Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-Oxybis(2,6-dimethylpyridinium) bis(trifluoromethanesulfonate)

Amanda W. Stubbs,^a James A. Golen,^b Arnold L. Rheingold^b and David R. Manke^a*

^aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and ^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Correspondence e-mail: dmanke@umassd.edu

Received 1 October 2013; accepted 8 October 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.125; data-to-parameter ratio = 13.8.

In the asymmetric unit of the title salt, $C_{14}H_{18}N_2O^{2+}$.-2CF₃O₃S⁻, the components are linked by two N-H···O and one C-H···O hydrogen bonds. The dipyridinium salt demonstrates a skew conformation based upon C-O-C-C torsion angles of 61.5 (3) and 15.1 (4)°. A C-O-C angle of 119.3 (2)° and C-O bond distances of 1.364 (3) and 1.389 (3) Å are consistent with other dipyridyl ethers. The planes of the pyridyl rings exhibit a twist angle of 67.89 (8)°. One of the trifluoromethanesulfonate ions shows disorder of the F atoms [in a 0.52 (7):0.48 (7) occupancy ratio] and an O atom [0.64 (8):0.36 (8) occupancy ratio]. In the crystal, the components are linked by C-H···O interactions, which form chains along [101].

Related literature

For the structure of the unsubstituted 4,4'-oxybisdipyridine, see: Dunne *et al.* (1996). For the structure of bis[4'-(2,2':6',2''-terpyridinyl)]ether, see: Constable *et al.* (1995). For the stuctures of the neutral ether 9,9'-oxybisacridine and its dication, see: Maas (1985). For a description of conformations in bridged diphenyls, see: van der Heijden *et al.* (1975).

Experimental

Crystal data

 $C_{14}H_{18}N_2O^{2+} \cdot 2CF_3O_3S^{-}$ $M_r = 528.44$ Monoclinic, $P2_1/n$ a = 12.7397 (18) Å b = 11.3610 (16) Å c = 15.611 (2) Å $\beta = 101.405$ (4)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.925, T_{\rm max} = 0.968$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.125$ S = 1.094360 reflections 316 parameters 53 restraints $V = 2214.8 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 100 K $0.24 \times 0.18 \times 0.10 \text{ mm}$

15390 measured reflections 4360 independent reflections 3546 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.94\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-1.04\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1−H1 <i>N</i> ···O4	0.86 (2)	1.93 (2)	2.783 (3)	171 (3)
$N2 - H2N \cdot \cdot \cdot O7$	0.87(2)	1.97 (2)	2.826 (3)	169 (3)
$C2-H2A\cdots O6^{i}$	0.95	2.36	3.170 (4)	142
$C6-H6B\cdots O6^{i}$	0.98	2.50	3.383 (4)	149
$C7 - H7B \cdots O3^{ii}$	0.98	2.47	3.421 (4)	164
$C9 - H9A \cdots O3^{iii}$	0.95	2.44	3.293 (4)	149
$C12 - H12A \cdots O5^{iv}$	0.95	2.26	3.168 (4)	160
$C14 - H14A \cdots O6$	0.98	2.52	3.436 (4)	155

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

AWS thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award, the Urban Massachusetts Louis Stokes Alliance for Minority Participation (UMLSAMP), the UMass Dartmouth Honors Program and the Northeast Section of the American Chemical Society Norris/Richards Summer Research Scholarship for funding. DRM gratefully acknowledges support from the UMass Dartmouth Chancellor's Research Fund, the Joseph P. Healey Endowment and the National Science Foundation (CHE-1229339).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2121).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.

Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040–2042.

- Heijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084–2092.
 Maas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985–1988.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, 01633-01634 [doi:10.1107/S1600536813027505]

4,4'-Oxybis(2,6-dimethylpyridinium) bis(trifluoromethanesulfonate)

Amanda W. Stubbs, James A. Golen, Arnold L. Rheingold and David R. Manke

S1. Comment

The structures of bridged diaryls have been examined for many years and here we submit another structure into this data set. Based upon dissimilar C–O–C–C torsion angles of 61.5 (3)° and 15.1 (4)°, this structure exhibits a skew conformation (van der Heijden *et al.* 1975). The previously reported structures of 4,4'-oxybisdipyridyls and their cations (Dunne *et al.* 1996, Maas, 1985, Constable *et al.*, 1995) have shown a twist structure, with torsion angles that are closer in size. Otherwise, the C–O–C angle of 119.3 (2)° and C–O bond distances of 1.364 (3) Å and 1.389 (3) Å are consistent with reported dipyridyl ethers

The structure of the title salt is shown in Figure 1. N–H···O hydrogen bonds between the dication and the two anions are seen between N1–H1N···O4 and N2–H2N···O7. There are no π - π interactions between pyridinium rings of the dications observed. One of the trifluoromethanesulfonate ions shows a disorder at the fluorines with a 52.0:48.0 percentage distribution and at one oxygen with a 64:36 percentage distribution.

S2. Experimental

Colorless crystals of the title compound formed from the slow decomposition of neat 2,6-dimethyl-4-triflatopyridine.

S3. Refinement

All non-hydrogen atoms were refined anisotropically by full matrix least squares on F². Fluorine atoms F1, F2, and F3 were disordered over two positions (52.0/48.0) and were refined anisotropically with similar distances and amplitudes using SADI restraints and EADP constraints. Oxygen atom O2 was found to be disordered over two sites (63.5/36.5) and was refined with *DFIX* restraints for S–O bond length of 1.44(0.01) Å and O–O distances of 2.41(0.02) Å and ISOR restraint for O2 and O2'. Hydrogen atoms H1N and H2N were found from a Fourier difference map and were refined isotropically with N—H distance of 0.87 (2) Å and 1.20 U_{eq} of parent N atom. All other hydrogen atoms were placed in calculated positions with appropriate carbon hydrogen bond lengths; C—H(Ar) 0.950 Å and CH₃ 0.980 Å and 1.20 and 1.50 U_{eq} of parent C atom.

Figure 1

The molecular structure of the title compound, showing the atom labeling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius. Hydrogen bonding is shown with dashed lines.

4,4'-Oxybis(2,6-dimethylpyridinium) bis(trifluoromethanesulfonate)

