Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Acetyl-3-[2-(ethoxycarbonyl)phenyl]sydnone

David Grossie,* Leanna Harrison and Kenneth Turnbull

Department of Chemistry, Wright State University, Dayton, OH 45435, USA Correspondence e-mail: david.grossie@wright.edu

Received 9 July 2013; accepted 2 October 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.121; data-to-parameter ratio = 20.5.

Sydnones, which contain a mesoionic five-membered heterocyclic ring, are more stable if synthesized with an aromatic substutuent at the N3 position. In the title compound {systematic name: 4-acetyl-3-[2-(ethoxycarbonyl)phenyl]-1,2,3-oxadiazol-3-ylium-5-olate}, C₁₃H₁₂N₂O₅, the aromatic substitutent is 2-(ethoxycarbonyl)phenyl. Intra- and intermolecular hydrogen bonds are observed. The interplanar angle between the sydnone and benzene rings is 71.94 (8)°. π ring···carbonyl interactions of 3.2038 (16) Å arise between the sydnone ring and a symmetry-related C=O group.

Related literature

For more information on the sydnone family of compounds, see: Ohta & Kato (1969). For synthesis and structure information, see: Grossie & Turnbull (1992); Grossie *et al.* (2001, 2007); Hope & Thiessen (1969); Hodson & Turnbull (1985); Riddle *et al.* (2004*a,b,c*); Hanley *et al.* (1976). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data	
$C_{13}H_{12}N_2O_5$	a = 11.353 (3) Å
$M_r = 276.25$	b = 8.093 (2) Å
Monoclinic, $P2_1/n$	c = 14.607 (4) Å
Monoclinic, $P2_1/n$	c = 14.607 (4)

$\beta = 112.582 \ (4)^{\circ}$
V = 1239.1 (6) Å ³
Z = 4
Mo Ka radiation

Data collection

Bruker Kappa APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.90, \ T_{\rm max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 181 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.49$ e Å $^{-3}$ 3718 reflections $\Delta \rho_{min} = -0.38$ e Å $^{-3}$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.038$

 $0.22 \times 0.20 \times 0.17 \text{ mm}$

13826 measured reflections

3718 independent reflections 2783 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry (A	Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
C36—H361····O5 ⁱ	0.95	2.51	3.253 (2)	136	
$C40-H401\cdots O41^{ii}$	0.97	2.46	3.116 (2)	124	
C42-H423···O5	0.96	2.51	3.065 (2)	117	
Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.					

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYS*-*TALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University, USA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2123).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042-o2043.

- Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377-379.
- Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, 0985–0987.
 Hanley, R. N., Ollis, W. D. & Ramsden, C. A. (1976). J. Chem. Soc. Chem. Commun. 9, 306–307.
- Hodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223-1227.
- Hope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237-1247.
- Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117–248. New York: Academic Press.
- Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004*a*). Acta Cryst. E60, o977– o978.
- Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568– 01570.
- Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258– o259.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2013). E69, o1662 [doi:10.1107/S1600536813027207]

4-Acetyl-3-[2-(ethoxycarbonyl)phenyl]sydnone

David Grossie, Leanna Harrison and Kenneth Turnbull

S1. Comment

The bond distances and angles were within expected values. The sydnone ring (O1 - C5) and phenyl ring (C31 - C36) of the structure are planar as expected, with all deviations less than 0.1 Å. The angle between the planes of the sydnone (O1 – C5) and phenyl ring (C31 - C36) is 71.94 (8)°. π -atom interactions are seen between the sydnone ring and a symmetry-related O(5) with a distance of 3.2038 (16) Å. Numerous short intra and inter-molecular contacts are noted within the structure. The potential H bonds in the structure are tabulated below.

S2. Experimental

4-Acetyl-3-(2-ethoxycarbonylphenyl)sydnone was synthesized in 47% yield by heating 3-[2-(ethoxycarbonyl)phenyl]sydnone, acetic anhydride (5 eq), bismuth trifluoromethanesulfonate (25 mole %), and lithium perchlorate (25 mole %) in acetonitrile (2 ml) in a sealed tube at 140°C for 5 h.

S3. Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

4-Acetyl-3-[2-(ethoxycarbonyl)phenyl]-1,2,3-oxadiazol-3-ylium-5-olate

Crystal data

$C_{13}H_{12}N_2O_5$ $M_r = 276.25$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn	F(000) = 576 $D_x = 1.481 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2783 reflections
a = 11.353 (3) Å b = 8.093 (2) Å c = 14.607 (4) Å $\beta = 112.582 (4)^{\circ}$ $V = 1239.1 (6) \text{ Å}^{3}$ Z = 4	$\theta = 6-60^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 173 K Block, colourless $0.22 \times 0.20 \times 0.17 \text{ mm}$
Data collection Bruker Kappa APEXII diffractometer Graphite monochromator	ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$T_{\min} = 0.90, \ T_{\max} = 0.98$	$\theta_{\rm max} = 30.6^\circ, \theta_{\rm min} = 2.0^\circ$
13826 measured reflections	$h = -15 \rightarrow 15$
3718 independent reflections	$k = -11 \rightarrow 11$
2783 reflections with $I > 2\sigma(I)$	$l = -20 \rightarrow 20$
$R_{\rm int}=0.038$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix full	man

