organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Diethoxy-2,2'-[4-methyl-1,2-phenylenebis(nitrilomethanylylidene)]diphenol acetonitrile monosolvate

Lei Li and Suyuan Zeng*

Liaocheng University, Department of Chemistry, Liaocheng, Shandong Province 252059, People's Republic of China Correspondence e-mail: drzengsy@163.com

Received 5 October 2013; accepted 21 October 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.061; wR factor = 0.171; data-to-parameter ratio = 14.0.

The title solvated Schiff base compound, $C_{25}H_{26}N_2O_4 \cdot CH_3CN$, possesses an O_2N_2 donor set affording a potentially tetradentate metal complex ligand. The central ring makes dihedral angles of 6.7 (3) and 48.4 (2)° with the pendant rings. Intramolecular $N-H \cdot \cdot \cdot O$ hydrogen-bonding interactions are observed.

Related literature

For background to the properties of tetradentate Schiff-base ligands with O_2N_2 donor sets, see Zhang *et al.* (2009); Nayka *et al.* (2006). For related crystal structures, see Liu *et al.* (2006); Kargar *et al.* (2009).

Experimental

Crystal data

 $C_{25}H_{26}N_2O_4 \cdot C_2H_3N$ $V = 2491.7 (12) Å^3$
 $M_r = 459.53$ Z = 4

 Monoclinic, $P2_1/c$ Mo K α radiation

 a = 11.580 (3) Å $\mu = 0.08 \text{ mm}^{-1}$

 b = 24.999 (7) Å T = 293 K

 c = 8.995 (3) Å $0.17 \times 0.11 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) $T_{\rm min} = 0.986, T_{\rm max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	313 parameters
$wR(F^2) = 0.171$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
4387 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

12206 measured reflections

 $R_{\rm int} = 0.122$

4387 independent reflections

2242 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).					
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$	
O1−H1···N1	0.82	1.90	2.610 (5)	145	
$O2-H2\cdots N2$	0.82	1.91	2.605 (5)	142	

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5352).

References

- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, 0776–0777.
- Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, 05908–05909.
- Nayka, M., Koner, R., Lin, H. H., Florke, U., Wei, H. H. & Mohanta, S. (2006). *Inorg. Chem.* 45, 10764–10773.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122
- Zhang, D. P., Wang, H. L., Chen, Y. T., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2009). *Inorg. Chem.* 48, 11215–11225.

supporting information

Acta Cryst. (2013). E69, o1714 [doi:10.1107/S1600536813028845]

6,6'-Diethoxy-2,2'-[4-methyl-1,2-phenylenebis(nitrilomethanylylidene)]diphenol acetonitrile monosolvate

Lei Li and Suyuan Zeng

S1. Comment

During the past several decades, tetradentate Schiff-base ligands with O_2N_2 donor sets have been studied intensively, partially due to the interesting magnetic properties observed for their metal complexes (Zhang *et al.*, 2009; Nayak *etal.*. Herein, we present the crystal structure of a new tetradentate Schiff base ligand *N*,*N*^{\prime}-Bis(2-hydroxy-3-ethoxybenzyl-idene)-4-methyl-1,2-phenylenediamine as its acetonitrile solvate.

As shown in Figure 1, the title compound possesses a O_2N_2 donor set affording the potentially tetradentate ligand. The imide bond lengths 1.296 (5)Å for N1—C7 and 1.269 (5)Å for N2—C16 are slightly shorter than that of related Schiffbase ligands *N*,*N*'-Bis(2-hydroxy-3-methoxybenzylidene)-1,2- phenylenediamine (Liu, *et al.*, 2006) and 6,6'-Diethoxy-2,2'- [4,5-dimethyl-*o*-phenylenebis(nitrilomethylidyne)]diphenol (Kargar, *et al.* 2009). In this compound, two relative strong O-H…N intramolecular bonds, O1-H1…N1 and O2-H2…N2 are observed (Table 1).

S2. Experimental

The Schiff base ligand was prepared by condensation 4-methyl-1,2-phenylenediamine (10 mmol, 1.22 g) and 2-hydroxy-3-ethoxybenzaldehyde (20 mmol, 3.32 g) in a mixture of ethanol and acetonitrile(1:1). The mixture formed was allowed to partial evaporate in air for about one week to produce crystals suitable for X-ray diffraction.

