Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxy-5-(2-methoxyphenoxy)-2,2'bipyrimidin-6(5*H*)-one dihydrate

Thammarse S. Yamuna,^a Jerry P. Jasinski,^b* Brian J. Anderson,^b H.S. Yathirajan^a and Manpreet Kaur^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 18 October 2013; accepted 21 October 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.041; *wR* factor = 0.115; data-to-parameter ratio = 12.2.

The title compound, $C_{15}H_{12}N_4O_4\cdot 2H_2O$, crystallizes with two independent water molecules in the asymmetric unit. The dihedral angles between the mean planes of the benzene and pyrimidine rings and that of the pyrimidin-4-one ring are 85.1 (9) and 82.1 (1)°, respectively. The mean plane of the pyrimidine ring is twisted by 12.8 (8)° from that of the pyrimidin-4-one ring. The dihedral angles between the benzene ring and the mean planes of the pyrimidine and pyrimidin-4-one rings are 85.1 (9) and 82.1 (1)°, respectively.In the crystal, N-H···O, O-H···N and O-H···O hydrogen bonds involving both water molecules are present; these link the molecules into a two-dimensional network parallel to (010). In addition, weak C-H··· π and π - π [centroid–centroid distance = 3.6183 (8) Å] interactions occur.

Related literature

For substituted pyrimidine-2,4-diones as good reversible inhibitors of thymidine phosphorylase, see: Baker & Rzeszo-tarki (1967). For the use of 2,2'-bipyrimidine as a ligand in inorganic and organometallic chemistry, see: Hunziker & Ludi (1977); Fabrice *et al.* (2008). For related structures, see: El-Brollosy *et al.* (2012); Fun *et al.* (2009); Kaur *et al.* (2013); Ren *et al.* (2011); Trilleras *et al.* (2009).

organic compounds

V = 1568.55 (8) Å³

 $0.45 \times 0.32 \times 0.24$ mm

9840 measured reflections

3070 independent reflections

2789 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

Cu Ka radiation

 $\mu = 0.99 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.040$

refinement $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26~{\rm e}~{\rm \AA}^{-3}$

Z = 4

Experimental

Crystal data

 $C_{15}H_{12}N_4O_4 \cdot 2H_2O$ $M_r = 348.32$ Monoclinic, $P2_1/c$ a = 9.5817 (3) Å b = 13.9439 (3) Å c = 12.4804 (4) Å $\beta = 109.832$ (3)°

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{\rm min} = 0.876, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	
$wR(F^2) = 0.115$	
S = 1.03	
3070 reflections	
252 parameters	
-	

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9-C14 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots O2W^{i}$	0.91 (3)	1.67 (3)	2.5651 (15)	172 (2)
$N4-H4\cdotsO1^{ii}$	0.88 (2)	2.08 (2)	2.9313 (15)	163.6 (18)
$O1W - H1WA \cdots O4^{iii}$	0.87 (2)	2.05 (2)	2.8917 (16)	163 (2)
$O1W - H1WB \cdot \cdot \cdot N2^{iv}$	0.89 (3)	2.01 (3)	2.8823 (16)	167 (2)
$O2W - H2WA \cdots O4$	0.86(2)	1.93 (3)	2.7803 (15)	172 (2)
$O2W - H2WB \cdots O1W^{v}$	0.91 (3)	1.80 (3)	2.7050 (17)	173 (2)
$C4-H4A\cdots Cg3^{vi}$	0.95	2.82	3.4083 (16)	121
Symmetry codes: (i) x + 1 - y + 1 - z + 1; (iv)	x + 1, -y	$+\frac{1}{2}, z + \frac{1}{2};$	(ii) $x, -y + \frac{1}{2},$	$z - \frac{1}{2};$ (iii)

 $x, -y - \frac{1}{2}, z - \frac{3}{2}$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6940).