Crystal data	
$C_{14}H_{18}N_2O^{2+} \cdot 2CF_3O_3S^{-}$ $M_r = 528.44$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.7397 (18) Å b = 11.3610 (16) Å c = 15.611 (2) Å $\beta = 101.405$ (4)° V = 2214.8 (6) Å ³ Z = 4	F(000) = 1080 $D_x = 1.585 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5851 reflections $\theta = 2.4-26.2^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.24 \times 0.18 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.925, T_{max} = 0.968$	15390 measured reflections 4360 independent reflections 3546 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -15 \rightarrow 15$ $k = -14 \rightarrow 10$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.125$ S = 1.09 4360 reflections 316 parameters 53 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 3.6577P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.023$ $\Delta\rho_{max} = 0.94$ e Å ⁻³ $\Delta\rho_{min} = -1.04$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.30074 (6)	0.21804 (7)	0.30451 (5)	0.0244 (2)	
S2	1.28559 (6)	0.28663 (8)	0.84123 (5)	0.0261 (2)	
F1	0.2582 (5)	-0.0159 (3)	0.3316 (4)	0.0595 (7)	0.520(7)
F2	0.3592 (5)	0.0635 (5)	0.4423 (4)	0.0595 (7)	0.520 (7)
F3	0.1942 (4)	0.1172 (5)	0.4014 (4)	0.0595 (7)	0.520(7)
F1′	0.2686 (5)	0.0044 (4)	0.3063 (4)	0.0595 (7)	0.480 (7)
F2′	0.3863 (4)	0.0710 (5)	0.4133 (4)	0.0595 (7)	0.480 (7)
F3′	0.2151 (5)	0.0891 (5)	0.4199 (3)	0.0595 (7)	0.480 (7)
F4	1.45831 (17)	0.3944 (2)	0.92267 (16)	0.0540 (7)	
F5	1.33893 (18)	0.36761 (19)	1.00127 (13)	0.0429 (6)	
F6	1.3158 (2)	0.5016 (2)	0.90176 (19)	0.0642 (8)	
01	0.81802 (15)	0.55937 (18)	0.51520 (13)	0.0198 (5)	
O2	0.3883 (10)	0.178 (3)	0.268 (2)	0.065 (4)	0.64 (8)
O2′	0.3796 (13)	0.206 (3)	0.2489 (14)	0.039 (5)	0.36 (8)
03	0.19673 (19)	0.2307 (2)	0.24973 (15)	0.0349 (6)	
04	0.32838 (16)	0.30914 (19)	0.36998 (14)	0.0247 (5)	
05	1.33183 (18)	0.1762 (2)	0.87294 (14)	0.0283 (5)	
O6	1.3101 (2)	0.3260 (3)	0.75980 (16)	0.0445 (7)	
O7	1.17400 (17)	0.3012 (2)	0.84615 (16)	0.0322 (6)	
N1	0.53677 (19)	0.3908 (2)	0.42520 (15)	0.0166 (5)	
H1N	0.4755 (19)	0.358 (3)	0.408 (2)	0.020*	
N2	1.05589 (19)	0.4233 (2)	0.70080 (15)	0.0180 (5)	
H2N	1.099 (2)	0.386 (3)	0.7421 (18)	0.022*	
C1	0.7249 (2)	0.4988 (3)	0.48821 (18)	0.0163 (6)	
C2	0.6599 (2)	0.5394 (3)	0.41160 (18)	0.0184 (6)	
H2A	0.6811	0.6052	0.3815	0.022*	
C3	0.5646 (2)	0.4833 (3)	0.38005 (18)	0.0177 (6)	
C4	0.5987 (2)	0.3485 (3)	0.49946 (18)	0.0164 (6)	
C5	0.6942 (2)	0.4040 (3)	0.53340 (18)	0.0167 (6)	
H5A	0.7379	0.3778	0.5865	0.020*	
C6	0.4891 (2)	0.5170 (3)	0.29786 (19)	0.0244 (7)	
H6A	0.4711	0.4472	0.2610	0.037*	
H6B	0.5230	0.5759	0.2664	0.037*	
H6C	0.4237	0.5499	0.3123	0.037*	
C7	0.5605 (2)	0.2412 (3)	0.5387 (2)	0.0255 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7A	0.4840	0.2490	0.5389	0.038*	
H7B	0.6003	0.2319	0.5988	0.038*	
H7C	0.5722	0.1721	0.5042	0.038*	
C8	0.8979 (2)	0.5106 (3)	0.57885 (18)	0.0164 (6)	
С9	0.9320 (2)	0.5738 (3)	0.65427 (19)	0.0197 (6)	
H9A	0.9006	0.6475	0.6631	0.024*	
C10	1.0135 (2)	0.5270 (3)	0.71692 (19)	0.0204 (6)	
C11	1.0248 (2)	0.3602 (3)	0.62686 (19)	0.0184 (6)	
C12	0.9443 (2)	0.4049 (3)	0.56316 (19)	0.0178 (6)	
H12A	0.9212	0.3640	0.5097	0.021*	
C13	1.0564 (3)	0.5851 (3)	0.8025 (2)	0.0358 (9)	
H13A	1.0534	0.5298	0.8501	0.054*	
H13B	1.0131	0.6547	0.8088	0.054*	
H13C	1.1308	0.6089	0.8046	0.054*	
C14	1.0780 (3)	0.2449 (3)	0.6199 (2)	0.0268 (7)	
H14A	1.1537	0.2503	0.6483	0.040*	
H14B	1.0725	0.2247	0.5581	0.040*	
H14C	1.0429	0.1839	0.6485	0.040*	
C15	0.2854 (2)	0.0901 (3)	0.3686 (2)	0.0548 (13)	
C16	1.3531 (3)	0.3933 (3)	0.9209 (3)	0.0378 (9)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0170 (4)	0.0248 (4)	0.0308 (4)	-0.0001 (3)	0.0029 (3)	-0.0091 (3)
0.0188 (4)	0.0357 (5)	0.0208 (4)	-0.0053 (3)	-0.0038 (3)	0.0133 (3)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0720 (13)	0.0293 (11)	0.0614 (17)	-0.0171 (9)	-0.0252 (11)	0.0380 (11)
0.0295 (12)	0.0722 (17)	0.0517 (14)	-0.0213 (12)	-0.0126 (10)	0.0118 (12)
0.0547 (14)	0.0371 (12)	0.0327 (11)	0.0026 (10)	-0.0012 (10)	-0.0034 (9)
0.0656 (17)	0.0273 (13)	0.084 (2)	-0.0100 (12)	-0.0240 (14)	0.0171 (12)
0.0126 (9)	0.0218 (11)	0.0226 (11)	-0.0023 (8)	-0.0029 (8)	0.0070 (9)
0.050 (4)	0.060 (7)	0.096 (8)	0.011 (4)	0.041 (4)	-0.024 (6)
0.035 (6)	0.039 (8)	0.047 (8)	0.003 (4)	0.017 (5)	-0.011 (5)
0.0352 (13)	0.0293 (13)	0.0318 (13)	-0.0027 (11)	-0.0139 (10)	-0.0049 (10)
0.0194 (11)	0.0242 (12)	0.0279 (12)	-0.0032 (9)	-0.0019 (9)	-0.0056 (9)
0.0270 (12)	0.0356 (13)	0.0202 (11)	0.0024 (10)	-0.0002(9)	0.0045 (10)
0.0331 (14)	0.071 (2)	0.0257 (13)	-0.0148 (13)	-0.0037 (10)	0.0244 (13)
0.0202 (11)	0.0377 (14)	0.0354 (13)	-0.0016 (10)	-0.0024 (10)	0.0132 (11)
0.0118 (11)	0.0201 (13)	0.0165 (12)	-0.0003 (10)	-0.0004 (9)	-0.0007 (10)
0.0136 (11)	0.0239 (14)	0.0152 (12)	0.0018 (10)	-0.0004 (9)	0.0021 (10)
0.0118 (13)	0.0184 (14)	0.0181 (14)	0.0011 (11)	0.0013 (11)	-0.0007 (11)
0.0161 (13)	0.0225 (16)	0.0168 (14)	0.0015 (12)	0.0040 (11)	0.0058 (12)
0.0162 (14)	0.0213 (15)	0.0157 (13)	0.0042 (12)	0.0035 (11)	0.0019 (12)
	$\begin{array}{c} U^{11} \\ \hline 0.0170 (4) \\ 0.0188 (4) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (13) \\ 0.0720 (12) \\ 0.0547 (14) \\ 0.0656 (17) \\ 0.0126 (9) \\ 0.050 (4) \\ 0.035 (6) \\ 0.035 (6) \\ 0.0352 (13) \\ 0.0194 (11) \\ 0.0270 (12) \\ 0.0331 (14) \\ 0.0202 (11) \\ 0.018 (11) \\ 0.0118 (13) \\ 0.0161 (13) \\ 0.0162 (14) \end{array}$	U^{11} U^{22} 0.0170 (4) 0.0248 (4) 0.0188 (4) 0.0357 (5) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0720 (13) 0.0293 (11) 0.0547 (14) 0.0371 (12) 0.0656 (17) 0.0273 (13) 0.0126 (9) 0.0218 (11) 0.050 (4) 0.060 (7) 0.035 (6) 0.039 (8) 0.0352 (13) 0.0293 (13) 0.0194 (11) 0.0242 (12) 0.0270 (12) 0.0356 (13) 0.0331 (14) 0.071 (2) 0.0202 (11) 0.0377 (14) 0.0118 (11) 0.0239 (14) 0.0118 (13) 0.0184 (14) 0.0161 (13) 0.0225 (16) 0.0162 (14) 0.0213 (15)	U^{11} U^{22} U^{33} 0.0170 (4)0.0248 (4)0.0308 (4)0.0188 (4)0.0357 (5)0.0208 (4)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0720 (13)0.0293 (11)0.0614 (17)0.0547 (14)0.0371 (12)0.0327 (11)0.0656 (17)0.0273 (13)0.084 (2)0.0126 (9)0.0218 (11)0.0226 (11)0.0552 (13)0.0293 (13)0.0318 (13)0.0194 (11)0.0242 (12)0.0279 (12)0.0270 (12)0.0356 (13)0.0202 (11)0.0331 (14)0.071 (2)0.0257 (13)0.0202 (11)0.0377 (14)0.0354 (13)0.0118 (11)0.0239 (14)0.0152 (12)0.0136 (11)0.0225 (16)0.0168 (14)0.0161 (13)0.0225 (16)0.0168 (14)0.0162 (14)0.0213 (15)0.0157 (13)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