S3. Refinement

All the H atoms bonded to C atoms were placed using the HFIX commands in *SHELXL-97*, with C—H distances of 0.93, 0.96, 0.97Å, and were allowed for as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(C)$ (methyl) respectively. The hydroxyl protons were located from difference Fourier maps with the O—H bond length restrained to 0.82 Å and was allowed for as riding atoms with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent molecule has been omitted for clarity.

6,6'-Diethoxy-2,2'-[4-methyl-1,2-phenylenebis(nitrilomethanylylidene)]diphenol acetonitrile monosolvate

F(000) = 976
$D_{\rm x} = 1.225 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1236 reflections
$\theta = 2.3 - 26.3^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 293 K
Block, orange
$0.17 \times 0.11 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	12206 measured reflections
diffractometer	4387 independent reflections
Radiation source: fine-focus sealed tube	2242 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.122$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 12$
(<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>)	$k = -29 \rightarrow 29$
$T_{min} = 0.986, T_{max} = 0.993$	$l = -4 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.171$	neighbouring sites
S = 0.91	H-atom parameters constrained
4387 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2]$
313 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.011$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.14$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.17$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.7285 (3)	0.11495 (14)	0.4282 (4)	0.0813 (10)
H1	0.7486	0.0945	0.3688	0.122*
O2	0.5747 (3)	0.09311 (14)	0.0478 (4)	0.0904 (11)
H2	0.6313	0.0732	0.0889	0.136*
03	0.6804 (4)	0.19431 (15)	0.5910 (4)	0.1040 (13)
O4	0.3638 (3)	0.13571 (16)	-0.0824 (4)	0.1035 (13)
N1	0.8803 (3)	0.06746 (18)	0.3066 (4)	0.0636 (11)
N2	0.7374 (3)	0.02192 (14)	0.0410 (4)	0.0625 (11)
N3	0.2332 (5)	0.1357 (3)	0.3047 (7)	0.163 (3)
C1	0.9221 (5)	0.1516 (2)	0.4400 (5)	0.0645 (13)
C2	0.8122 (5)	0.1537 (2)	0.4743 (6)	0.0672 (13)
C3	0.7888 (6)	0.1968 (2)	0.5600 (6)	0.0740 (15)
C4	0.8739 (6)	0.2366 (2)	0.6093 (6)	0.0879 (17)
H4	0.8591	0.2649	0.6682	0.105*
C5	0.9807 (6)	0.2343 (3)	0.5712 (7)	0.0958 (19)
H5	1.0361	0.2621	0.6017	0.115*