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Baker, B. R. & Rzeszotarki, W. (1967). J. Med. Chem. 10, 1109-1113.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2012). Acta Cryst. E68, 0316.
- Fabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). *Inorg. Chim. Acta*, **361**, 373–379.
- Fun, H.-K., Goh, J. H., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, 02655–02656.
- Hunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370-7371
- Kaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S., Betz, R., Gerber, T. & Butcher, R. J. (2013). *Acta Cryst.* E69, 012–013.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Ren, T., Zhang, Z., Zhong, C., Yang, Z. & Shi, Z. (2011). Acta Cryst. E67, 01334.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trilleras, J., Quiroga, J., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, 0134–0139.

supporting information

Acta Cryst. (2013). E69, o1707-o1708 [doi:10.1107/S1600536813028900]

4-Hydroxy-5-(2-methoxyphenoxy)-2,2'-bipyrimidin-6(5H)-one dihydrate

Thammarse S. Yamuna, Jerry P. Jasinski, Brian J. Anderson, H.S. Yathirajan and Manpreet Kaur

S1. Comment

The title compound, C₁₅H₁₂N₄O₄. 2 H₂O, is an intermediate for the synthesis of bosentan. Pyrimidinediones are a class of chemical compounds characterized by a pyrimidine ring substituted with two carbonyl groups. A number of substituted pyrimidine-2,4-diones were synthesized and intensively studied as good reversible inhibitors of thymidine phosphorylase (Baker & Rzeszotarki,1967). 2,2'-Bipyrimidine has been used as a ligand in inorganic and organometallic chemistry (Hunziker & Ludi, 1977; Fabrice *et al.*, 2008). The crystal structures of some related compounds are: four 7-aryl-substituted pyrido[2,3-d]pyrimidine -2,4(1H,3H)-diones: similar molecular structures but different crystal structures (Trilleras *et al.*, 2009), diammonium 1,1',3,3'-tetra methyl-2,2',4,4',6,6'-hexaoxoperhydro-5,5'-bipyrimidine-5,5'-diide monohydrate (Fun *et al.*, 2009), 4,6-dichloro-5-(2-methoxy phenoxy)-2,2'-bipyrimidine (Ren *et al.*, 2011), 6-(3,5-dimethyl benzyl)-5-ethyl-1-[(3-phenylpropoxy) methyl]-1,2,3,4-tetrahydro pyrimidine-2,4-dione (El-Brollosy *et al.*, 2012), 4-tert-butyl- N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin -4-yl]benzene-1-sulfonamide monohydrate (Kaur *et al.*, 2013), have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The title compound crystallizes with two independent water molecules in the asymmetric unit (Fig. 1). In the molecule, the dihedral angle between the mean planes of the phenyl ring and pyrimidine ring and the pyrimidinyl-4-one is 85.1 (9)° and 82.1 (1)°, respectively. The mean plane of the pyrimidine ring is twisted by 12.8 (8)° from that of the pyrimidinyl-4-one ring. In addition, the hydroxy group and methoxy group are twisted from the pyrimidinyl-4-one and phenyl ring by -177.6 (8)° (H3/O3/C8/C7) and -173.3 (4)° (C9/C14/O1/C15), respectively. In the crystal, O—H…N and O—H…O hydrogen bonds involving both water molecules are present. N—H…O hydrogen bonds between molecules help strengthen the crystal lattice (Table. 1). In addition, weak C4—H4A…Cg3 and Cg1–Cg2 π – π intermolecular interactions are observed and contribute to crystal packing (Cg1–Cg2 = 3.6183 (8)Å; Cg1 = N1/C1/N2/C2/C3/C4; Cg2ⁱ = N3/C5/N4/C6/C7/C8; symmetry operator (i) -x,1-y,1-z). The hydrogen bonds link the molecules into a 2D network parallel to (0 1 0) (Fig. 2).

S2. Experimental

The title compound was obtained as a gift sample from Cadila Pharmaceuticals, Ahmedabad. The title compound (0.5 g) was dissolved in 10 ml of a mixture of dimethylsulphoxide and dimethylformamide (1:1) and stirred for 30 minutes on magnetic stirrer at 308 K. X-ray quality crystals of the title compound were formed after few days (m. p.: 536–540 K).