C4	0.0155 (13)	0.0184 (15)	0.0148 (13)	0.0021 (11)	0.0020 (11)	0.0012 (11)
C5	0.0147 (13)	0.0213 (15)	0.0130 (13)	0.0023 (11)	0.0003 (10)	0.0024 (11)
C6	0.0175 (14)	0.0340 (18)	0.0191 (15)	0.0005 (13)	-0.0026 (12)	0.0071 (13)
C7	0.0218 (15)	0.0262 (17)	0.0250 (16)	-0.0054 (13)	-0.0037 (12)	0.0070 (13)
C8	0.0104 (12)	0.0207 (15)	0.0175 (14)	-0.0027 (11)	0.0012 (10)	0.0050 (11)
C9	0.0162 (14)	0.0205 (15)	0.0228 (15)	0.0015 (12)	0.0049 (11)	-0.0001 (12)
C10	0.0172 (14)	0.0264 (16)	0.0172 (14)	-0.0002 (12)	0.0028 (11)	-0.0020 (12)
C11	0.0143 (13)	0.0212 (15)	0.0190 (14)	-0.0019 (12)	0.0012 (11)	0.0005 (12)
C12	0.0138 (13)	0.0236 (16)	0.0150 (13)	-0.0028 (12)	0.0002 (11)	-0.0018 (12)
C13	0.0367 (19)	0.042 (2)	0.0243 (17)	0.0095 (16)	-0.0037 (15)	-0.0122 (15)
C14	0.0226 (15)	0.0240 (17)	0.0303 (17)	0.0034 (13)	-0.0033 (13)	-0.0024 (14)
C15	0.040 (2)	0.025 (2)	0.080 (3)	-0.0091 (18)	-0.033 (2)	0.004 (2)
C16	0.0332 (19)	0.032 (2)	0.041 (2)	-0.0067 (16)	-0.0092 (16)	0.0111 (16)

