Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1R,4R,6S,7S)-5,5-Dichloro-1,4,8,8-tetramethyltricyclo[5.4.1^{1,7}.0^{4,6}]dodecan-12one

Ahmed Benharref,^a Jamal EL Karroumi,^a* Jean-Claude Daran^b and Moha Berraho^a

^aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and ^bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse Cedex 04, France Correspondence e-mail: berraho@uca.ma

Received 7 October 2013; accepted 20 October 2013

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.070; data-to-parameter ratio = 18.0.

The title compound, C₁₆H₂₄Cl₂O, was synthesized in three steps from β -himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8hexahydro-1H-benzocycloheptene), which was isolated from essential oil of the Atlas cedar (cedrus atlantica). The asymmetric unit contains two independent molecules with similar conformations. Each molecule is built up from two fused seven-membered rings and an additional threemembered ring arising from the reaction of himachalene with dichlorocarbene. The dihedral angles between the mean planes of the two seven-membered rings are 75.03 (9) and $75.02 (9)^{\circ}$ in the two independent molecules.

Related literature

For the reactivity of this sesquiterpene, see: El Jamili et al. (2002); Lassaba et al. (1997). For its biological activity, see: Elhaib et al. (2011). For a related structure, see: Benharref et al. (2013). For conformational analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{16}H_{24}Cl_2O$	$\gamma = 89.067 \ (3)^{\circ}$
$M_r = 303.25$	V = 776.74 (5) Å ³
Triclinic, P1	Z = 2
a = 6.5835 (2) Å	Mo $K\alpha$ radiation
b = 9.2584(3) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 12.8428 (5) Å	T = 180 K
$\alpha = 85.140 \ (3)^{\circ}$	$0.50 \times 0.03 \times 0.03$
$\beta = 84.795 \ (3)^{\circ}$	

Data collection

Agilent Xcalibur (Eos, Gemini ultra) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) $T_{\min} = 0.822, \ T_{\max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.070$ S = 1.056301 reflections 351 parameters 3 restraints H-atom parameters constrained 15959 measured reflections

0.03 mm

6301 independent reflections 5899 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack &
Bernardinelli (2000), 3127 Friedel
pairs
Absolute structure parameter:
0.05 (3)

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrvsAlis PRO: data reduction: CrvsAlis PRO: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6937).

References

- Agilent (2013). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England. Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, 0933-0934.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Elhaib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.
- El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Lassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943-1945
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1703 [doi:10.1107/S1600536813028791]

(1*R*,4*R*,6*S*,7*S*)-5,5-Dichloro-1,4,8,8-tetramethyltricyclo[5.4.1^{1,7}.0^{4,6}]dodecan-12one

Ahmed Benharref, Jamal EL Karroumi, Jean-Claude Daran and Moha Berraho

S1. Comment

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound β -himachalene (Elhaib *et al.*, 2011). The reactivity of this sesquiterpene has been studied extensively by our team, in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry (El Jamili *et al.*, 2002; Benharref *et al.*, 2013). In this paper we present the crystal structure of the title compound, (1*R*,4*R*, 6S, 7S)-5,5-dichloro-1,4,8,8- tetramethyl-tricyclo[5.4.1^{1,7}.0^{4,6}]dodecan-12-one. The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains two fused seven-membered rings, which are fused to a three-membered ring as shown in Fig. 1. In both molecules, one of the seven-membered ring has a chair conformation as indicated by the total puckering amplitude QT = 0.8377 (3) Å and spherical polar angle $\theta 2 = 38.51$ (13)° with $\varphi 2 = -100.60$ (20)°, $\varphi 3 = 93.49$ (18), whereas the other seven-membered ring displays screw boat conformation with QT = 1.0334 (20) Å, $\theta 2 = 75.83$ (10)°, $\varphi 2 = 151.23$ (10)° and $\varphi 3 = 119.77$ (5)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(*R*), C4(*R*), C6(S) and C7(S).