S3. Refinement

H3, H4, H1WA, H1WB, H2WA and H2WB were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.98Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5

(CH₃) times U_{eq} of the parent atom. The methyl group was refined as a rotating group.

Figure 1

ORTEP drawing of (I) (C₁₅H₁₂N₄O₄. 2 H₂O) showing the labeling scheme with 30% probability displacement ellipsoids.

Figure 2

Molecular packing for (I) viewed along the *C* axis. Dashed lines indicate O—H···N and O—H···O hydrogen bonds involving both water molecules and N—H···O hydrogen bonds between the molecules. All of these interactions directly link the molecules into a 2D network along (0 1 0). H atoms not involved in hydrogen bonding have been removed for clarity.

4-Hydroxy-5-(2-methoxyphenoxy)-2,2'-bipyrimidin-6(5H)-one dihydrate

Crystal data

 $C_{15}H_{12}N_4O_4:2H_2O$ $M_r = 348.32$ Monoclinic, $P2_1/c$ a = 9.5817 (3) Å b = 13.9439 (3) Å c = 12.4804 (4) Å $\beta = 109.832$ (3)° V = 1568.55 (8) Å³ Z = 4

Data collection

Agilent Xcalibur (Eos, Gemini)	9840 measured reflections
diffractometer	3070 independent reflections
Radiation source: Enhance (Cu) X-ray Source	2789 reflections with $I > 2\sigma(I)$
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.040$
ω scans	$\theta_{\rm max} = 72.5^{\circ}, \ \theta_{\rm min} = 4.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(CrysAlis PRO and CrysAlis RED; Agilent,	$k = -17 \rightarrow 13$
2012)	$l = -15 \rightarrow 14$
$T_{\min} = 0.876, \ T_{\max} = 1.000$	

F(000) = 728

 $\theta = 3.2-72.3^{\circ}$ $\mu = 0.99 \text{ mm}^{-1}$

T = 173 K

 $D_{\rm x} = 1.475 {\rm Mg} {\rm m}^{-3}$

Irregular, colourless

 $0.45 \times 0.32 \times 0.24 \text{ mm}$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 4761 reflections

Refinement

Refinement on F^2 H atoms treated by a mixture of independent and constrained refinement Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 0.4106P]$ $wR(F^2) = 0.115$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.03 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$ 3070 reflections $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 252 parameters 0 restraints Extinction correction: SHELXL2012 (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0118 (8) direct methods Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.66810 (10)	0.07758 (7)	0.72585 (8)	0.0234 (2)	
O2	0.83857 (10)	0.17796 (7)	0.64227 (8)	0.0218 (2)	
03	1.14014 (11)	0.20971 (7)	0.71581 (8)	0.0261 (3)	
H3	1.235 (3)	0.2265 (17)	0.727 (2)	0.059 (7)*	
O4	0.67224 (10)	0.27899 (8)	0.44713 (8)	0.0284 (3)	
N1	0.99634 (13)	0.47988 (8)	0.33822 (10)	0.0233 (3)	
N2	1.24321 (12)	0.42848 (8)	0.43964 (10)	0.0228 (3)	

