Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[(μ_{6}-benzene-1,3,5-tricarboxylato$\left.\kappa^{6} O^{1}: O^{1^{\prime}}: O^{3}: O^{3^{\prime}}: O^{5}: O^{5 \prime}\right)$ tris (N, N-di-methylformamide- κO)tris (μ_{3}-formato$\left.\boldsymbol{\kappa}^{3} \mathrm{O}: O: O^{\prime}\right)$ trizinc(II)]

Jaeung Sim, Taemin Kim and Jin Kuk Yang*

Department of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 156-743, Republic of Korea
Correspondence e-mail: jinkukyang@ssu.ac.kr

Received 20 September 2013; accepted 18 October 2013

Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.040 ; w R$ factor $=0.089 ;$ data-to-parameter ratio $=16.0$.

The asymmetric unit of the title compound, $\left[\mathrm{Zn}_{3}\left(\mathrm{HCO}_{2}\right)_{3^{-}}\right.$ $\left.\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]_{n}$, contains one Zn ion, one formate ligand, one N, N-dimethylformamide (DMF) ligand and onethird of a benzene-1,3,5-tricarboxylate (btc) ligand situated on a crystallographic 3 axis. Each $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by one O atom from a DMF ligand, two O atoms from two btc ligands and three O atoms from three formate ligands in a distorted octahedral geometry. The $\mathrm{Zn}^{\mathrm{II}}$ atoms are connected by the formate and btc ligands, forming hexanuclear cores, which are linked by btc ligands, constructing a two-dimensional layered network along the $a b$ plane.

Related literature

For general background to compounds with metal-organic frameworks, see: Eddaoudi et al. (2000).The crystal structures of isotypic compounds with $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Mg}^{\text {II }}$ were reported by Maniam \& Stock (2011) and Yeh et al. (2010), respectively.

Experimental

Crystal data

$\left[\mathrm{Zn}_{3}\left(\mathrm{HCO}_{2}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]$
$Z=2$
$M_{r}=757.56$
Mo $K \alpha$ radiation
Trigonal, $P \overline{3}$
$a=13.8594$ (17) \AA
$\mu=2.76 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
$0.10 \times 0.02 \times 0.02 \mathrm{~mm}$
$V=1332.5(4) \AA^{3}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.770, T_{\text {max }}=0.947$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.089$
$S=0.81$
2027 reflections

127 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.79 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by the Energy Efficiency \& Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20122010100120).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5429).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
CrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
Eddaoudi, M., Li, H. \& Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391-1397. Maniam, P. \& Stock, N. (2011). Inorg. Chem. 50, 5085-5097.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yeh, C.-T., Liu, H.-K., Lin, C.-J. \& Lin, C.-H. (2010). Acta Cryst. E66, m1289.

supporting information

Poly[$\left(\mu_{6}\right.$-benzene-1,3,5-tricarboxylato- $\left.\kappa^{6} O^{1}: O^{1}: O^{3}: O^{3}: O^{5}: O^{5}\right)$ tris(N, N-di-methylformamide- κO) tris (μ_{3}-formato- $\left.\kappa^{3} \mathrm{O}: O: O^{\prime}\right)$ trizinc (II)]

Jaeung Sim, Taemin Kim and Jin Kuk Yang

S1. Comment

Solvothermal reactions between $\mathrm{Zn}^{\text {II }}$ ion and simple organic ligands such as benzene-1,4-dicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{BDC}\right)$ and benzene-1,3,5-tricarboxylic acid ($\mathrm{H}_{3} \mathrm{BTC}$) produce prototype metal-organic frameworks known as MOF-2, MOF-3, MOF-4, and MOF-5 (Eddaoudi et al., 2000). Among them, MOF-4 formulated as $\left[\mathrm{Zn}_{2}(\mathrm{BTC})\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ has dinuclear zinc clusters that are held by three carboxylate groups from three distinct BTC ligands. In our trials to make a metal-organic framework composed of $\mathrm{Zn}^{\text {II }}$ paddle-wheel clusters and BTC, the title compound was obtained as single crystals. During a solvothermal reaction, decomposition of N, N-dimethylformamide produced formate which became a component of the title compound.
The title compound, (I) (Fig. 1), is isostructural to the related compounds with $\mathrm{Ni}^{\mathrm{II}}$ (Maniam \& Stock, 2011) and $\mathrm{Mg}^{\mathrm{II}}$ (Yeh et al., 2010). The crystal packing of (I) is shown in Figs. $2 \& 3$.