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 0.96	H-atom parameters constrained
3718 reflections	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + ($
181 parameters	$(0.05P)^2 + 0.68P$],
0 restraints	where $P = (\max(F_o^2, 0) + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.0001892$
direct methods	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

Sydnone:O1—C5 0.6390 (6) x - 0.6043 (6) y - 0.4760 (7) z = -0.206 (6) (11) * 0.005 (1) O1 * 0.003 (1) N2 * -0.010 (1) N3 * 0.012 (1) C4 *- 0.010 (2) C5 0.1671 (6) x - 0.0840 (6) y + 0.9824 (1) z = 5.3188 (17) Attached phenyl ring: C31–36 * -0.003 (1) C31 * 0.004 (1) C32 * -0.002 (1) C33 * -0.001 (2) C34 * 0.002 (2) C35 * 0.000 (2) C36 Angle to previous plane (with approximate e.s.d.) = 71.94 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
041	0.40593 (10)	0.21460 (14)	0.17007 (8)	0.0279	
C41	0.49814 (14)	0.30225 (18)	0.18948 (11)	0.0208	
C4	0.60889 (13)	0.28357 (17)	0.28115 (10)	0.0175	
N3	0.62198 (11)	0.16639 (15)	0.35007 (9)	0.0189	
N2	0.72926 (12)	0.16842 (18)	0.42560 (10)	0.0265	
01	0.79450 (10)	0.29896 (15)	0.40892 (9)	0.0296	
C5	0.72170 (14)	0.37830 (19)	0.31878 (11)	0.0222	
05	0.76294 (11)	0.49824 (14)	0.29284 (9)	0.0293	
C31	0.53744 (14)	0.03347 (17)	0.35081 (11)	0.0190	
C36	0.57526 (15)	-0.12260 (18)	0.33667 (12)	0.0242	
C35	0.50160 (16)	-0.25590 (18)	0.34078 (12)	0.0267	
C34	0.39295 (15)	-0.23188 (19)	0.35861 (12)	0.0253	
C33	0.35629 (14)	-0.07463 (18)	0.37287 (11)	0.0218	
C32	0.42817 (14)	0.06187 (17)	0.36981 (10)	0.0191	
C37	0.39015 (14)	0.23053 (18)	0.38796 (11)	0.0203	
O38	0.28355 (10)	0.22771 (13)	0.40506 (8)	0.0243	
C40	0.23638 (15)	0.38788 (19)	0.42045 (13)	0.0264	

C39	0.12669 (18)	0.3580 (2)	0.45073 (15)	0.0354
O37	0.44855 (11)	0.35433 (13)	0.38822 (9)	0.0296
C42	0.50663 (16)	0.4341 (2)	0.12175 (12)	0.0296
H361	0.6494	-0.1359	0.3224	0.0288*
H351	0.5251	-0.3639	0.3321	0.0328*
H341	0.3441	-0.3213	0.3614	0.0302*
H331	0.2821	-0.0586	0.3855	0.0256*
H402	0.3053	0.4420	0.4736	0.0308*
H401	0.2089	0.4494	0.3586	0.0317*
H393	0.0942	0.4636	0.4613	0.0530*
H392	0.1546	0.2974	0.5114	0.0523*
H391	0.0588	0.2989	0.3991	0.0514*
H423	0.5461	0.5316	0.1577	0.0481*
H422	0.5591	0.3955	0.0874	0.0479*
H421	0.4258	0.4594	0.0745	0.0459*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O41	0.0226 (5)	0.0250 (6)	0.0288 (6)	-0.0055 (4)	0.0018 (4)	0.0058 (5)
C41	0.0232 (7)	0.0167 (6)	0.0234 (7)	0.0017 (5)	0.0099 (6)	0.0009 (5)
C4	0.0181 (6)	0.0150 (6)	0.0211 (6)	-0.0005 (5)	0.0094 (5)	0.0016 (5)
N3	0.0186 (5)	0.0172 (5)	0.0208 (6)	0.0000 (4)	0.0075 (5)	0.0015 (5)
N2	0.0213 (6)	0.0296 (7)	0.0245 (6)	-0.0027 (5)	0.0043 (5)	0.0058 (5)
01	0.0226 (5)	0.0320 (6)	0.0296 (6)	-0.0068 (5)	0.0048 (5)	0.0055 (5)
C5	0.0211 (7)	0.0237 (7)	0.0231 (7)	-0.0016 (5)	0.0100 (6)	0.0006 (6)
05	0.0289 (6)	0.0269 (6)	0.0348 (6)	-0.0090 (5)	0.0153 (5)	0.0016 (5)
C31	0.0221 (7)	0.0149 (6)	0.0195 (6)	-0.0020 (5)	0.0075 (5)	0.0025 (5)
C36	0.0276 (7)	0.0192 (7)	0.0280 (8)	0.0029 (6)	0.0130 (6)	0.0031 (6)
C35	0.0367 (9)	0.0134 (6)	0.0319 (8)	0.0022 (6)	0.0154 (7)	0.0020 (6)
C34	0.0322 (8)	0.0155 (7)	0.0297 (8)	-0.0040 (6)	0.0135 (7)	0.0011 (6)
C33	0.0252 (7)	0.0172 (6)	0.0249 (7)	-0.0023 (5)	0.0118 (6)	0.0020 (6)
C32	0.0239 (7)	0.0145 (6)	0.0194 (7)	-0.0010 (5)	0.0089 (6)	0.0014 (5)
C37	0.0245 (7)	0.0166 (6)	0.0221 (7)	-0.0004 (5)	0.0115 (6)	0.0003 (5)
O38	0.0268 (5)	0.0162 (5)	0.0356 (6)	-0.0010 (4)	0.0185 (5)	-0.0018 (4)
C40	0.0307 (8)	0.0163 (7)	0.0380 (9)	0.0002 (6)	0.0195 (7)	-0.0032 (6)
C39	0.0397 (10)	0.0244 (8)	0.0538 (11)	-0.0024 (7)	0.0311 (9)	-0.0041 (8)
O37	0.0375 (6)	0.0160 (5)	0.0455 (7)	-0.0042 (4)	0.0274 (6)	-0.0040 (5)
C42	0.0307 (8)	0.0287 (8)	0.0266 (8)	-0.0010 (6)	0.0081 (7)	0.0090 (6)