S2. Experimental

To obtain the title compound, BF_3 —Et₂O (1 mL) was added dropwise to a solution of (1*S*,3*R*,8*S*)-2,2-dichloro- 3,7,7,10tetramethyltricyclo [6.4.0.0^{1,3}]dodec-9-ene (Lassaba *et al.*, 1997) (1 g, 3.3 mmol) in 60 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and the left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica-gel eluting with hexane-ethyle acetate (97/3), which allowed the isolation of pure(1*R*,4*R*, 6S, 7S)-1,4,8,8- tetramethyltricyclo[5.4.1¹,⁷.0⁴,⁶]dodecan-12-one in a yield of 77% (755 mg, 2.5 mmol). The title compound was recrystallized from its hexane solution.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}$ (methylene, methine) or $U_{iso}(H) = 1.5U_{eq}$ (methyl).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

(1*R*,4*R*,6*S*,7*S*)-5,5-Dichloro-1,4,8,8-tetramethyltricyclo[5.4.1^{1,7}.0^{4,6}]dodecan-12-one

Crystal	data
---------	------

C₁₆H₂₄Cl₂O $M_r = 303.25$ Triclinic, P1 Hall symbol: P 1 a = 6.5835 (2) Å b = 9.2584 (3) Å c = 12.8428 (5) Å a = 85.140 (3)° $\beta = 84.795$ (3)° $\gamma = 89.067$ (3)° V = 776.74 (5) Å³

Data collection

Agilent Xcalibur (Eos, Gemini ultra) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1978 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{min} = 0.822, T_{max} = 0.988$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.070$ S = 1.056301 reflections Z = 2 F(000) = 324 $D_x = 1.297 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6301 reflections $\theta = 3.1-26.4^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 180 KNeedle, colourless $0.50 \times 0.03 \times 0.03 \text{ mm}$

15959 measured reflections 6301 independent reflections 5899 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.4^\circ, \theta_{min} = 3.1^\circ$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -16 \rightarrow 16$

351 parameters3 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 0.0135P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

 $\begin{aligned} &\Delta \rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.15 \text{ e } \text{\AA}^{-3} \\ &\text{Absolute structure: Flack \& Bernardinelli} \\ &(2000), 3127 \text{ Friedel pairs} \\ &\text{Absolute structure parameter: } 0.05 (3) \end{aligned}$

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2013)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2	-0.55173 (7)	0.67043 (6)	0.24182 (4)	0.03779 (14)	
C11	-0.12276 (7)	0.65390 (5)	0.27094 (4)	0.03107 (12)	
01	0.1568 (2)	1.00986 (16)	0.33958 (12)	0.0348 (3)	
C7	-0.1944 (3)	0.95465 (19)	0.37125 (14)	0.0200 (4)	
H7	-0.1351	0.8613	0.4003	0.024*	
C6	-0.3450 (3)	0.9136 (2)	0.29500 (14)	0.0203 (4)	
H6	-0.4889	0.9435	0.3151	0.024*	
C5	-0.3277 (3)	0.7716 (2)	0.24622 (14)	0.0228 (4)	
C4	-0.2947 (3)	0.9096 (2)	0.17593 (14)	0.0222 (4)	
C3	-0.0806 (3)	0.9470 (2)	0.12878 (15)	0.0249 (4)	
H3A	-0.0648	0.9194	0.0557	0.030*	
H3B	0.0180	0.8884	0.1687	0.030*	
C2	-0.0269 (3)	1.1079 (2)	0.12843 (15)	0.0276 (4)	
H2A	-0.1161	1.1651	0.0821	0.033*	
H2B	0.1154	1.1214	0.0974	0.033*	
C1	-0.0476 (3)	1.1710 (2)	0.23755 (16)	0.0257 (4)	
C11	-0.2564 (3)	1.2460 (2)	0.25562 (15)	0.0257 (4)	
H11A	-0.2569	1.3356	0.2078	0.031*	
H11B	-0.3620	1.1814	0.2354	0.031*	
C10	-0.3185 (3)	1.2863 (2)	0.36775 (16)	0.0307 (4)	
H10A	-0.1950	1.3134	0.3999	0.037*	
H10B	-0.4103	1.3720	0.3646	0.037*	
C9	-0.4261 (3)	1.1633 (2)	0.43734 (15)	0.0268 (4)	
H9A	-0.5422	1.1321	0.4011	0.032*	
H9B	-0.4837	1.2034	0.5029	0.032*	
C8	-0.3000 (3)	1.0280 (2)	0.46780 (14)	0.0241 (4)	
C12	-0.0146 (3)	1.0435 (2)	0.31871 (14)	0.0229 (4)	
C14	-0.4603 (3)	0.9581 (2)	0.10671 (16)	0.0324 (5)	