Geometric parameters (Å, °)

S1—O2	1.422 (6)	C1—C2	1.392 (4)
S1—O3	1.435 (2)	C2—C3	1.373 (4)
S1—O4	1.448 (2)	C2—H2A	0.9500
S1—O2′	1.459 (9)	C3—C6	1.493 (4)
S1—C15	1.797 (4)	C4—C5	1.380 (4)
S2—O5	1.432 (2)	C4—C7	1.488 (4)
S2—O6	1.439 (2)	С5—Н5А	0.9500
S2—O7	1.448 (2)	С6—Н6А	0.9800
S2—C16	1.825 (4)	C6—H6B	0.9800
F1-C15	1.352 (4)	С6—Н6С	0.9800
F2—C15	1.368 (4)	С7—Н7А	0.9800
F3—C15	1.393 (4)	С7—Н7В	0.9800
F1′—C15	1.364 (4)	С7—Н7С	0.9800
F2′—C15	1.353 (4)	C8—C9	1.374 (4)
F3′—C15	1.314 (4)	C8—C12	1.382 (4)
F4—C16	1.335 (4)	C9—C10	1.384 (4)
F5—C16	1.334 (4)	С9—Н9А	0.9500
F6C16	1.332 (4)	C10—C13	1.493 (4)
01—C1	1.364 (3)	C11—C12	1.376 (4)
O1—C8	1.389 (3)	C11—C14	1.489 (4)
N1—C3	1.351 (4)	C12—H12A	0.9500
N1-C4	1.354 (4)	C13—H13A	0.9800
N1—H1N	0.86 (2)	C13—H13B	0.9800
N2-C10	1.340 (4)	C13—H13C	0.9800
N2-C11	1.350 (4)	C14—H14A	0.9800
N2—H2N	0.87 (2)	C14—H14B	0.9800
C1—C5	1.386 (4)	C14—H14C	0.9800
O2—S1—O3	120.0 (12)	H7A—C7—H7C	109.5
O2—S1—O4	114.2 (5)	H7B—C7—H7C	109.5
O3—S1—O4	114.57 (14)	C9—C8—C12	122.1 (3)
O3—S1—O2′	108.6 (9)	C9—C8—O1	117.9 (3)

