7628	0.3585	0.127*
04	0.1267 (8)	0.9438 (6)	0.6285 (5)	0.055 (2)
H4A	0.0960	0.9921	0.6543	0.065*
H4B	0.2165	0.9582	0.6394	0.065*
C1	0.7769 (15)	0.0150 (10)	-0.0176 (9)	0.061 (3)
C2	0.7008 (14)	0.0812 (11)	-0.0685 (8)	0.061 (3)
H2A	0.6611	0.0669	-0.1366	0.073*
C3	0.6831 (12)	0.1716 (11)	-0.0163 (8)	0.055 (3)
C4	0.7305 (10)	0.1914 (8)	0.0866 (6)	0.037 (2)
C5	0.8047 (12)	0.1152 (9)	0.1326 (7)	0.048 (3)
Н5	0.8379	0.1228	0.2009	0.058*
C6	0.8309 (14)	0.0295 (9)	0.0817 (8)	0.059 (3)
H6	0.8848	-0.0178	0.1146	0.071*
C7	0.7064 (10)	0.2849 (8)	0.1446 (6)	0.038 (2)
C8	0.5481 (11)	0.2778 (9)	0.1112 (7)	0.044 (2)
H8A	0.5219	0.3018	0.0456	0.053*
H8B	0.4911	0.1963	0.1083	0.053*
C9	0.4661 (10)	0.3227 (9)	0.2527 (7)	0.043 (2)
H9	0.4441	0.2460	0.2701	0.051*
C10	0.4963 (11)	0.5041 (9)	0.2440 (7)	0.045 (2)
H10	0.4978	0.5816	0.2584	0.054*
C11	1.1463 (11)	0.4096 (10)	0.1657 (7)	0.050(3)
H11	1.2202	0.3997	0.1446	0.060*
C12	1.0311 (11)	0.4394 (8)	0.2601 (7)	0.042 (2)
H12	1.0035	0.4532	0.3144	0.051*
C13	0.7955 (10)	0.4106 (9)	0.1330(7)	0.045 (3)
H13A	0.7669	0.4244	0.0644	0.054*
H13B	0.7766	0.4699	0.1706	0.054*
C14	0.9018 (10)	0.1666 (8)	0.6051 (6)	0.035 (2)
C15	0.9956 (10)	0.2149 (8)	0.7112 (6)	0.036 (2)
C16	0.9466 (11)	0.2552 (8)	0.7784 (7)	0.043 (2)
C17	1.0282 (12)	0.2959 (9)	0.8753 (6)	0.047 (3)
H17	0.9900	0.3211	0.9202	0.056*
C18	1.1686 (12)	0.2967 (10)	0.9008 (6)	0.050 (3)
C19	1.2280 (12)	0.2644 (9)	0.8356 (7)	0.052(3)
H19	1.3248	0.2691	0.8550	0.062*
C20	1.1427 (10)	0.2248 (8)	0.7411 (7)	0.040(2)
H20	1.1826	0.2039	0.6955	0.048*
C21	0.7561 (10)	0.0805 (8)	0.5970 (7)	0.043(2)
H21A	0.7120	0.1149	0.6367	0.052*
H21B	0.6944	0.0683	0.5292	0.052*
C22	0.7170 (11)	-0.1387 (9)	0.5789 (7)	0.045(3)
H22	0.6653	-0.1546	0.5122	0.054*
C23	0.8252 (11)	-0.1510 (9)	0.7257 (7)	0.046 (3)
1	- 、/			······································

