

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Bis(hexyloxy)benzene

Hua Cheng

College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China Correspondence e-mail: wqwang2008@163.com

Received 15 October 2013; accepted 22 October 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.067; wR factor = 0.238; data-to-parameter ratio = 16.9.

The asymmetric unit of the title compound, $C_{18}H_{30}O_2$, contains one half-molecule situated on an inversion center. The alkyl chain adopts a fully extended all-*trans* conformation. The C atoms of the alkyl chain are almost coplanar, with a maximum deviation of 0.042 (6) Å from the mean plane,which is inclined to the central benzene ring by 6.80 (9)°. The crystal packing exhibits no short intermolecular contacts.

Related literature

For the synthesis and applications of the title compound, see: Ramesh & Thomas (2010); Mayor & Didschies (2003); Choi *et al.* (2006). For the crystal structures of related compounds, see: Li *et al.* (2008); Thevenet *et al.* (2010).

Experimental

Crystal data

CueHagOa	$V = 896.9(11) Å^3$
$M_r = 278.42$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.853 (12) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 7.512 (5) Å	T = 298 K
c = 6.364 (4) Å	$0.06 \times 0.05 \times 0.04 \text{ mm}$
$\beta = 95.674 \ (10)^{\circ}$	
Data collection	

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.996, T_{\rm max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.238$ S = 0.991552 reflections 6024 measured reflections 1552 independent reflections 760 reflections with $I > 2\sigma(I)$ $R_{int} = 0.099$

92 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.17$ e Å⁻³ $\Delta \rho_{min} = -0.15$ e Å⁻³

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author is grateful to Hubei University of Arts and Science for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5434).

References

- Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, K. M., Kim, H. L. & Suh, D. H. (2006). J. Appl. Polym. Sci. 101, 1228– 1233.
- Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.
- Mayor, M. & Didschies, C. (2003). Angew. Chem. Int. Ed. 42, 3176-3179.
- Ramesh, A. R. & Thomas, K. G. (2010). Chem. Commun. 46, 3457-3459.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Thevenet, D., Neier, R., Sereda, O., Neels, A. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, 0837–0838.

supporting information

Acta Cryst. (2013). E69, o1721 [doi:10.1107/S1600536813029024]

1,4-Bis(hexyloxy)benzene

Hua Cheng

S1. Comment

The title compound is an important intermediate in the synthesis of conjugated polymers (Mayor & Didschies, 2003; Choi *et al.*, 2006) and supramolecular networks (Ramesh & Thomas, 2010). Herein we report its crystal structure.

In the molecule (Fig. 1), the alkyl chain adopts a fully extended all-*trans* conformation. The C-atoms of the alkyl chain are almost coplanar with the maximum deviation of 0.042 (6) Å from the mean plane, and this mean plane is inclined to the central benzene ring by $6.80 (9)^{\circ}$. The crystal packing exhibits no short intermolecular contacts.

S2. Experimental

The title compound was synthesized according to the known method (Ramesh & Thomas, 2010). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solution in hexane-MeOH (5:1).

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ (methyl C) was applied.

Figure 1

The title molecule with the atom-numbering scheme and 50% probability displacement ellipsoids [symmetry code: (*a*) -*x*, 1 -*y*, 2 -*z*].

1,4-Bis(hexyloxy)benzene

Crystal data

F(000) = 308 $C_{18}H_{30}O_2$ $M_r = 278.42$ $D_{\rm x} = 1.031 {\rm Mg m^{-3}}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 885 reflections a = 18.853 (12) Å $\theta = 2.2 - 21.8^{\circ}$ b = 7.512 (5) Å $\mu = 0.07 \text{ mm}^{-1}$ c = 6.364 (4) ÅT = 298 K $\beta = 95.674 (10)^{\circ}$ Block. colourless $V = 896.9 (11) \text{ Å}^3$ $0.06 \times 0.05 \times 0.04 \text{ mm}$ Z = 2

Data collection

Bruker APEXII CCD	6024 measured reflections
diffractometer	1552 independent reflections
Radiation source: fine-focus sealed tube	760 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.099$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 21$
(<i>SADABS</i> ; Bruker, 2001)	$k = -8 \rightarrow 8$
$T_{\min} = 0.996, T_{\max} = 0.997$	$l = -7 \rightarrow 7$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.238$	neighbouring sites
S = 0.99	H-atom parameters constrained
1552 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1237P)^2]$
92 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.17$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.15$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.01445 (17)	0.4133 (3)	0.8176 (4)	0.0693 (9)	
H1	0.0241	0.3542	0.6952	0.083*	
C2	0.06718 (16)	0.5102 (3)	0.9318 (4)	0.0664 (8)	
C3	0.05200 (17)	0.5954 (4)	1.1147 (4)	0.0700 (8)	
H3	0.0876	0.6597	1.1928	0.084*	
C4	0.15191 (16)	0.4640 (4)	0.6777 (4)	0.0795 (9)	
H4A	0.1171	0.5055	0.5661	0.095*	
H4B	0.1514	0.3348	0.6782	0.095*	
C5	0.22423 (18)	0.5306 (5)	0.6427 (5)	0.0905 (10)	
H5A	0.2228	0.6595	0.6360	0.109*	
H5B	0.2571	0.4978	0.7634	0.109*	
C6	0.25233 (18)	0.4623 (5)	0.4483 (5)	0.0959 (11)	
H6A	0.2207	0.4996	0.3269	0.115*	
H6B	0.2520	0.3332	0.4520	0.115*	
C7	0.3266 (2)	0.5246 (5)	0.4201 (6)	0.1107 (13)	
H7A	0.3262	0.6535	0.4098	0.133*	