C6	1.0070 (5)	0.1926 (2)	0.4900 (6)	0.0831 (16)
H6	1.0806	0.1912	0.4679	0.100*
C7	0.9526 (4)	0.1072 (2)	0.3588 (5)	0.0668 (14)
H7	1.0283	0.1068	0.3424	0.080*
C8	0.6624 (6)	0.2277(3)	0.7098 (7)	0.136(2)
H8A	0.6499	0.2643	0.6729	0.163*
H8B	0.7333	0.22613	0.7995	0.163*
C0	0.5578 (7)	0.2200	0.7534(9)	0.161(3)
	0.3378 (7)	0.2092 (5)	0.7554 (9)	0.101(3) 0.242*
П9А	0.4000	0.2080	0.0032	0.242*
ПЭБ	0.5428	0.2330	0.8290	0.242*
H9C	0.5727	0.1/38	0.7961	0.242*
C10	0.3962 (5)	0.0948 (2)	-0.1623 (7)	0.0775 (15)
C11	0.5093 (4)	0.0717 (2)	-0.0890 (6)	0.0646 (13)
C12	0.5510 (4)	0.0303 (2)	-0.1607 (6)	0.0676 (14)
C13	0.4802 (5)	0.0110 (2)	-0.3033 (6)	0.1016 (19)
H13	0.5082	-0.0169	-0.3521	0.122*
C14	0.3700 (5)	0.0329 (3)	-0.3710 (7)	0.1034 (19)
H14	0.3226	0.0196	-0.4656	0.124*
C15	0.3277 (5)	0.0744 (2)	-0.3020 (7)	0.0897 (17)
H15	0.2520	0.0889	-0.3501	0.108*
C16	0.6679 (5)	0.00675 (19)	-0.0889 (6)	0.0761 (15)
H16	0.6935	-0.0210	-0.1406	0.091*
C17	0.2618 (5)	0.1673 (2)	-0.1656(7)	0.119 (2)
H17A	0 1879	0 1467	-0.1840	0.142*
H17B	0 2705	0 1785	-0.2650	0.142*
C18	0.2581 (6)	0.2146(3)	-0.0671(8)	0.164(3)
H18A	0.2507 (0)	0.2020	0.0355	0.246*
	0.1851	0.2343	-0.1116	0.246*
	0.1851	0.2343	-0.0615	0.246*
П10С С10	0.0228 (4)	0.2371	-0.0013	0.240°
C19	0.9238 (4)	0.0225(2)	0.2448 (0)	0.0616(13)
C20	0.8512 (4)	-0.0026(2)	0.1097 (6)	0.0606 (13)
C21	0.8941 (4)	-0.04/6 (2)	0.0549 (5)	0.0726 (14)
H21	0.8461	-0.0644	-0.0338	0.087*
C22	1.0074 (5)	-0.0684(2)	0.1290 (6)	0.0714 (15)
C23	1.0780 (5)	-0.0442 (2)	0.2597 (7)	0.0825 (16)
H23	1.1537	-0.0582	0.3102	0.099*
C24	1.0373 (4)	0.0007 (2)	0.3168 (5)	0.0755 (15)
H24	1.0866	0.0171	0.4056	0.091*
C25	1.0510 (4)	-0.1184 (2)	0.0656 (6)	0.1002 (18)
H25A	1.1363	-0.1158	0.0802	0.150*
H25B	1.0097	-0.1218	-0.0432	0.150*
H25C	1.0345	-0.1493	0.1197	0.150*
C26	0.4564 (5)	0.1408 (2)	0.3195 (7)	0.142 (3)
H26A	0.4775	0.1771	0.3037	0.213*
H26B	0.4710	0.1184	0.2402	0.213*
H26C	0 5046	0 1287	0.4196	0.213*
C27	0 3299 (7)	0.1207 0.1382 (2)	0.3121 (7)	0.213 0.107(2)
027	0.3233 (7)	0.1302 (2)	0.3121 (7)	0.107(2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
01	0.062 (2)	0.089 (3)	0.090 (3)	-0.013 (2)	0.0185 (18)	-0.025 (2)