N3	1.12057 (12)	0.31273 (8)	0.56724 (9)	0.0199 (3)
N4	0.88527 (12)	0.34237 (8)	0.43264 (10)	0.0214 (3)
C1	1.09611 (14)	0.42507 (9)	0.41329 (11)	0.0195 (3)
C2	1.29246 (15)	0.49577 (11)	0.38523 (12)	0.0268 (3)
H2	1.3965	0.5022	0.4023	0.032*
C3	1.19918 (17)	0.55649 (10)	0.30517 (12)	0.0284 (3)
H3A	1.2366	0.6040	0.2675	0.034*
C4	1.04900 (16)	0.54475 (10)	0.28272 (12)	0.0261 (3)
H4A	0.9812	0.5838	0.2264	0.031*
C5	1.03430 (14)	0.35477 (9)	0.47561 (11)	0.0189 (3)
C6	0.80944 (14)	0.28493 (9)	0.48529 (11)	0.0205 (3)
C7	0.90348 (14)	0.23650 (9)	0.58376 (11)	0.0196 (3)
C8	1.05471 (14)	0.25246 (9)	0.62200 (11)	0.0198 (3)
C9	0.79005 (14)	0.08924 (9)	0.59160 (11)	0.0202 (3)
C10	0.82984 (16)	0.05252 (10)	0.50337 (12)	0.0255 (3)
H10	0.8894	0.0895	0.4715	0.031*
C11	0.78253 (18)	-0.03891 (11)	0.46092 (13)	0.0314 (3)
H11	0.8091	-0.0640	0.3997	0.038*
C12	0.69761 (19)	-0.09249 (11)	0.50761 (14)	0.0341 (4)
H12	0.6664	-0.1550	0.4792	0.041*
C13	0.65690 (17)	-0.05569 (11)	0.59662 (13)	0.0294 (3)
H13	0.5980	-0.0931	0.6285	0.035*
C14	0.70226 (14)	0.03557 (10)	0.63884 (11)	0.0211 (3)
C15	0.59236 (18)	0.01817 (12)	0.78172 (13)	0.0329 (4)
H15A	0.5822	0.0526	0.8472	0.049*
H15B	0.6492	-0.0409	0.8080	0.049*
H15C	0.4937	0.0021	0.7283	0.049*
O1W	0.50931 (13)	0.68034 (8)	0.41460 (10)	0.0335 (3)
O2W	0.41708 (12)	0.25759 (10)	0.25780 (10)	0.0385 (3)
H2WA	0.493 (3)	0.2699 (16)	0.316 (2)	0.049 (6)*
H2WB	0.445 (3)	0.2361 (16)	0.199 (2)	0.055 (6)*
H4	0.836 (2)	0.3704 (14)	0.3675 (18)	0.037 (5)*
H1WA	0.460 (3)	0.7048 (16)	0.455 (2)	0.050 (6)*
H1WB	0.592 (3)	0.6557 (17)	0.464 (2)	0.058 (7)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0213 (5)	0.0276 (5)	0.0228 (5)	-0.0045 (4)	0.0095 (4)	-0.0001 (4)
O2	0.0242 (5)	0.0226 (5)	0.0198 (5)	-0.0055 (3)	0.0091 (4)	-0.0022 (3)
O3	0.0201 (5)	0.0306 (5)	0.0234 (5)	-0.0006 (4)	0.0017 (4)	0.0072 (4)
O4	0.0149 (5)	0.0421 (6)	0.0260 (5)	-0.0032 (4)	0.0041 (4)	0.0052 (4)
N1	0.0211 (6)	0.0246 (6)	0.0225 (6)	-0.0014 (4)	0.0051 (4)	0.0012 (4)
N2	0.0186 (6)	0.0276 (6)	0.0228 (6)	-0.0015 (4)	0.0080 (4)	-0.0011 (4)
N3	0.0162 (5)	0.0217 (6)	0.0207 (6)	-0.0004 (4)	0.0049 (4)	-0.0004 (4)
N4	0.0160 (5)	0.0271 (6)	0.0195 (6)	0.0000 (4)	0.0036 (4)	0.0034 (4)
C1	0.0191 (6)	0.0214 (6)	0.0181 (6)	-0.0020 (5)	0.0062 (5)	-0.0034 (5)
C2	0.0213 (7)	0.0352 (8)	0.0266 (7)	-0.0055 (5)	0.0115 (6)	-0.0021 (6)