O4—S1—O2′	112.7 (8)	C12—C8—O1	119.9 (3)
O2—S1—C15	98.1 (16)	C8—C9—C10	118.1 (3)
O3—S1—C15	102.94 (14)	С8—С9—Н9А	121.0
O4—S1—C15	102.87 (14)	С10—С9—Н9А	121.0
O2'—S1—C15	114.8 (13)	N2—C10—C9	118.6 (3)
O5—S2—O6	115.54 (17)	N2-C10-C13	117.8 (3)
O5—S2—O7	115.02 (14)	C9—C10—C13	123.6 (3)
O6—S2—O7	113.47 (15)	N2—C11—C12	118.2 (3)
O5—S2—C16	103.86 (15)	N2-C11-C14	118.0 (3)
O6—S2—C16	103.92 (17)	C12—C11—C14	123.8 (3)
O7—S2—C16	102.88 (17)	C11—C12—C8	118.4 (3)
C1—O1—C8	119.3 (2)	C11—C12—H12A	120.8
C3—N1—C4	123.6 (2)	C8—C12—H12A	120.8
C3—N1—H1N	119 (2)	C10—C13—H13A	109.5
C4—N1—H1N	117 (2)	C10—C13—H13B	109.5
C10 - N2 - C11	124.5(3)	H13A—C13—H13B	109.5
C10 - N2 - H2N	120(2)	C10-C13-H13C	109.5
C11-N2-H2N	114 (2)	H13A—C13—H13C	109.5
01	1234(2)	H13B-C13-H13C	109.5
01-C1-C2	115.6 (3)	C11—C14—H14A	109.5
$C_{5}-C_{1}-C_{2}$	121.0 (3)	C11—C14—H14B	109.5
$C_3 - C_2 - C_1$	119 2 (3)	H14A—C14—H14B	109.5
$C_3 - C_2 - H_2 A$	120.4	C11—C14—H14C	109.5
C1 - C2 - H2A	120.4	H14A - C14 - H14C	109.5
N1-C3-C2	118.6 (3)	H14B— $C14$ — $H14C$	109.5
N1-C3-C6	117.2 (3)	F3'-C15-F2'	112.1 (4)
C2-C3-C6	124.2(3)	F3'-C15-F1'	113.4 (4)
N1-C4-C5	119.1 (3)	F2'-C15-F1'	104.6 (4)
N1-C4-C7	117.4 (3)	F1-C15-F2	103.8 (4)
C5—C4—C7	123.4 (3)	F1-C15-F3	101.0 (4)
C4—C5—C1	118.4 (3)	F2—C15—F3	102.9 (4)
C4—C5—H5A	120.8	F3'—C15—S1	120.6 (3)
C1—C5—H5A	120.8	F1-C15-S1	122.0 (3)
С3—С6—Н6А	109.5	F2′—C15—S1	102.7 (3)
С3—С6—Н6В	109.5	F1′—C15—S1	101.5 (3)
H6A—C6—H6B	109.5	F2-C15-S1	121.0 (3)
С3—С6—Н6С	109.5	F3—C15—S1	102.5 (3)
H6A—C6—H6C	109.5	F6—C16—F5	107.7 (3)
H6B—C6—H6C	109.5	F6	107.9 (3)
С4—С7—Н7А	109.5	F5	107.7 (3)
C4—C7—H7B	109.5	F6—C16—S2	111.2 (2)
H7A—C7—H7B	109.5	F5—C16—S2	111.3 (2)
C4—C7—H7C	109.5	F4—C16—S2	110.9 (3)
			· /
C8—O1—C1—C5	15.1 (4)	O2'—S1—C15—F3'	-178.5 (8)
C8—O1—C1—C2	-165.8 (3)	O2—S1—C15—F1	-63.4 (9)
O1—C1—C2—C3	-180.0 (3)	O3—S1—C15—F1	60.0 (4)
C5—C1—C2—C3	-0.9 (4)	O4—S1—C15—F1	179.4 (4)