H7B	0.3576	0.4929	0.5452	0.133*
C8	0.3570 (3)	0.4521 (8)	0.2347 (7)	0.1542 (19)
H8A	0.3263	0.4849	0.1095	0.185*
H8B	0.3569	0.3232	0.2443	0.185*
C9	0.4300 (3)	0.5113 (10)	0.2076 (9)	0.202 (3)
H9A	0.4313	0.6389	0.2018	0.303*
H9B	0.4444	0.4631	0.0787	0.303*
H9C	0.4619	0.4704	0.3245	0.303*
O1	0.13529 (11)	0.5307 (3)	0.8769 (3)	0.0818 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.106 (2)	0.0549 (16)	0.0456 (15)	-0.0004 (15)	0.0022 (15)	-0.0034 (12)
C2	0.089 (2)	0.0570 (17)	0.0516 (15)	-0.0033 (13)	-0.0020 (13)	0.0104 (13)
C3	0.103 (2)	0.0531 (16)	0.0516 (15)	-0.0086 (14)	-0.0060 (13)	0.0021 (12)
C4	0.099 (2)	0.0787 (19)	0.0600 (18)	0.0063 (16)	0.0020 (14)	-0.0041 (15)
C5	0.105 (2)	0.085 (2)	0.081 (2)	0.0025 (18)	0.0044 (16)	-0.0080 (17)
C6	0.100 (3)	0.102 (3)	0.086 (2)	0.0084 (19)	0.0097 (17)	-0.0030 (19)
C7	0.108 (3)	0.116 (3)	0.108 (3)	0.002 (2)	0.013 (2)	-0.002 (2)
C8	0.140 (4)	0.200 (5)	0.127 (4)	0.002 (4)	0.041 (3)	-0.017 (4)
C9	0.140 (4)	0.272 (9)	0.205 (6)	-0.003 (4)	0.070 (4)	-0.004 (5)
01	0.0997 (16)	0.0855 (15)	0.0591 (12)	-0.0089 (11)	0.0017 (10)	-0.0092 (10)

Geometric parameters (Å, °)

C1-C3 ⁱ	1.366 (4)	С5—Н5В	0.9700
C1—C2	1.380 (4)	C6—C7	1.505 (5)
C1—H1	0.9300	C6—H6A	0.9700
C2—O1	1.372 (3)	C6—H6B	0.9700
C2—C3	1.383 (4)	C7—C8	1.467 (5)
C3—C1 ⁱ	1.366 (4)	С7—Н7А	0.9700
С3—Н3	0.9300	C7—H7B	0.9700
C4—O1	1.427 (3)	C8—C9	1.472 (6)
C4—C5	1.490 (4)	C8—H8A	0.9700
C4—H4A	0.9700	C8—H8B	0.9700
C4—H4B	0.9700	С9—Н9А	0.9600
C5—C6	1.484 (4)	С9—Н9В	0.9600
C5—H5A	0.9700	С9—Н9С	0.9600
C3 ⁱ —C1—C2	119.7 (3)	С7—С6—Н6А	108.8
C3 ⁱ —C1—H1	120.2	C5—C6—H6B	108.8
C2C1H1	120.2	C7—C6—H6B	108.8
O1—C2—C1	124.7 (3)	H6A—C6—H6B	107.7
O1—C2—C3	116.0 (2)	C8—C7—C6	115.0 (4)
C1—C2—C3	119.3 (3)	C8—C7—H7A	108.5
C1 ⁱ —C3—C2	121.1 (2)	C6—C7—H7A	108.5
C1 ⁱ —C3—H3	119.5	C8—C7—H7B	108.5

C2-C3-H3 O1-C4-C5 O1-C4-H4A C5-C4-H4A O1-C4-H4B C5-C4-H4B H4A-C4-H4B C6-C5-C4 C6-C5-H5A C4-C5-H5A C6-C5-H5B C4-C5-H5B H5A-C5-H5B H5A-C5-H5B C5-C6-C7 C5-C6-H6A	119.5 107.4 (3) 110.2 110.2 110.2 110.2 108.5 114.6 (3) 108.6 108.6 108.6 108.6 108.6 108.6 108.6 107.6 113.9 (3) 108.8	C6—C7—H7B H7A—C7—H7B C7—C8—C9 C7—C8—H8A C9—C8—H8A C7—C8—H8B C9—C8—H8B H8A—C8—H8B C8—C9—H9A C8—C9—H9B H9A—C9—H9B H9A—C9—H9C H9B—C9—H9C H9B—C9—H9C C2—O1—C4	108.5 107.5 115.2 (5) 108.5 108.5 108.5 108.5 107.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.8 (2) 0.7 (4) 178.9 (2) -0.7 (4) 175.7 (2) -177.6 (3)	C5-C6-C7-C8 C6-C7-C8-C9 C1-C2-O1-C4 C3-C2-O1-C4 C5-C4-O1-C2	177.1 (4) -179.4 (4) 6.9 (4) -172.7 (2) 170.4 (2)

Symmetry code: (i) -x, -y+1, -z+2.