Geometric parameters (Å, °)

O41—C41	1.2047 (18)	C34—H341	0.922
C41—C4	1.450 (2)	C33—C32	1.3842 (19)
C41—C42	1.483 (2)	C33—H331	0.938
C4—N3	1.3490 (18)	C32—C37	1.486 (2)
C4—C5	1.410 (2)	C37—O38	1.3266 (18)
N3—N2	1.2918 (17)	C37—O37	1.2006 (18)

N3_C31	1 4445 (18)	O38-C40	1 4527 (18)
N2_01	1 3648 (17)	C_{40} C_{40} C_{39}	1.4927(10) 1.493(2)
01-C5	1.3048(17) 1 4118(19)	C40 - H402	0.969
C_{5}	1 2006 (18)	C40 - H401	0.972
C_{31} C_{36}	1.2000(10) 1.375(2)	C30_H303	0.972
C_{31} C_{32}	1.375(2) 1 300(2)	C30 H302	0.907
C_{36}	1.390(2)	C39_H391	0.933
C36—H361	0.948	C_{42} H423	0.972
C_{35} C_{34}	1 369 (2)	$C_{42} = H_{423}$	0.956
C35—H351	0.937	C42 - H421	0.900
C_{34} C_{33}	1,379(2)	C+2—11+21	0.755
034-033	1.379(2)		
O41—C41—C4	121.51 (13)	С34—С33—Н331	120.2
O41—C41—C42	122.68 (14)	С32—С33—Н331	118.7
C4—C41—C42	115.81 (13)	C31—C32—C33	117.18 (13)
C41—C4—N3	124.76 (12)	C31—C32—C37	122.01 (12)
C41—C4—C5	129.68 (13)	C33—C32—C37	120.81 (13)
N3—C4—C5	105.55 (12)	C32—C37—O38	111.49 (12)
C4—N3—N2	115.20 (12)	C32—C37—O37	124.70 (13)
C4—N3—C31	130.25 (12)	O38—C37—O37	123.80 (13)
N2—N3—C31	114.47 (12)	C37—O38—C40	115.53 (11)
N3—N2—O1	104.81 (12)	O38—C40—C39	107.47 (13)
N2—O1—C5	110.80 (11)	O38—C40—H402	107.1
O1—C5—C4	103.58 (12)	C39—C40—H402	110.2
O1—C5—O5	120.17 (14)	O38—C40—H401	108.6
C4—C5—O5	136.25 (15)	C39—C40—H401	110.6
N3—C31—C36	115.86 (13)	H402—C40—H401	112.7
N3—C31—C32	121.65 (13)	С40—С39—Н393	108.5
C36—C31—C32	122.40 (13)	С40—С39—Н392	109.9
C31—C36—C35	118.82 (14)	Н393—С39—Н392	108.5
C31—C36—H361	119.5	C40—C39—H391	110.7
C35—C36—H361	121.7	H393—C39—H391	108.8
C36—C35—C34	120.17 (14)	Н392—С39—Н391	110.5
C36—C35—H351	120.9	C41—C42—H423	111.3
С34—С35—Н351	118.9	C41—C42—H422	108.9
C35—C34—C33	120.39 (14)	H423—C42—H422	107.4
С35—С34—Н341	119.9	C41—C42—H421	110.7
C33—C34—H341	119.7	H423—C42—H421	110.1
C34—C33—C32	121.04 (14)	H422—C42—H421	108.3

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C36—H361…O5 ⁱ	0.95	2.51	3.253 (2)	136
C40—H401…O41 ⁱⁱ	0.97	2.46	3.116 (2)	124

			supportin	supporting information		
С33—Н331…О38	0.94	2.33	2.681 (2)	101		
C42—H423···O5	0.96	2.51	3.065 (2)	117		

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.