H14A	-0.4543	0.8990	0.0467	0.049*
H14B	-0.4405	1.0602	0.0815	0.049*
H14C	-0.5936	0.9465	0.1469	0.049*
C13	0.1222 (3)	1.2827 (2)	0.24143 (18)	0.0357 (5)
H13A	0.1108	1.3212	0.3105	0.054*
H13B	0.1080	1.3621	0.1870	0.054*
H13C	0.2556	1.2356	0.2292	0.054*
C16	-0.1382(3)	1.0656 (2)	0.53919 (17)	0.0349(5)
H16A	-0.2048	1.1053	0.6021	0.052*
H16B	-0.0451	1,1378	0.5015	0.052*
H16C	-0.0612	0.9780	0.5597	0.052*
C15	-0.4447(3)	0.9173(2)	0.52973 (16)	0.032
H15A	-0.5086	0.9592	0.5923	0.0502(5)
H15R	-0.3675	0.8299	0.5509	0.050*
H15C	-0.5504	0.8919	0.4856	0.050*
Cl3	-0.18678(7)	0.88753 (6)	0.83571 (4)	0.03989 (14)
C13	0.10078(7)	0.00785(0)	0.83571(4) 0.82503(4)	0.03505(14)
0^{2}	0.23097(7)	0.90783(3) 0.54459(17)	0.82505(4) 0.75362(12)	0.03503(13)
C22	0.3852(2) 0.2470(3)	0.54459(17) 0.6078(2)	0.73302(12) 0.71903(14)	0.0307(4)
U22	0.2470 (3)	0.0078 (2)	0.71903 (14)	0.0210 (4)
C23	0.3133	0.7013	0.0938 0.70047 (13)	0.020°
U23	-0.0333(3)	0.0473(2)	0.79047 (13)	0.0203 (4)
П23 С24	-0.0722	0.01/4	0.7038	0.024°
C24 C25	0.0441(3)	0.7881(2)	0.84020(13)	0.0235(4)
C25	0.0328(3)	0.0489(2)	0.91020(14)	0.0233(4) 0.0202(5)
C26	0.2462 (3)	0.6118 (2)	0.96257 (16)	0.0292 (5)
H26A	0.2271	0.6376	1.0361	0.035*
H26B	0.3590	0.6/13	0.9262	0.035*
C27	0.3070 (3)	0.4512 (2)	0.96203 (15)	0.0305 (5)
H27A	0.1995	0.3934	1.0048	0.03/*
H27B	0.4343	0.4364	0.9972	0.037*
C17	0.3412 (3)	0.3893 (2)	0.85254 (16)	0.0281 (4)
C18	0.1452 (3)	0.3153 (2)	0.82720 (15)	0.0273 (4)
H18A	0.1271	0.2242	0.8732	0.033*
H18B	0.0276	0.3793	0.8450	0.033*
C19	0.1398 (3)	0.2793 (2)	0.71244 (16)	0.0316 (5)
H19A	0.2795	0.2545	0.6839	0.038*
H19B	0.0535	0.1931	0.7109	0.038*
C20	0.0575 (3)	0.4033 (2)	0.64249 (15)	0.0283 (4)
H20A	-0.0769	0.4324	0.6756	0.034*
H20B	0.0337	0.3654	0.5749	0.034*
C21	0.1874 (3)	0.54054 (19)	0.61824 (14)	0.0241 (4)
C28	0.4060 (3)	0.5151 (2)	0.77276 (15)	0.0250 (4)
C30	-0.1408 (3)	0.5985 (2)	0.97438 (16)	0.0342 (5)
H30A	-0.1600	0.6509	1.0378	0.051*
H30B	-0.1307	0.4942	0.9943	0.051*
H30C	-0.2572	0.6176	0.9327	0.051*
C29	0.5159 (3)	0.2754 (3)	0.8552 (2)	0.0421 (6)
H29A	0.5316	0.2304	0.7885	0.063*