02	0.078 (3)	0.113 (3)	0.068 (2)	0.030 (2)	0.001 (2)	-0.010 (2)
03	0.091 (3)	0.121 (3)	0.103 (3)	-0.009 (2)	0.032 (2)	-0.045 (2)
04	0.088 (3)	0.118 (3)	0.095 (3)	0.047 (2)	0.013 (2)	0.004 (3)
N1	0.059 (3)	0.070 (3)	0.060 (3)	0.003 (2)	0.013 (2)	0.004 (2)
N2	0.052 (3)	0.068 (3)	0.061 (3)	0.004 (2)	0.006 (2)	0.004 (2)
N3	0.094 (4)	0.244 (7)	0.155 (5)	-0.029 (5)	0.045 (5)	0.001 (5)
C1	0.073 (4)	0.066 (4)	0.046 (3)	-0.008(3)	0.006 (3)	-0.002(3)
C2	0.059 (4)	0.072 (4)	0.063 (3)	0.000 (3)	0.006 (3)	0.006 (3)
C3	0.079 (4)	0.080 (4)	0.055 (4)	0.008 (4)	0.007 (3)	-0.008 (3)
C4	0.106 (5)	0.069 (4)	0.074 (4)	-0.003 (4)	0.003 (4)	-0.011 (3)
C5	0.085 (5)	0.090 (5)	0.096 (5)	-0.025 (4)	0.000 (4)	0.009 (4)
C6	0.082 (4)	0.083 (4)	0.075 (4)	-0.008 (4)	0.008 (3)	0.012 (3)
C7	0.057 (3)	0.089 (4)	0.052 (3)	-0.001 (3)	0.011 (3)	0.008 (3)
C8	0.141 (6)	0.161 (7)	0.106 (5)	0.008 (6)	0.035 (5)	-0.044 (5)
C9	0.178 (7)	0.151 (7)	0.192 (7)	-0.023 (5)	0.112 (6)	-0.049 (5)
C10	0.065 (4)	0.089 (4)	0.074 (4)	0.007 (3)	0.014 (3)	0.012 (4)
C11	0.053 (3)	0.081 (4)	0.053 (4)	-0.002 (3)	0.005 (3)	0.006 (3)
C12	0.065 (4)	0.073 (4)	0.060 (4)	0.006 (3)	0.011 (3)	-0.002 (3)
C13	0.093 (4)	0.110 (5)	0.077 (4)	0.016 (4)	-0.015 (4)	-0.018 (4)
C14	0.088 (5)	0.116 (5)	0.080 (4)	0.006 (4)	-0.016 (4)	-0.012 (4)
C15	0.069 (4)	0.110 (5)	0.075 (5)	0.002 (4)	-0.003 (4)	0.017 (4)
C16	0.070 (4)	0.085 (4)	0.070 (4)	0.015 (3)	0.015 (3)	-0.009 (3)
C17	0.099 (5)	0.125 (6)	0.121 (5)	0.047 (4)	0.014 (4)	0.035 (5)
C18	0.164 (7)	0.154 (7)	0.158 (7)	0.094 (5)	0.023 (5)	-0.004 (6)
C19	0.050 (3)	0.083 (4)	0.052 (3)	0.009 (3)	0.015 (3)	0.012 (3)
C20	0.059 (3)	0.066 (4)	0.059 (4)	0.009 (3)	0.021 (3)	0.011 (3)
C21	0.073 (4)	0.067 (4)	0.077 (4)	0.003 (3)	0.020 (3)	0.002 (3)
C22	0.082 (4)	0.067 (4)	0.078 (4)	0.027 (3)	0.043 (3)	0.021 (3)
C23	0.070 (4)	0.100 (5)	0.072 (4)	0.016 (4)	0.012 (3)	0.022 (4)
C24	0.058 (4)	0.101 (5)	0.067 (4)	0.004 (3)	0.017 (3)	0.006 (3)
C25	0.095 (4)	0.100 (4)	0.105 (4)	0.023 (4)	0.027 (4)	0.014 (4)
C26	0.061 (4)	0.164 (6)	0.192 (7)	-0.002 (4)	0.024 (4)	-0.054 (5)
C27	0.099 (5)	0.119 (5)	0.103 (5)	-0.009 (5)	0.029 (5)	-0.013 (4)