supporting information

H23	0.8644	-0.1822	0.7827	0.056*	
C24	1.0684 (10)	0.3188 (8)	0.4666 (6)	0.038 (2)	
H24	1.0314	0.2539	0.4187	0.046*	
C25	1.1980 (11)	0.4760 (8)	0.5568 (6)	0.038 (2)	
H25	1.2742	0.5445	0.5829	0.045*	
C26	0.8744 (10)	0.2674 (8)	0.5427 (7)	0.038 (2)	
H26A	0.8054	0.2338	0.4787	0.046*	
H26B	0.8341	0.3160	0.5745	0.046*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0408 (7)	0.0385 (7)	0.0419 (7)	0.0027 (5)	0.0216 (5)	-0.0007 (5)
Cl1	0.0473 (14)	0.0335 (13)	0.0487 (13)	0.0027 (11)	0.0168 (11)	0.0009 (10)
Cl2	0.0528 (16)	0.0554 (17)	0.0658 (17)	0.0127 (14)	0.0199 (13)	0.0137 (13)
F1	0.126 (7)	0.067 (5)	0.085 (5)	0.039 (5)	0.054 (5)	-0.006 (4)
F2	0.127 (7)	0.099 (6)	0.043 (4)	0.071 (5)	0.020 (4)	0.013 (3)
F3	0.048 (4)	0.095 (5)	0.059 (4)	0.027 (4)	0.019 (3)	-0.005 (3)
F4	0.073 (5)	0.105 (6)	0.040 (3)	0.023 (4)	-0.002 (3)	-0.014 (3)
N1	0.037 (4)	0.057 (6)	0.040 (4)	0.018 (4)	0.017 (3)	0.006 (4)
N2	0.052 (5)	0.038 (5)	0.060 (5)	0.008 (4)	0.030 (4)	0.008 (4)
N3	0.031 (4)	0.048 (5)	0.045 (4)	0.010 (4)	0.014 (3)	0.009 (4)
N4	0.044 (5)	0.045 (5)	0.037 (4)	0.012 (4)	0.019 (3)	0.009 (4)
N5	0.035 (4)	0.034 (4)	0.031 (4)	0.007 (3)	0.012 (3)	0.002 (3)
N6	0.035 (4)	0.037 (4)	0.036 (4)	0.009 (4)	0.019 (3)	0.003 (3)
N7	0.033 (4)	0.053 (5)	0.039 (4)	0.012 (4)	0.013 (3)	0.005 (4)
N8	0.039 (5)	0.091 (7)	0.038 (4)	0.022 (5)	0.021 (4)	0.004 (4)
N9	0.031 (4)	0.051 (5)	0.037 (4)	0.010 (4)	0.015 (3)	0.007 (4)
N10	0.042 (5)	0.039 (5)	0.042 (4)	0.009 (4)	0.023 (4)	0.011 (4)
N11	0.058 (5)	0.025 (4)	0.045 (4)	-0.005 (4)	0.008 (4)	-0.001 (3)
N12	0.043 (5)	0.036 (5)	0.033 (4)	0.005 (4)	0.014 (3)	0.009 (3)
01	0.048 (4)	0.046 (4)	0.036 (3)	0.002 (3)	0.018 (3)	-0.002 (3)
O2	0.054 (4)	0.043 (4)	0.034 (3)	0.023 (3)	0.015 (3)	0.005 (3)
O3	0.112 (9)	0.096 (8)	0.138 (9)	0.039 (7)	0.071 (7)	0.047 (7)
O4	0.060 (5)	0.052 (5)	0.051 (4)	0.025 (4)	0.010 (3)	-0.002 (3)
C1	0.083 (9)	0.036 (6)	0.061 (7)	0.006 (6)	0.031 (6)	-0.010 (5)
C2	0.080 (9)	0.064 (8)	0.036 (6)	0.018 (7)	0.020 (5)	-0.011 (5)
C3	0.057 (7)	0.067 (8)	0.045 (6)	0.023 (6)	0.017 (5)	0.011 (5)
C4	0.038 (5)	0.040 (5)	0.035 (5)	0.011 (4)	0.015 (4)	0.007 (4)
C5	0.061 (7)	0.040 (6)	0.040 (5)	0.007 (5)	0.020 (5)	-0.005 (4)
C6	0.076 (8)	0.035 (6)	0.067 (7)	0.019 (6)	0.024 (6)	0.002 (5)
C7	0.035 (5)	0.039 (5)	0.038 (5)	0.009 (4)	0.013 (4)	0.002 (4)
C8	0.046 (6)	0.047 (6)	0.039 (5)	0.007 (5)	0.020 (4)	-0.009 (4)
C9	0.035 (5)	0.043 (6)	0.053 (6)	0.014 (5)	0.014 (4)	0.005 (5)
C10	0.050 (6)	0.031 (5)	0.053 (6)	0.007 (5)	0.020 (5)	-0.002 (4)
C11	0.037 (6)	0.083 (8)	0.036 (5)	0.020 (6)	0.020 (4)	0.010 (5)
C12	0.051 (6)	0.036 (5)	0.040 (5)	0.009 (5)	0.017 (4)	0.001 (4)
C13	0.041 (6)	0.049 (6)	0.056 (6)	0.023 (5)	0.020 (5)	0.015 (5)