H29B	0.4834	0.2009	0.9128	0.063*	
H29C	0.6434	0.3230	0.8658	0.063*	
C32	0.0631 (3)	0.6546 (2)	0.55706 (16)	0.0352 (5)	
H32A	0.0281	0.6166	0.4921	0.053*	
H32B	0.1440	0.7427	0.5400	0.053*	
H32C	-0.0622	0.6773	0.6000	0.053*	
C31	0.3815 (3)	0.5080 (2)	0.54861 (17)	0.0367 (5)	
H31A	0.4638	0.4351	0.5860	0.055*	
H31B	0.4604	0.5971	0.5317	0.055*	
H31C	0.3444	0.4711	0.4837	0.055*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Cl2	0.0375 (3)	0.0381 (3)	0.0399 (3)	-0.0163 (2)	-0.0103 (2)	-0.0053 (2)
C11	0.0392 (3)	0.0217 (3)	0.0338 (3)	0.00646 (19)	-0.0096 (2)	-0.0054 (2)
01	0.0234 (8)	0.0372 (9)	0.0440 (9)	0.0007 (6)	-0.0064 (6)	-0.0013 (7)
C7	0.0211 (9)	0.0178 (9)	0.0215 (9)	-0.0003 (7)	-0.0036 (7)	-0.0023 (7)
C6	0.0187 (9)	0.0205 (10)	0.0217 (9)	0.0014 (7)	-0.0008 (7)	-0.0024 (7)
C5	0.0226 (9)	0.0233 (10)	0.0239 (9)	-0.0027 (8)	-0.0072 (8)	-0.0043 (8)
C4	0.0231 (9)	0.0236 (10)	0.0207 (9)	0.0010 (7)	-0.0045 (7)	-0.0037 (7)
C3	0.0266 (10)	0.0281 (11)	0.0198 (9)	0.0024 (8)	0.0023 (7)	-0.0048 (8)
C2	0.0272 (10)	0.0291 (11)	0.0247 (10)	0.0011 (8)	0.0041 (8)	0.0006 (8)
C1	0.0276 (10)	0.0224 (10)	0.0261 (9)	0.0000 (7)	0.0010 (7)	-0.0008 (8)
C11	0.0278 (10)	0.0203 (10)	0.0275 (10)	0.0032 (7)	0.0013 (8)	0.0024 (8)
C10	0.0367 (11)	0.0198 (10)	0.0340 (11)	0.0047 (8)	0.0058 (9)	-0.0028 (8)
C9	0.0310 (10)	0.0242 (10)	0.0245 (10)	0.0019 (8)	0.0064 (8)	-0.0068 (8)
C8	0.0293 (10)	0.0219 (9)	0.0211 (9)	-0.0032 (8)	0.0009 (7)	-0.0044 (8)
C12	0.0234 (10)	0.0230 (9)	0.0233 (9)	0.0013 (7)	-0.0018 (7)	-0.0083 (8)
C14	0.0314 (11)	0.0407 (12)	0.0257 (10)	0.0055 (9)	-0.0076 (8)	-0.0023 (9)
C13	0.0351 (11)	0.0317 (12)	0.0381 (12)	-0.0075 (9)	0.0057 (9)	0.0014 (10)
C16	0.0458 (13)	0.0327 (12)	0.0284 (11)	-0.0061 (10)	-0.0076 (9)	-0.0091 (9)
C15	0.0411 (12)	0.0299 (11)	0.0279 (10)	-0.0047 (9)	0.0017 (9)	-0.0015 (9)
C13	0.0376 (3)	0.0456 (3)	0.0363 (3)	0.0189 (2)	0.0002 (2)	-0.0097 (2)
Cl4	0.0410 (3)	0.0226 (3)	0.0418 (3)	-0.0059 (2)	-0.0005 (2)	-0.0072 (2)
O2	0.0224 (7)	0.0427 (9)	0.0443 (9)	-0.0031 (6)	0.0003 (6)	-0.0027 (7)
C22	0.0211 (9)	0.0196 (9)	0.0240 (9)	-0.0014 (7)	0.0003 (7)	-0.0042 (8)
C23	0.0198 (9)	0.0224 (10)	0.0195 (9)	0.0000 (7)	-0.0032 (7)	-0.0051 (7)
C24	0.0247 (10)	0.0258 (10)	0.0260 (10)	0.0028 (8)	0.0010 (8)	-0.0071 (8)
C25	0.0257 (9)	0.0249 (10)	0.0208 (9)	-0.0028 (8)	-0.0023 (7)	-0.0067 (8)
C26	0.0347 (11)	0.0326 (12)	0.0221 (10)	-0.0056 (9)	-0.0088 (8)	-0.0051 (9)
C27	0.0364 (11)	0.0334 (12)	0.0223 (10)	-0.0049 (9)	-0.0103 (8)	0.0036 (9)
C17	0.0316 (11)	0.0239 (10)	0.0289 (11)	-0.0029 (8)	-0.0048 (8)	0.0000 (8)
C18	0.0320 (10)	0.0207 (10)	0.0288 (10)	-0.0062 (8)	-0.0037 (8)	0.0025 (8)
C19	0.0410 (12)	0.0197 (10)	0.0356 (11)	-0.0063 (9)	-0.0101 (9)	-0.0022 (9)
C20	0.0364 (11)	0.0237 (10)	0.0265 (10)	-0.0046 (8)	-0.0072 (8)	-0.0068 (8)
C21	0.0296 (10)	0.0222 (10)	0.0203 (9)	0.0024 (8)	-0.0001 (7)	-0.0036 (8)
C28	0.0245 (10)	0.0264 (10)	0.0251 (9)	-0.0020 (8)	-0.0016 (7)	-0.0086 (8)