0.0341 (8)	0.0287 (7)	0.0249 (7)	-0.0079 (6)	0.0135 (6)	-0.0001 (5)
0.0294 (7)	0.0245 (7)	0.0220 (7)	-0.0022 (5)	0.0056 (5)	0.0015 (5)
0.0163 (6)	0.0202 (6)	0.0204 (6)	-0.0004 (4)	0.0064 (5)	-0.0028 (5)
0.0169 (6)	0.0250 (7)	0.0196 (6)	-0.0029 (5)	0.0061 (5)	-0.0025 (5)
0.0199 (7)	0.0204 (6)	0.0193 (6)	-0.0031 (5)	0.0076 (5)	-0.0016 (5)
0.0196 (6)	0.0197 (6)	0.0188 (6)	0.0010 (5)	0.0047 (5)	-0.0012 (5)
0.0176 (6)	0.0214 (6)	0.0187 (6)	-0.0010 (5)	0.0022 (5)	0.0001 (5)
0.0268 (7)	0.0274 (7)	0.0236 (7)	-0.0028 (5)	0.0101 (5)	-0.0012 (5)
0.0385 (8)	0.0304 (8)	0.0259 (7)	-0.0003 (6)	0.0117 (6)	-0.0065 (6)
0.0416 (9)	0.0246 (7)	0.0333 (8)	-0.0079 (6)	0.0090 (7)	-0.0081 (6)
0.0302 (7)	0.0274 (7)	0.0297 (7)	-0.0087 (6)	0.0090 (6)	-0.0007 (6)
0.0176 (6)	0.0258 (7)	0.0179 (6)	-0.0007(5)	0.0034 (5)	0.0008 (5)
0.0335 (8)	0.0399 (8)	0.0299 (8)	-0.0119 (6)	0.0167 (6)	0.0000 (6)
0.0237 (6)	0.0415 (6)	0.0361 (6)	0.0028 (4)	0.0114 (5)	0.0038 (5)
0.0189(5)	0.0652 (8)	0.0275(6)	-0.0042(5)	0.0028(5)	-0.0095(5)
	0.0341 (8) 0.0294 (7) 0.0163 (6) 0.0169 (6) 0.0199 (7) 0.0196 (6) 0.0268 (7) 0.0385 (8) 0.0416 (9) 0.0302 (7) 0.0176 (6) 0.0335 (8) 0.0237 (6) 0.0189 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0341(8) $0.0287(7)$ $0.0249(7)$ $0.0294(7)$ $0.0245(7)$ $0.0220(7)$ $0.0163(6)$ $0.0202(6)$ $0.0204(6)$ $0.0169(6)$ $0.0250(7)$ $0.0196(6)$ $0.0199(7)$ $0.0204(6)$ $0.0193(6)$ $0.0196(6)$ $0.0197(6)$ $0.0188(6)$ $0.0176(6)$ $0.0214(6)$ $0.0187(6)$ $0.0268(7)$ $0.0274(7)$ $0.0236(7)$ $0.0385(8)$ $0.0304(8)$ $0.0259(7)$ $0.0416(9)$ $0.0274(7)$ $0.0297(7)$ $0.0176(6)$ $0.0258(7)$ $0.0179(6)$ $0.0335(8)$ $0.0399(8)$ $0.0299(8)$ $0.0237(6)$ $0.0415(6)$ $0.0275(6)$	0.0341(8) $0.0287(7)$ $0.0249(7)$ $-0.0079(6)$ $0.0294(7)$ $0.0245(7)$ $0.0220(7)$ $-0.0022(5)$ $0.0163(6)$ $0.0202(6)$ $0.0204(6)$ $-0.0004(4)$ $0.0169(6)$ $0.0250(7)$ $0.0196(6)$ $-0.0029(5)$ $0.0199(7)$ $0.0204(6)$ $0.0193(6)$ $-0.0031(5)$ $0.0196(6)$ $0.0197(6)$ $0.0188(6)$ $0.0010(5)$ $0.0176(6)$ $0.0214(6)$ $0.0187(6)$ $-0.0010(5)$ $0.0268(7)$ $0.0274(7)$ $0.0236(7)$ $-0.0003(6)$ $0.0385(8)$ $0.0304(8)$ $0.0259(7)$ $-0.0003(6)$ $0.0416(9)$ $0.0274(7)$ $0.0297(7)$ $-0.0087(6)$ $0.0176(6)$ $0.0258(7)$ $0.0179(6)$ $-0.0007(5)$ $0.0335(8)$ $0.0399(8)$ $0.0299(8)$ $-0.0119(6)$ $0.0237(6)$ $0.0415(6)$ $0.0361(6)$ $0.0028(4)$ $0.0189(5)$ $0.0652(8)$ $0.0275(6)$ $-0.0042(5)$	0.0341 (8) 0.0287 (7) 0.0249 (7) -0.0079 (6) 0.0135 (6) 0.0294 (7) 0.0245 (7) 0.0220 (7) -0.0022 (5) 0.0056 (5) 0.0163 (6) 0.0202 (6) 0.0204 (6) -0.0004 (4) 0.0064 (5) 0.0169 (6) 0.0250 (7) 0.0196 (6) -0.0029 (5) 0.0061 (5) 0.0199 (7) 0.0204 (6) 0.0193 (6) -0.0031 (5) 0.0076 (5) 0.0196 (6) 0.0197 (6) 0.0188 (6) 0.0010 (5) 0.0047 (5) 0.0176 (6) 0.0214 (6) 0.0187 (6) -0.0010 (5) 0.0022 (5) 0.0268 (7) 0.0274 (7) 0.0236 (7) -0.0028 (5) 0.0111 (5) 0.0385 (8) 0.0304 (8) 0.0259 (7) -0.0003 (6) 0.0117 (6) 0.0416 (9) 0.0246 (7) 0.0333 (8) -0.0079 (6) 0.0090 (7) 0.0302 (7) 0.0274 (7) 0.0297 (7) -0.0087 (6) 0.0090 (6) 0.0176 (6) 0.0258 (7) 0.0179 (6) -0.00119 (6) 0.0167 (6) 0.0237 (6) 0.0415 (6) 0.0361 (6) 0.0028 (4) 0.0114 (5) 0.0189 (5) 0.0652 (8) 0.0275 (6) -0.0042 (5) 0.0028 (5)