supporting information

C14	0.042 (5)	0.036 (5)	0.037 (5)	0.015 (4)	0.023 (4)	0.008 (4)	
C15	0.048 (6)	0.031 (5)	0.034 (5)	0.010 (4)	0.021 (4)	0.011 (4)	
C16	0.047 (6)	0.032 (5)	0.050 (6)	0.006 (5)	0.022 (5)	0.008 (4)	
C17	0.057 (7)	0.057 (7)	0.030 (5)	0.019 (5)	0.018 (4)	0.001 (4)	
C18	0.063 (7)	0.058 (7)	0.023 (5)	0.019 (6)	0.005 (5)	0.006 (4)	
C19	0.044 (6)	0.049 (6)	0.051 (6)	0.003 (5)	0.009 (5)	-0.001 (5)	
C20	0.035 (5)	0.044 (6)	0.044 (5)	0.011 (5)	0.018 (4)	0.004 (4)	
C21	0.039 (5)	0.047 (6)	0.040 (5)	0.006 (5)	0.014 (4)	0.010 (4)	
C22	0.048 (6)	0.046 (6)	0.034 (5)	0.001 (5)	0.016 (4)	-0.004 (4)	
C23	0.053 (6)	0.038 (6)	0.040 (5)	0.001 (5)	0.014 (5)	0.001 (4)	
C24	0.041 (5)	0.037 (5)	0.037 (5)	0.002 (4)	0.021 (4)	0.006 (4)	
C25	0.046 (6)	0.025 (5)	0.039 (5)	0.005 (4)	0.015 (4)	-0.002 (4)	
C26	0.045 (6)	0.035 (5)	0.042 (5)	0.016 (5)	0.020 (4)	0.010 (4)	

Geometric parameters (Å, °)

Zn1—N3 ⁱ	2.127 (8)	O4—H4B	0.8500
Zn1—N4	2.144 (8)	C1—C2	1.331 (16)
Zn1—N10 ⁱⁱ	2.192 (8)	C1—C6	1.353 (15)
Zn1—N7	2.197 (7)	C2—C3	1.374 (15)
Zn1—Cl1	2.418 (3)	C2—H2A	0.9300
Zn1—Cl1 ⁱⁱⁱ	2.732 (3)	C3—C4	1.402 (13)
F1—C1	1.380 (13)	C4—C5	1.387 (13)
F2—C3	1.349 (12)	C4—C7	1.487 (13)
F3—C16	1.345 (12)	C5—C6	1.367 (15)
F4—C18	1.368 (11)	С5—Н5	0.9300
N1—C9	1.317 (12)	С6—Н6	0.9300
N1—N2	1.351 (11)	С7—С8	1.521 (13)
N1—C8	1.500 (12)	C7—C13	1.554 (13)
N2	1.297 (13)	C8—H8A	0.9700
N3—C9	1.312 (13)	C8—H8B	0.9700
N3—C10	1.366 (12)	С9—Н9	0.9300
N4C24	1.317 (12)	C10—H10	0.9300
N4—C25	1.354 (12)	C11—H11	0.9300
N5-C24	1.323 (12)	C12—H12	0.9300
N5—N6	1.375 (10)	C13—H13A	0.9700
N5-C26	1.446 (12)	C13—H13B	0.9700
N6-C25	1.317 (12)	C14—C21	1.524 (13)
N7—C12	1.342 (13)	C14—C15	1.533 (12)
N7—C11	1.376 (12)	C14—C26	1.542 (11)
N8—C11	1.314 (12)	C15—C16	1.346 (14)
N8—N9	1.356 (11)	C15—C20	1.406 (13)
N9—C12	1.327 (11)	C16—C17	1.384 (13)
N9—C13	1.452 (12)	C17—C18	1.369 (15)
N10-C22	1.343 (12)	C17—H17	0.9300
N10—C23	1.367 (12)	C18—C19	1.359 (16)
N11—C23	1.262 (12)	C19—C20	1.363 (13)
N11—N12	1.350 (10)	C19—H19	0.9300