supporting information

C30	0.0348 (12)	0.0443 (13)	0.0230 (10)	-0.0085 (10)	0.0036 (8)	-0.0053 (9)
C29	0.0418 (13)	0.0338 (13)	0.0515 (15)	0.0034 (10)	-0.0157 (11)	0.0037 (11)
C32	0.0481 (13)	0.0315 (12)	0.0263 (11)	0.0062 (10)	-0.0071 (9)	-0.0011 (9)
C31	0.0466 (13)	0.0309 (12)	0.0312 (11)	0.0065 (9)	0.0081 (9)	-0.0078 (9)

Geometric parameters (Å, °)

Cl2—C5	1.7679 (18)	Cl3—C24	1.7669 (19)
Cl1—C5	1.7553 (19)	Cl4—C24	1.757 (2)
O1—C12	1.213 (2)	O2—C28	1.214 (2)
C7—C12	1.525 (2)	C22—C28	1.520 (3)
С7—С6	1.529 (2)	C22—C23	1.530 (2)
С7—С8	1.566 (2)	C22—C21	1.566 (2)
С7—Н7	1.0000	C22—H22	1.0000
C6—C5	1.502 (3)	C23—C24	1.496 (3)
C6—C4	1.538 (2)	C23—C25	1.536 (2)
С6—Н6	1.0000	С23—Н23	1.0000
C5—C4	1.507 (3)	C24—C25	1.512 (3)
C4—C14	1.507 (3)	C25—C30	1.511 (3)
C4—C3	1.516 (3)	C25—C26	1.514 (3)
C3—C2	1.536 (3)	C26—C27	1.534 (3)
С3—НЗА	0.9900	C26—H26A	0.9900
С3—Н3В	0.9900	C26—H26B	0.9900
C2—C1	1.557 (3)	C27—C17	1.559 (3)
C2—H2A	0.9900	C27—H27A	0.9900
C2—H2B	0.9900	C27—H27B	0.9900
C1—C12	1.533 (3)	C17—C28	1.524 (3)
C1-C11	1.538 (3)	C17—C18	1.543 (3)
C1-C13	1.542 (3)	C17—C29	1.548 (3)
C11—C10	1.536 (3)	C18—C19	1.542 (3)
C11—H11A	0.9900	C18—H18A	0.9900
C11—H11B	0.9900	C18—H18B	0.9900
С10—С9	1.528 (3)	C19—C20	1.520 (3)
C10—H10A	0.9900	C19—H19A	0.9900
C10—H10B	0.9900	C19—H19B	0.9900
С9—С8	1.534 (3)	C20—C21	1.537 (3)
С9—Н9А	0.9900	C20—H20A	0.9900
С9—Н9В	0.9900	C20—H20B	0.9900
C8—C16	1.530(3)	C21—C32	1.533 (3)
C8—C15	1.532 (3)	C21—C31	1.533 (3)
C14—H14A	0.9800	C30—H30A	0.9800
C14—H14B	0.9800	C30—H30B	0.9800
C14—H14C	0.9800	C30—H30C	0.9800
С13—Н13А	0.9800	C29—H29A	0.9800
C13—H13B	0.9800	C29—H29B	0.9800
C13—H13C	0.9800	С29—Н29С	0.9800
C16—H16A	0.9800	C32—H32A	0.9800
C16—H16B	0.9800	C32—H32B	0.9800