S2. Experimental

The title compound was obtained by a solvothermal reaction between zinc(II) nitrate tetrahydrate ($0.157 \mathrm{~g}, 0.60 \mathrm{mmol}$) and benzene-1,3,5-tricarboxylic acid $(0.084 \mathrm{~g}, 0.40 \mathrm{mmol})$ in N, N-dimethylformamide (2.0 ml). When a sealed glass tube containing the reaction mixture was heated at $130^{\circ} \mathrm{C}$ and for 24 h , the title compound was produced as colorless hexagonal columnar crystals.

S3. Refinement

Hydrogen atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2-1.5$ $\mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

A content of the asymmetric unit of (I) showing the atomic numbering. Displacement ellipsoids are drawn at the 50\% probability level. Hydrogen atoms are represented with empty balls without labels.

Figure 2
A portion of the packing diagram of (I) viewed along the c aixs.

Figure 3
A portion of the packing diagram of (I) viewed along the a aixs.
Poly[$\left(\mu_{6}\right.$-benzene-1,3,5-tricarboxylato- $\left.\kappa^{6} O^{1}: O^{1}: O^{3}: O^{3}: O^{5}: O^{5}\right)$ tris(N, N-dimethylformamide- κO)tris $\left(\mu_{3}\right.$-formato-
$\left.\kappa^{3} O: O: O^{\prime}\right)$ trizinc(II)]
Crystal data
$\left[\mathrm{Zn}_{3}\left(\mathrm{HCO}_{2}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]$
$M_{r}=757.56$
Trigonal, P3
Hall symbol: -P 3
$a=13.8594$ (17) Å
$c=8.0100(14) \AA$
$V=1332.5$ (4) \AA^{3}
$Z=2$
$F(000)=768$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.770, T_{\text {max }}=0.947$
$D_{\mathrm{x}}=1.888 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2269 reflections
$\theta=2.4-28.2^{\circ}$
$\mu=2.76 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Column, colorless
$0.10 \times 0.02 \times 0.02 \mathrm{~mm}$

> 7964 measured reflections
> 2027 independent reflections
> 1563 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.153$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=1.7^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-11 \rightarrow 18$
> $l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.089$
$S=0.81$
2027 reflections
127 parameters
0 restraints

> 0 constraints
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0317 P)^{2}+0.1686 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.72 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.79 \mathrm{e}^{-3}$