Geometric parameters (Å, °)

01—C2	1.347 (5)	C11—C12	1.381 (6)	
O1—H1	0.8200	C12—C13	1.393 (6)	
O2-C11	1.353 (5)	C12—C16	1.444 (6)	
O2—H2	0.8200	C13—C14	1.361 (6)	
O3—C3	1.364 (6)	C13—H13	0.9300	
O3—C8	1.418 (6)	C14—C15	1.369 (6)	
O4—C10	1.364 (5)	C14—H14	0.9300	
O4—C17	1.437 (5)	C15—H15	0.9300	

N1—C7	1.296 (5)	C16—H16	0.9300
N1—C19	1.411 (5)	C17—C18	1.486 (7)
N2—C16	1.269 (5)	C17—H17A	0.9700
N2—C20	1.421 (5)	С17—Н17В	0.9700
N3—C27	1.105 (6)	C18—H18A	0.9600
C1—C2	1.394 (6)	C18—H18B	0.9600
C1—C6	1.400 (6)	C18—H18C	0.9600
C1—C7	1.428 (6)	C19—C24	1.396 (6)
C2—C3	1.397 (6)	C19—C20	1.407 (6)
C3—C4	1.379 (6)	C20—C21	1.378 (5)
C4—C5	1.377 (6)	C21—C22	1.388 (6)
C4—H4	0.9300	C21—H21	0.9300
C5—C6	1.359 (6)	C22—C23	1.362 (6)
C5—H5	0.9300	C^{22} C^{25}	1.521(6)
С6—Н6	0.9300	C23—C24	1 375 (6)
C7—H7	0.9300	C23—H23	0.9300
C_{8}	1 453 (7)	C24—H24	0.9300
C8—H8A	0.9700	C25—H25A	0.9600
C8_H8B	0.9700	C25_H25R	0.9600
	0.9700	C25 H25C	0.9600
C0 H0B	0.9000	C26 C27	1.448(7)
C_{0} Hoc	0.9600	$C_{20} = C_{27}$	0.9600
C10 C15	1 375 (6)	C26 H26R	0.9000
$C_{10} = C_{13}$	1.375(0) 1.407(6)	C26_H26C	0.9000
C10—C11	1.407 (0)	C20—H20C	0.9000
C2_01_H1	109.5	C13_C14_H14	110 5
$C_{11} = 0^{2} = H^{2}$	109.5	C_{15} C_{14} H_{14}	119.5
$C_{11}^{-02} - C_{12}^{-112}$	118.2 (5)	$C_{13} - C_{14} - C_{15} - C_{10}$	119.5 120.5(5)
$C_{3} = 0_{3} = 0_{8}$	116.2(3)	$C_{14} = C_{15} = C_{10}$	120.3(3)
C7 N1 C19	110.0(4)	$C_{14} = C_{15} = H_{15}$	119.7
$C_{1} = N_{1} = C_{1}$	119.2 (4)	$N_2 = C_{16} = C_{12}$	119.7 122.5(5)
$C_{10} - N_2 - C_{20}$	122.1(4) 120.2(5)	$N_2 = C_{10} = C_{12}$	123.3 (3)
$C_2 = C_1 = C_0$	120.2(5)	12 - 10 - 110	110.5
$C_2 = C_1 = C_7$	121.5(5)	C_{12} C_{10} H_{10} C_{12} C_{18}	110.5
$C_0 = C_1 = C_1$	116.3(0)	04 - 017 - 018	100.7 (3)
01 - 02 - 01	121.8(5)	O4-CI/-HI/A	110.4
01 - 02 - 03	119.1 (5)	C18 - C17 - H17A	110.4
C1 = C2 = C3	119.1 (5)	O4 - C1 - H1/B	110.4
03 - 03 - 04	125.5 (6)		110.4
03 - 03 - 02	114.6 (5)	HI/A - CI/-HI/B	108.6
C4 - C3 - C2	119.9 (6)	C17 - C18 - H18A	109.5
C5-C4-C3	120.0 (6)	CI/CI8HI8B	109.5
C3-C4-H4	120.0	$H1\delta A - C1\delta - H1\delta B$	109.5
C3-C4-H4	120.0	$U_1/-U_18$ -H18U	109.5
C6-C5-C4	121.5 (6)	HI8A—CI8—HI8C	109.5
С6—С5—Н5	119.3	H18B—C18—H18C	109.5
C4—C5—H5	119.3	C24—C19—C20	118.3 (5)
C5—C6—C1	119.3 (6)	C24—C19—N1	121.5 (5)
С5—С6—Н6	120.4	C20-C19-N1	120.2 (4)

С1—С6—Н6	120.4	C21—C20—C19	119.0 (5)
N1—C7—C1	123.5 (5)	C21—C20—N2	125.5 (5)
N1—C7—H7	118.3	C19—C20—N2	115.5 (5)
С1—С7—Н7	118.3	C20—C21—C22	121.5 (5)
O3—C8—C9	109.5 (6)	C20—C21—H21	119.2
O3—C8—H8A	109.8	C22—C21—H21	119.2
С9—С8—Н8А	109.8	C23—C22—C21	119.6 (5)
O3—C8—H8B	109.8	C23—C22—C25	120.4 (5)
С9—С8—Н8В	109.8	C21—C22—C25	119.9 (6)
H8A—C8—H8B	108.2	C22—C23—C24	120.0 (5)
С8—С9—Н9А	109.5	С22—С23—Н23	120.0
С8—С9—Н9В	109.5	С24—С23—Н23	120.0
Н9А—С9—Н9В	109.5	C23—C24—C19	121.5 (5)
С8—С9—Н9С	109.5	C23—C24—H24	119.2
Н9А—С9—Н9С	109.5	C19—C24—H24	119.2
Н9В—С9—Н9С	109.5	C22—C25—H25A	109.5
O4—C10—C15	125.9 (5)	С22—С25—Н25В	109.5
O4—C10—C11	114.9 (5)	H25A—C25—H25B	109.5
C15—C10—C11	119.2 (6)	С22—С25—Н25С	109.5
O2—C11—C12	122.8 (5)	H25A—C25—H25C	109.5
O2—C11—C10	117.6 (5)	H25B—C25—H25C	109.5
C12—C11—C10	119.6 (5)	C27—C26—H26A	109.5
C11—C12—C13	119.9 (5)	C27—C26—H26B	109.5
C11—C12—C16	120.4 (5)	H26A—C26—H26B	109.5
C13—C12—C16	119.7 (5)	С27—С26—Н26С	109.5
C14—C13—C12	119.8 (5)	H26A—C26—H26C	109.5
С14—С13—Н13	120.1	H26B—C26—H26C	109.5
С12—С13—Н13	120.1	N3—C27—C26	179.0 (8)
C13—C14—C15	121.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.90	2.610 (5)	145
O2—H2…N2	0.82	1.91	2.605 (5)	142