Geometric parameters (Å, °)

01—C14	1.3676 (16)	C4—H4A	0.9500
O1—C15	1.4292 (16)	C6—C7	1.4237 (19)
O2—C7	1.3765 (15)	С7—С8	1.3812 (18)
О2—С9	1.3952 (16)	C9—C10	1.3802 (19)
O3—H3	0.91 (3)	C9—C14	1.3970 (18)
O3—C8	1.3212 (16)	C10—H10	0.9500
O4—C6	1.2398 (16)	C10—C11	1.396 (2)
N1—C1	1.3297 (18)	C11—H11	0.9500
N1—C4	1.3378 (18)	C11—C12	1.372 (2)
N2—C1	1.3351 (17)	C12—H12	0.9500
N2—C2	1.3347 (18)	C12—C13	1.394 (2)
N3—C5	1.3013 (17)	C13—H13	0.9500
N3—C8	1.3653 (17)	C13—C14	1.390 (2)
N4—C5	1.3554 (16)	C15—H15A	0.9800
N4—C6	1.3874 (17)	C15—H15B	0.9800
N4—H4	0.88 (2)	C15—H15C	0.9800
C1—C5	1.4930 (17)	O1W—H1WA	0.87 (2)
С2—Н2	0.9500	O1W—H1WB	0.89 (3)
C2—C3	1.381 (2)	O2W—H2WA	0.86 (2)
С3—НЗА	0.9500	O2W—H2WB	0.91 (3)
C3—C4	1.379 (2)		
C14—O1—C15	115.91 (11)	O3—C8—N3	117.94 (12)
С7—О2—С9	115.24 (10)	O3—C8—C7	119.70 (12)
С8—О3—Н3	108.2 (15)	N3—C8—C7	122.35 (12)
C1—N1—C4	116.50 (12)	O2—C9—C14	116.07 (11)
C2—N2—C1	115.19 (12)	C10—C9—O2	123.42 (12)
C5—N3—C8	116.97 (11)	C10—C9—C14	120.45 (12)
C5—N4—C6	122.48 (11)	C9—C10—H10	120.0
C5—N4—H4	118.2 (13)	C9—C10—C11	119.98 (13)