Special details

Geometry. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Zn1	$0.01272(3)$	$0.23313(3)$	$0.39911(5)$	$0.01217(12)$
O1	$-0.25265(17)$	$0.12229(17)$	$0.4805(3)$	$0.0160(5)$
O2	$-0.10070(17)$	$0.28429(17)$	$0.4230(3)$	$0.0149(5)$
O3	$-0.05005(17)$	$0.13366(17)$	$0.6162(3)$	$0.0140(5)$
O4	$0.10436(18)$	$0.19215(19)$	$0.7680(3)$	$0.0162(5)$
C1	$-0.2019(3)$	$0.2249(2)$	$0.4582(4)$	$0.0115(6)$
C2	$-0.2697(3)$	$0.2816(2)$	$0.4691(4)$	$0.0113(6)$
C3	$-0.3856(3)$	$0.2180(3)$	$0.4700(3)$	$0.0130(7)$
H3	-0.4213	0.1390	0.4712	0.016^{*}
C4	$0.0026(3)$	$0.1477(3)$	$0.7513(4)$	$0.0140(7)$
H4	-0.0408	0.1214	0.8502	0.017^{*}
O5	$0.07684(19)$	$0.32946(18)$	$0.1759(3)$	$0.0198(5)$
N1	$0.0391(2)$	$0.3985(2)$	$-0.0540(3)$	$0.0204(6)$
C5	$0.0119(3)$	$0.3253(3)$	$0.0664(4)$	$0.0203(8)$
H5	-0.0626	0.2651	0.0699	0.024^{*}
C6	$0.1529(3)$	$0.4921(3)$	$-0.0652(5)$	$0.0286(9)$
H6A	0.1890	0.5051	0.0442	0.043^{*}
H6B	0.1514	0.5590	-0.1003	0.043^{*}
H6C	0.1948	0.4749	-0.1470	0.043^{*}
C7	$-0.0372(3)$	$0.3837(3)$	$-0.1897(4)$	$0.0294(9)$
H7A	-0.1092	0.3163	-0.1697	0.044^{*}
H7B	-0.0061	0.3762	-0.2956	0.044^{*}
H7C	-0.0477	0.4485	0.044^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0082(2)$	$0.0087(2)$	$0.0197(2)$	$0.00431(16)$	$0.00015(15)$	$0.00033(15)$
O1	$0.0128(12)$	$0.0101(11)$	$0.0253(13)$	$0.0060(10)$	$-0.0020(10)$	$0.0021(10)$
O2	$0.0088(11)$	$0.0097(11)$	$0.0276(12)$	$0.0056(9)$	$0.0017(10)$	$-0.0001(10)$
O3	$0.0093(11)$	$0.0117(11)$	$0.0179(11)$	$0.0029(9)$	$-0.0024(9)$	$0.0013(9)$
O4	$0.0109(12)$	$0.0182(12)$	$0.0194(12)$	$0.0072(10)$	$-0.0014(10)$	$-0.0016(10)$
C1	$0.0109(16)$	$0.0078(15)$	$0.0143(16)$	$0.0036(13)$	$-0.0041(13)$	$-0.0021(13)$
C2	$0.0106(15)$	$0.0107(15)$	$0.0129(15)$	$0.0056(13)$	$-0.0010(13)$	$0.0011(13)$
C3	$0.0135(16)$	$0.0102(16)$	$0.0144(16)$	$0.0053(13)$	$0.0001(13)$	$0.0008(13)$
C4	$0.0128(16)$	$0.0087(15)$	$0.0205(17)$	$0.0053(14)$	$0.0010(14)$	$-0.0004(13)$
O5	$0.0162(12)$	$0.0180(12)$	$0.0221(13)$	$0.0063(11)$	$0.0026(10)$	$0.0074(10)$
N1	$0.0216(16)$	$0.0224(16)$	$0.0208(15)$	$0.0137(14)$	$-0.0002(13)$	$0.0020(13)$
C5	$0.0178(18)$	$0.0160(18)$	$0.027(2)$	$0.0084(15)$	$0.0040(16)$	$0.0004(15)$
C6	$0.029(2)$	$0.028(2)$	$0.028(2)$	$0.0127(18)$	$0.0057(17)$	$0.0075(17)$
C7	$0.036(2)$	$0.038(2)$	$0.0217(19)$	$0.025(2)$	$-0.0024(18)$	$-0.0004(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{Ol}{ }^{\text {i }}$	2.028 (2)	C2-C3	1.394 (4)
$\mathrm{Zn} 1-\mathrm{O} 2$	2.031 (2)	C3-C2 ${ }^{\text {iv }}$	1.380 (4)
$\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.105 (2)	C3-H3	0.9500
$\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	2.108 (2)	C4-H4	0.9500
$\mathrm{Zn} 1-\mathrm{O} 3$	2.117 (2)	O5-C5	1.237 (4)
Zn1-O5	2.140 (2)	N1-C5	1.311 (4)
O1-C1	1.245 (3)	N1-C7	1.458 (4)
$\mathrm{O} 1-\mathrm{Zn} 1^{\text {ii }}$	2.028 (2)	N1-C6	1.460 (5)
$\mathrm{O} 2-\mathrm{C} 1$	1.253 (4)	C5-H5	0.9500
$\mathrm{O} 3-\mathrm{C} 4$	1.265 (4)	C6-H6A	0.9800
$\mathrm{O} 3-\mathrm{Zn} 1{ }^{\text {ii }}$	2.108 (2)	C6-H6B	0.9800
O4-C4	1.232 (4)	C6-H6C	0.9800
$\mathrm{O} 4-\mathrm{Zn} 1^{\text {i }}$	2.105 (2)	C7-H7A	0.9800
C1-C2	1.499 (4)	C7-H7B	0.9800
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {iii }}$	1.380 (4)	C7-H7C	0.9800
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2$	87.25 (9)	C3-C2-C1	119.7 (3)
$\mathrm{O} 1^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {ii }}$	168.88 (9)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{C} 3-\mathrm{C} 2$	120.1 (3)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {ii }}$	93.23 (9)	$\mathrm{C} 2{ }^{\text {iv }}-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{O} 1^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	90.61 (8)	C2-C3-H3	120.0
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O}^{\text {i }}$	177.54 (9)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$	126.7 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Znl}-\mathrm{O}^{\text {i }}$	89.09 (8)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{H} 4$	116.6
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 3$	96.06 (9)	O3-C4-H4	116.6
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 3$	90.70 (8)	C5-O5-Zn1	119.8 (2)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 3$	95.05 (8)	C5-N1-C7	122.1 (3)
O3 ${ }^{\text {i }} \mathrm{Zn} 1-\mathrm{O} 3$	88.32 (10)	C5-N1-C6	119.8 (3)
O 1 - $\mathrm{Zn} 1-\mathrm{O} 5$	85.20 (9)	C7-N1-C6	117.7 (3)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 5$	90.77 (9)	O5-C5-N1	124.4 (3)