C16—H16C	0.9800	С32—Н32С	0.9800
C15—H15A	0.9800	C31—H31A	0.9800
C15—H15B	0.9800	C31—H31B	0.9800
С15—Н15С	0.9800	C31—H31C	0.9800
C12—C7—C6	113.69 (15)	C28—C22—C23	115.15 (15)
C12—C7—C8	111.45 (14)	C28—C22—C21	111.30 (14)
C6—C7—C8	113.02 (14)	C23—C22—C21	112.01 (14)
С12—С7—Н7	106.0	C28—C22—H22	105.9
С6—С7—Н7	106.0	С23—С22—Н22	105.9
С8—С7—Н7	106.0	C21—C22—H22	105.9
C5—C6—C7	121.40 (15)	C24—C23—C22	121.73 (16)
C5—C6—C4	59.44 (12)	C24—C23—C25	59.80 (12)
C7—C6—C4	124.80 (15)	C22—C23—C25	124.79 (15)
С5—С6—Н6	113.6	С24—С23—Н23	113.4
С7—С6—Н6	113.6	С22—С23—Н23	113.4
С4—С6—Н6	113.6	С25—С23—Н23	113.4
C6—C5—C4	61.49 (12)	C23—C24—C25	61.44 (12)
C6—C5—Cl1	119.70 (13)	C23—C24—Cl4	120.37 (13)
C4—C5—Cl1	120.64 (13)	C25—C24—Cl4	120.24 (14)
C6—C5—C12	118.54 (14)	C23—C24—C13	117.87 (13)
C4—C5—C12	119.57 (13)	C25—C24—C13	120.13 (14)
Cl1—C5—Cl2	109.78 (10)	Cl4—C24—Cl3	109.71 (11)
C14—C4—C5	117.78 (16)	C30—C25—C24	117.93 (17)
C14—C4—C3	114.32 (16)	C30—C25—C26	114.40 (16)
C5—C4—C3	118.95 (16)	C24—C25—C26	118.76 (16)
C14—C4—C6	117.05 (16)	C30—C25—C23	117.56 (16)
C5—C4—C6	59.06 (12)	C24—C25—C23	58.77 (12)
C3—C4—C6	118.82 (15)	C26—C25—C23	118.41 (16)
C4—C3—C2	114.24 (16)	C25—C26—C27	113.38 (16)
С4—С3—Н3А	108.7	С25—С26—Н26А	108.9
С2—С3—Н3А	108.7	С27—С26—Н26А	108.9
C4—C3—H3B	108.7	C25—C26—H26B	108.9
С2—С3—Н3В	108.7	C27—C26—H26B	108.9
НЗА—СЗ—НЗВ	107.6	H26A—C26—H26B	107.7
C3—C2—C1	115.69 (15)	C26—C27—C17	116.55 (16)
C3—C2—H2A	108.4	С26—С27—Н27А	108.2
C1—C2—H2A	108.4	С17—С27—Н27А	108.2
C3—C2—H2B	108.4	С26—С27—Н27В	108.2
C1—C2—H2B	108.4	С17—С27—Н27В	108.2
H2A—C2—H2B	107.4	H27A—C27—H27B	107.3
C12—C1—C11	113.36 (16)	C28—C17—C18	112.73 (15)
C12—C1—C13	108.50 (16)	C28—C17—C29	108.98 (17)
C11—C1—C13	109.14 (16)	C18—C17—C29	108.93 (17)
C12—C1—C2	106.37 (15)	C28—C17—C27	107.26 (16)
C11—C1—C2	110.02 (16)	C18—C17—C27	110.05 (16)
C13—C1—C2	109.37 (16)	C29—C17—C27	108.80 (17)
C10—C11—C1	116.28 (17)	C19—C18—C17	115.65 (17)