C6 NA HA	110 3 (13)	C11 C10 H10	120.0
N1 C1 N2	119.5(13) 126.84(12)	$C_{10} = C_{10} = H_{11}$	120.0
N1 = C1 = N2	120.04(12) 115.28(11)	C_{10} C_{11} C_{10}	120.0
N1 - C1 - C5	113.26 (11)	C12 - C11 - C10	119.95 (15)
$N_2 - C_1 - C_3$	117.86 (11)		120.0
N2—C2—H2	118.5	С11—С12—Н12	119.8
N2-C2-C3	123.04 (13)	C11—C12—C13	120.31 (14)
C3—C2—H2	118.5	C13—C12—H12	119.8
С2—С3—НЗА	121.7	C12—C13—H13	119.9
C4—C3—C2	116.66 (13)	C14—C13—C12	120.22 (13)
C4—C3—H3A	121.7	C14—C13—H13	119.9
N1—C4—C3	121.72 (13)	O1—C14—C9	116.50 (12)
N1—C4—H4A	119.1	O1—C14—C13	124.41 (12)
C3—C4—H4A	119.1	C13—C14—C9	119.09 (12)
N3—C5—N4	124.06 (12)	O1—C15—H15A	109.5
N3—C5—C1	120.51 (11)	O1—C15—H15B	109.5
N4—C5—C1	115.37 (11)	O1—C15—H15C	109.5
04—C6—N4	120.94 (12)	H15A—C15—H15B	109.5
O4—C6—C7	125.30 (12)	H15A—C15—H15C	109.5
N4—C6—C7	113.76 (11)	H15B-C15-H15C	109.5
02-07-06	118 15 (11)	H1WA—O1W—H1WB	107(2)
02-07-08	121 47 (12)	H2WA—O2W—H2WB	107(2)
C_{8} C_{7} C_{6}	120.29(12)		
00 07 00	120.29 (12)		
02 C7 C8 03	1.07 (19)	C5 N/ $C6$ O/	176 10 (12)
02 - 07 - 08 - 03	-177.80(11)	$C_{5} = N_{4} = C_{6} = C_{7}$	-2.53(18)
02 - 02 - 03 - 03	177.00(11)	$C_{5} = N_{4} = C_{5} = N_{2}^{2}$	3.33(10)
02 - 02 - 010 - 011	170.00(13)	C6 N4 C5 C1	2.0(2)
02 - 03 - 014 - 01	2.03(17)	C_{0} N_{1} C_{2} C_{1} C_{1} C_{2} C_{2}	-175.25(11)
02 - 09 - 014 - 013	-1/6.50(12)	$C_{0} - C_{1} - C_{8} - O_{3}$	1/7.58(12)
04 - 06 - 07 - 02	0.1 (2)	$C_{0} - C_{1} - C_{0} - C_{10}$	-1.29(19)
04	-1/6.55(13)	C/=02=C9=C10	13.23 (18)
NI-CI-C5-N3	-164.82 (12)	C/O2C9C14	-169.66 (11)
NI—CI—C5—N4	12.53 (16)	C8—N3—C5—N4	0.20 (19)
N2-C1-C5-N3	13.60 (18)	C8—N3—C5—C1	177.32 (11)
N2-C1-C5-N4	-169.04 (11)	C9—O2—C7—C6	76.38 (14)
N2—C2—C3—C4	0.0 (2)	C9—O2—C7—C8	-107.04 (13)
N4—C6—C7—O2	179.77 (10)	C9—C10—C11—C12	-0.6(2)
N4—C6—C7—C8	3.15 (18)	C10-C9-C14-O1	-179.95 (12)
C1—N1—C4—C3	-2.3 (2)	C10-C9-C14-C13	0.7 (2)