N12_C22	1 306 (12)	C20—H20	0.9300
N12-C21	1.300(12) 1.462(11)	C21—H21A	0.9500
01-07	1.402(11) 1.415(10)	C21_H21R	0.9700
01—H1	0.8200	C^{22} H ²²	0.9700
02-C14	1 415 (11)	C22_H22	0.9300
02 - 014	0.8200	C24 H24	0.9300
$O_2 - H_2$	0.8200	$C_{24} = 1124$	0.9300
03 H3B	0.8500	C26 H26A	0.9500
	0.8500	C26 H26R	0.9700
04—п4А	0.8300	С20—н20В	0.9700
N3 ⁱ —Zn1—N4	175.2 (3)	N1—C8—C7	111.8 (8)
N3 ⁱ —Zn1—N10 ⁱⁱ	88.7 (3)	N1—C8—H8A	109.3
N4—Zn1—N10 ⁱⁱ	88.0 (3)	С7—С8—Н8А	109.3
N3 ⁱ —Zn1—N7	86.0 (3)	N1—C8—H8B	109.3
N4—Zn1—N7	90.5 (3)	C7—C8—H8B	109.3
N10 ⁱⁱ —Zn1—N7	91.2 (3)	H8A—C8—H8B	107.9
N3 ⁱ —Zn1—Cl1	93.0 (2)	N3—C9—N1	109.5 (9)
N4—Zn1—Cl1	90.9 (2)	N3—C9—H9	125.3
N10 ⁱⁱ —Zn1—C11	168.89 (19)	N1—C9—H9	125.3
N7—Zn1—Cl1	99.8 (2)	N2—C10—N3	115.1 (9)
N3 ⁱ —Zn1—Cl1 ⁱⁱⁱ	89.1 (2)	N2—C10—H10	122.5
N4—Zn1—Cl1 ⁱⁱⁱ	94.2 (2)	N3—C10—H10	122.5
$N10^{ii}$ — $Zn1$ — $C11^{iii}$	86.6 (2)	N8—C11—N7	114.2 (10)
N7—Zn1—Cl1 ⁱⁱⁱ	174.7 (2)	N8—C11—H11	122.9
Cl1—Zn1—Cl1 ⁱⁱⁱ	82.44 (8)	N7—C11—H11	122.9
Zn1— $Cl1$ — $Zn1$ ⁱⁱⁱ	97.56 (8)	N9—C12—N7	108.9 (9)
C9—N1—N2	111.4 (9)	N9—C12—H12	125.6
C9—N1—C8	126.6 (9)	N7—C12—H12	125.6
N2—N1—C8	122.0 (8)	N9—C13—C7	110.6 (7)
C10—N2—N1	101.5 (8)	N9—C13—H13A	109.5
C9—N3—C10	102.6 (8)	C7—C13—H13A	109.5
C9—N3—Zn1 ^{iv}	127.0 (7)	N9—C13—H13B	109.5
C10—N3—Zn1 ^{iv}	127.3 (7)	C7—C13—H13B	109.5
C24—N4—C25	103.4 (8)	H13A—C13—H13B	108.1
C24—N4—Zn1	125.4 (7)	02—C14—C21	109.9 (8)
C25 - N4 - Zn1	131.1 (7)	02-C14-C15	106.4 (7)
$C_{24} N_{5} N_{6}$	110.1 (7)	C21—C14—C15	113.6 (7)
$C_{24} N_{5} C_{26}$	127.4 (8)	02-C14-C26	107.9 (7)
N6—N5—C26	122.4 (8)	$C_{21} - C_{14} - C_{26}$	107.4(7)
$C_{25} - N_{6} - N_{5}$	101.7(7)	C_{15} C_{14} C_{26}	111.5 (8)
C12 - N7 - C11	102.9 (8)	$C_{16} - C_{15} - C_{20}$	116 5 (9)
C12 - N7 - Zn1	1263(6)	C16-C15-C14	123 5 (9)
C11 - N7 - Zn1	128.3(7)	C_{20} C_{15} C_{14}	1199(9)
C11 - N8 - N9	102.4 (8)	C15-C16-F3	120 6 (9)
C12 - N9 - N8	111 5 (8)	C15 - C16 - C17	124.4 (10)
C12 - N9 - C13	126.0 (9)	F_{3} C16 C17	1150(10)
N8—N9—C13	122.1 (7)	C18 - C17 - C16	115.8 (10)
C_{22} N10 C_{23}	101 2 (8)	C18—C17—H17	122.1
022 1010 023	101.2 (0)		1 2 2 , 1