C10-C11-H11A	108.2	C19—C18—H18A	108.4
C1-C11-H11A	108.2	C17—C18—H18A	108.4
C10-C11-H11B	108.2	C19—C18—H18B	108.4
C1-C11-H11B	108.2	C17—C18—H18B	108.4
H11A—C11—H11B	107.4	H18A—C18—H18B	107.4
C9—C10—C11	113.05 (16)	C20—C19—C18	113.13 (17)
C9—C10—H10A	109.0	С20—С19—Н19А	109.0
C11—C10—H10A	109.0	C18—C19—H19A	109.0
C9—C10—H10B	109.0	C20—C19—H19B	109.0
C11—C10—H10B	109.0	C18—C19—H19B	109.0
H10A—C10—H10B	107.8	H19A—C19—H19B	107.8
C10—C9—C8	117.89 (16)	C19—C20—C21	118.06 (16)
С10—С9—Н9А	107.8	C19—C20—H20A	107.8
С8—С9—Н9А	107.8	C21—C20—H20A	107.8
С10—С9—Н9В	107.8	C19—C20—H20B	107.8
С8—С9—Н9В	107.8	C21—C20—H20B	107.8
H9A—C9—H9B	107.2	H20A—C20—H20B	107.1
C16—C8—C15	108.00 (16)	C32—C21—C31	107.83 (16)
C16—C8—C9	110.18 (16)	C32—C21—C20	108.17 (16)
C15—C8—C9	107.78 (16)	C31—C21—C20	110.29 (16)
C16—C8—C7	109.33 (15)	C32—C21—C22	107.76 (15)
C15—C8—C7	107.83 (15)	C31—C21—C22	109.32 (15)
C9—C8—C7	113.54 (14)	C20—C21—C22	113.29 (15)
O1—C12—C7	119.24 (17)	O2—C28—C22	119.31 (17)
O1—C12—C1	119.90 (17)	O2—C28—C17	120.21 (17)
C7—C12—C1	120.83 (15)	C22—C28—C17	120.45 (15)
C4—C14—H14A	109.5	С25—С30—Н30А	109.5
C4—C14—H14B	109.5	С25—С30—Н30В	109.5
H14A—C14—H14B	109.5	H30A-C30-H30B	109.5
C4—C14—H14C	109.5	С25—С30—Н30С	109.5
H14A—C14—H14C	109.5	H30A-C30-H30C	109.5
H14B—C14—H14C	109.5	H30B-C30-H30C	109.5
C1—C13—H13A	109.5	С17—С29—Н29А	109.5
C1—C13—H13B	109.5	С17—С29—Н29В	109.5
H13A—C13—H13B	109.5	H29A—C29—H29B	109.5
C1—C13—H13C	109.5	С17—С29—Н29С	109.5
H13A—C13—H13C	109.5	H29A—C29—H29C	109.5
H13B—C13—H13C	109.5	H29B—C29—H29C	109.5
C8—C16—H16A	109.5	С21—С32—Н32А	109.5
C8—C16—H16B	109.5	C21—C32—H32B	109.5
H16A—C16—H16B	109.5	H32A—C32—H32B	109.5
C8—C16—H16C	109.5	C21—C32—H32C	109.5
H16A—C16—H16C	109.5	H32A—C32—H32C	109.5
H16B—C16—H16C	109.5	H32B—C32—H32C	109.5
C8—C15—H15A	109.5	C21—C31—H31A	109.5
C8—C15—H15B	109.5	C21—C31—H31B	109.5
H15A—C15—H15B	109.5	H31A—C31—H31B	109.5
C8—C15—H15C	109.5	С21—С31—Н31С	109.5
		-	

supporting information

H15A—C15—H15C	109.5	H31A—C31—H31C	109.5
H15B—C15—H15C	109.5	H31B—C31—H31C	109.5