$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 5$	83.68 (8)	O5-C5-H5	117.8
O3i-Zn1-O5	90.26 (9)	N1-C5-H5	117.8
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 5$	178.11 (9)	N1-C6-H6A	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1{ }^{\text {ii }}$	135.5 (2)	N1-C6-H6B	109.5
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Zn} 1$	126.83 (19)	H6A-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Zn} 1^{\text {ii }}$	120.2 (2)	N1-C6-H6C	109.5
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Zn} 1$	125.8 (2)	H6A-C6-H6C	109.5
$\mathrm{Zn} 1{ }^{\text {ii- }}$-O3-Zn1	113.73 (10)	H6B-C6-H6C	109.5
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Zn} 1^{\text {i }}$	132.5 (2)	N1-C7-H7A	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	126.2 (3)	N1-C7-H7B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.5 (3)	H7A-C7-H7B	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.3 (3)	N1-C7-H7C	109.5
C 3 iii- $\mathrm{C} 2-\mathrm{C} 3$	119.9 (3)	H7A-C7-H7C	109.5
C3 ${ }^{\text {iii}}-\mathrm{C} 2-\mathrm{C} 1$	120.3 (3)	H7B-C7-H7C	109.5
$\mathrm{Zn} 1{ }^{\text {ii }}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	42.6 (5)	C 3 iii- ${ }^{\text {ii }} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {iv }}$	1.0 (6)
$\mathrm{Zn} 1{ }^{\text {ii }}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-139.5 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {iv }}$	-175.8 (2)
$\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	-2.2 (5)	$\mathrm{Zn1}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$	-21.4 (5)
$\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	179.99 (19)	$\mathrm{Zn1}$ - ii - $3-\mathrm{C} 4-\mathrm{O} 4$	159.8 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {iii }}$	170.7 (3)	$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$	-26.7 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {iii }}$	-11.3 (4)	$\mathrm{Zn} 1-\mathrm{O} 5-\mathrm{C} 5-\mathrm{N} 1$	163.2 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-12.5 (4)	C7-N1-C5-O5	173.5 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	165.5 (3)	C6-N1-C5-O5	0.5 (5)

Symmetry codes: (i) $y,-x+y,-z+1$; (ii) $x-y, x,-z+1$; (iii) $-y, x-y+1, z$; (iv) $-x+y-1,-x, z$.