C1—N2—C2—C3	-1.5 (2)	C10-C11-C12-C13	0.7 (2)
C2—N2—C1—N1	1 32 (19)	C11—C12—C13—C14	-0.1 (2)
	1.52 (1))		
C2—N2—C1—C5	-176.90 (11)	C12—C13—C14—O1	-179.89 (13)
C2—N2—C1—C5 C2—C3—C4—N1	-176.90 (11) 2.0 (2)	C12—C13—C14—O1 C12—C13—C14—C9	-179.89 (13) -0.6 (2)
C2—N2—C1—C5 C2—C3—C4—N1 C4—N1—C1—N2	-176.90 (11) 2.0 (2) 0.5 (2)	C12-C13-C14-O1 C12-C13-C14-C9 C14-C9-C10-C11	-179.89 (13) -0.6 (2) -0.1 (2)
C2—N2—C1—C5 C2—C3—C4—N1 C4—N1—C1—N2 C4—N1—C1—C5	-176.90 (11) 2.0 (2) 0.5 (2) 178.78 (11)	C12—C13—C14—O1 C12—C13—C14—C9 C14—C9—C10—C11 C15—O1—C14—C9	-179.89 (13) -0.6 (2) -0.1 (2) -173.34 (12)
C2-N2-C1-C5 C2-C3-C4-N1 C4-N1-C1-N2 C4-N1-C1-C5 C5-N3-C8-O3	-176.90 (11) 2.0 (2) 0.5 (2) 178.78 (11) -179.40 (11)	C12—C13—C14—O1 C12—C13—C14—C9 C14—C9—C10—C11 C15—O1—C14—C9 C15—O1—C14—C9 C15—O1—C14—C13	-179.89 (13) -0.6 (2) -0.1 (2) -173.34 (12) 5.96 (19)
C2-N2-C1-C5 C2-C3-C4-N1 C4-N1-C1-N2 C4-N1-C1-C5 C5-N3-C8-O3 C5-N3-C8-C7	-176.90 (11) 2.0 (2) 0.5 (2) 178.78 (11) -179.40 (11) -0.51 (18)	C12—C13—C14—O1 C12—C13—C14—C9 C14—C9—C10—C11 C15—O1—C14—C9 C15—O1—C14—C9 C15—O1—C14—C13	-179.89 (13) -0.6 (2) -0.1 (2) -173.34 (12) 5.96 (19)

Hydrogen-bond geometry (A	ĺ, ')
---------------------------	-------

Cg3	is	the	centroid	of the	C9–C14	ring.
-----	----	-----	----------	--------	--------	-------

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
03—H3…O2 <i>W</i> ⁱ	0.91 (3)	1.67 (3)	2.5651 (15)	172 (2)
N4—H4…O1 ⁱⁱ	0.88 (2)	2.08 (2)	2.9313 (15)	163.6 (18)
O1W—H1 WA ···O4 ⁱⁱⁱ	0.87 (2)	2.05 (2)	2.8917 (16)	163 (2)
$O1W$ — $H1WB$ ···· $N2^{iv}$	0.89 (3)	2.01 (3)	2.8823 (16)	167 (2)
O2 <i>W</i> —H2 <i>WA</i> ···O4	0.86 (2)	1.93 (3)	2.7803 (15)	172 (2)
O2W— $H2WB$ ···O1 W ^v	0.91 (3)	1.80 (3)	2.7050 (17)	173 (2)
C4—H4 A ··· $Cg3^{vi}$	0.95	2.82	3.4083 (16)	121

Symmetry codes: (i) x+1, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+1, y-1/2, -z+1/2; (vi) x, -y-1/2, z-3/2.