C4—N1—C3—C2	-1.3 (4)	O2'—S1—C15—F1	-57.7 (9)
C4—N1—C3—C6	178.2 (3)	O2—S1—C15—F2′	50.2 (9)
C1-C2-C3-N1	0.6 (4)	O3—S1—C15—F2′	173.7 (4)
C1—C2—C3—C6	-178.8 (3)	O4—S1—C15—F2′	-67.0 (4)
C3—N1—C4—C5	2.1 (4)	O2'—S1—C15—F2'	55.9 (9)
C3—N1—C4—C7	-176.1 (3)	O2—S1—C15—F1′	-57.8 (8)
N1-C4-C5-C1	-2.2 (4)	O3—S1—C15—F1′	65.6 (3)
C7-C4-C5-C1	175.8 (3)	O4—S1—C15—F1′	-175.0 (3)
O1—C1—C5—C4	-179.3 (3)	O2'—S1—C15—F1'	-52.2 (8)
C2-C1-C5-C4	1.6 (4)	O2—S1—C15—F2	71.3 (9)
C1C8C9	-121.9 (3)	O3—S1—C15—F2	-165.3 (4)
C1	61.5 (3)	O4—S1—C15—F2	-45.9 (4)
C12—C8—C9—C10	-1.9 (4)	O2'—S1—C15—F2	76.9 (9)
O1—C8—C9—C10	-178.4 (2)	O2—S1—C15—F3	-175.1 (8)
C11—N2—C10—C9	0.1 (4)	O3—S1—C15—F3	-51.7 (3)
C11—N2—C10—C13	179.5 (3)	O4—S1—C15—F3	67.7 (3)
C8—C9—C10—N2	0.7 (4)	O2'—S1—C15—F3	-169.4 (8)
C8—C9—C10—C13	-178.6 (3)	O5—S2—C16—F6	-178.0 (3)
C10-N2-C11-C12	0.3 (4)	O6—S2—C16—F6	60.8 (3)
C10-N2-C11-C14	-178.4 (3)	O7—S2—C16—F6	-57.8 (3)
N2-C11-C12-C8	-1.4 (4)	O5—S2—C16—F5	-57.9 (3)
C14—C11—C12—C8	177.2 (3)	O6—S2—C16—F5	-179.2 (3)
C9—C8—C12—C11	2.3 (4)	O7—S2—C16—F5	62.3 (3)
O1-C8-C12-C11	178.7 (2)	O5—S2—C16—F4	62.0 (3)
O2—S1—C15—F3′	175.9 (9)	O6—S2—C16—F4	-59.3 (3)
O3—S1—C15—F3′	-60.7 (4)	O7—S2—C16—F4	-177.8 (2)
O4—S1—C15—F3′	58.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> ···O4	0.86 (2)	1.93 (2)	2.783 (3)	171 (3)
N2—H2 <i>N</i> ···O7	0.87 (2)	1.97 (2)	2.826 (3)	169 (3)
C2—H2A···O6 ⁱ	0.95	2.36	3.170 (4)	142
C6—H6B···O6 ⁱ	0.98	2.50	3.383 (4)	149
C7—H7 <i>B</i> ···O3 ⁱⁱ	0.98	2.47	3.421 (4)	164
С9—Н9А…ОЗ ^{ііі}	0.95	2.44	3.293 (4)	149
C12—H12A····O5 ^{iv}	0.95	2.26	3.168 (4)	160
C14—H14A…O6	0.98	2.52	3.436 (4)	155

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1, -y+1, -z+1; (iv) x-1/2, -y+1/2, z-1/2.