C22—N10—Zn1 ⁱⁱ	128.2 (7)	С16—С17—Н17	122.1
C23—N10—Zn1 ⁱⁱ	129.6 (6)	C19—C18—C17	123.1 (9)
C23—N11—N12	103.6 (7)	C19—C18—F4	118.8 (10)
C22—N12—N11	110.1 (7)	C17—C18—F4	118.0 (10)
C22—N12—C21	129.4 (8)	C18—C19—C20	118.6 (10)
N11—N12—C21	120.5 (8)	C18—C19—H19	120.7
С7—О1—Н1	109.5	С20—С19—Н19	120.7
С14—О2—Н2	109.5	C19—C20—C15	121.3 (10)
H3A—O3—H3B	108.7	С19—С20—Н20	119.4
H4A—O4—H4B	119.4	С15—С20—Н20	119.4
C2—C1—C6	123.2 (12)	N12—C21—C14	112.1 (8)
C2—C1—F1	118.7 (10)	N12—C21—H21A	109.2
C6—C1—F1	118.0 (11)	C14—C21—H21A	109.2
C1—C2—C3	117.2 (10)	N12—C21—H21B	109.2
C1—C2—H2A	121.4	C14—C21—H21B	109.2
C3—C2—H2A	121.4	H21A—C21—H21B	107.9
F2—C3—C2	118.5 (9)	N12-C22-N10	109.7 (8)
F2—C3—C4	117.7 (10)	N12—C22—H22	125.1
C2—C3—C4	123.8 (9)	N10-C22-H22	125.1
C5—C4—C3	114.2 (10)	N11—C23—N10	115.4 (8)
C5—C4—C7	121.1 (8)	N11—C23—H23	122.3
C3—C4—C7	124.7 (8)	N10-C23-H23	122.3
C6—C5—C4	122.7 (9)	N4—C24—N5	110.2 (9)
С6—С5—Н5	118.6	N4—C24—H24	124.9
С4—С5—Н5	118.6	N5—C24—H24	124.9
C1—C6—C5	118.6 (10)	N6-C25-N4	114.7 (8)
С1—С6—Н6	120.7	N6—C25—H25	122.6
С5—С6—Н6	120.7	N4—C25—H25	122.6
O1—C7—C4	112.2 (7)	N5-C26-C14	110.9 (7)
O1—C7—C8	109.6 (8)	N5—C26—H26A	109.5
C4—C7—C8	110.1 (8)	C14—C26—H26A	109.5
O1—C7—C13	104.5 (7)	N5—C26—H26B	109.5
C4—C7—C13	111.2 (8)	C14—C26—H26B	109.5
C8—C7—C13	109.0 (7)	H26A—C26—H26B	108.1

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+3, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…Cl2 ^v	0.82	2.29	3.103 (7)	172
O2—H2···O4 ^v	0.82	1.87	2.653 (9)	160
O3—H3A····Cl2 ^{vi}	0.85	2.32	3.163 (11)	170
O3—H3 <i>B</i> ···Cl1 ^{iv}	0.85	2.38	3.221 (10)	170
O4—H4A···O2 ^{vii}	0.85	2.24	2.784 (9)	122
O4—H4 <i>B</i> ···Cl2	0.85	2.29	3.101 (8)	160

Symmetry codes: (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z+1; (vii) x-1, y+1, z.