organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3aR,6S,7aR)-7a-Chloro-6-methyl-2-(4nitrophenylsulfonyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Aydın Demircan,^a Ersin Temel,^b* Muhammet Kasım Kandemir,^a Medine Çolak^a and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts and Sciences, Nigde University, TR-51240 Niĝde, Turkey, and ^bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, TR-55139 Samsun, Turkey Correspondence e-mail: etemel@omu.edu.tr

Received 20 September 2013; accepted 23 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.068; wR factor = 0.192; data-to-parameter ratio = 15.9.

In the title compound, $C_{15}H_{15}ClN_2O_5S$, the tetrahydrofuran ring adopts an envelope conformation with the O atom as the flap. The pyrrolidine ring adopts an envelope conformation with the chlorine-substituted C atom as the flap. In the crystal, two types of C-H···O hydrogen bonds generate $R_2^2(20)$ and $R_4^4(26)$ rings, with adjacent rings running parallel to ac plane. Further C–H···O hydrogen bonds form a C(6) chain, linking the molecules in the *b*-axis direction.

Related literature

For chemical background to protecting groups, see: Greene & Wuts (1999); Romanski et al. (2012); Chan & White (2004); Yasushi & Higuchi (2006); Blanc & Bochet (2007); Demircan & Parsons (2002); Demirtas et al. (2002); Katritzky et al. (2004); Merlin et al. (1988); Büyükgüngör et al. (2005); Koşar et al. (2006a,b); Karaarslan et al. (2007); Demircan et al. (2011); Temel et al. (2011, 2012). For puckering parameters, see: Cremer & Pople, (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C15H15ClN2O5S $M_r = 370.80$ Monoclinic, $P2_1/c$ a = 8.6049 (5) Å

b = 7.1949 (3) Å c = 26.8195(15) Å $\beta = 101.186 \ (4)^{\circ}$ V = 1628.89 (15) Å³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.39 \text{ mm}^{-1}$

Data collection

Stoe IPDS 2 diffractometer	13941 measured
Absorption correction: integration	3449 independe
(X-RED32; Stoe & Cie, 2002)	1564 reflections
$T_{\min} = 0.894, T_{\max} = 0.992$	$R_{\rm int} = 0.090$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.192$ S = 0.893449 reflections

reflections nt reflections with $I > 2\sigma(I)$

T = 296 K

 $0.48 \times 0.24 \times 0.02 \text{ mm}$

217 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.12 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdotsO3^{i}$ $C7-H7A\cdotsO2^{ii}$ $C9-H9\cdotsO4^{iii}$	0.93 0.97 0.93	2.46 2.51 2.52	3.205 (6) 3.219 (6) 3.388 (6)	138 129 155

Symmetry codes: (i) x, y - 1, z; (ii) -x + 2, -y + 1, -z + 1; (iii) x + 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also The Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (P·N.: 107 T831).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6935).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Blanc, A. & Bochet, C. G. (2007). Org. Lett. 9, 2649-2651.
- Büyükgüngör, O., Koşar, B., Demircan, A. & Turaç, E. (2005). Acta Cryst. E61, o1441-o1442.
- Chan, W. C. & White, P. D. (2004). In Fmoc Solid Phase Peptide Synthesis. Oxford University Press.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531-536.
- Demircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085-o1086.
- Demirtaş, I., Büyükkıdan, B. & Elmastaş, M. (2002). Turk. J. Chem. 26, 889-896
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Greene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: John Wiley & Sons, Inc.
- Karaarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117-120. Katritzky, A. R., Hoffmann, S. & Suzuki, K. (2004). Arkivoc, xii, 14-22.
- Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, 0765-0767.

- Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006b). Acta Cryst. E62, 04192–04193.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Merlin, P., Braekman, J. C. & Daloze, D. (1988). Tetrahedron Lett. 29, 1691– 1694.
- Romanski, J., Nowak, P., Kosinski, K. & Jurczak, J. (2012). *Tetrahedron Lett.* 53, 5287–5289.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, 01304–01305.
- Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). *Acta Cryst.* E68, 01102–01103.
- Yasushi, K. & Higuchi, T. (2006). FEMS Microbiol. Lett. 24, 225-229.

supporting information

Acta Cryst. (2013). E69, 01628-01629 [doi:10.1107/S1600536813026329]

(3a*R*,6*S*,7a*R*)-7a-Chloro-6-methyl-2-(4-nitrophenylsulfonyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Aydın Demircan, Ersin Temel, Muhammet Kasım Kandemir, Medine Çolak and Orhan Büyükgüngör

S1. Comment

The use of protective groups has been popular in synthetic pathways (Romanski *et al.*, 2012; Chan & White, 2004; Yasushi and Higuchi, 2006; Blanc and Bochet, 2007). Many protective groups have been, developed to block other reactive sites of a molecule like NH, OH, SH, aldehyde *etc.* They should be easily removable (Greene & Wuts, 1999). Bulky protective groups on nitrogen like *tert*-butoxy carboxylate (Demircan and Parsons, 2002), the trityl group (Demirtaş *et al.*, 2002), tosyl (Katritzky *et al.*, 2004), mesyl (Merlin *et al.*, 1988) predominates in cycloaddition reactions over relatively small protective groups such as methyl, ethyl groups.

We have been working on intramolecular Diels Alder reaction (IMDAF) of compounds with a furan core using different side chains containing a heteroatom like oxygen, sulfur and nitrogen. Isoindole derivatives have been often synthesized and analyzed in our group using bulky protective groups (Büyükgüngör *et al.*, 2005; Koşar *et al.*, 2006*a*; Koşar *et al.*, 2006*b*; Karaarslan *et al.*, 2007; Demircan *et al.*, 2011). Tosyl and mesyl groups have been previously used and reported in a series of sulfonamides (Temel *et al.*, 2012; Temel *et al.*, 2011). We now here report our further finding that cycloadduct, 3 with *p*-nosyl group was generated at the intermediate *via*, 2 in aqueous condition without any other solvent system.

The title compound contains epoxyisoindole and phenyl rings linked through N—S—C bridge (Fig. 2). Tetrahydrofuran rings, pyrrolidine ring and six-membered ring that generate epoxyisoindole moiety are puckered. Both tetrahydrofuran rings adopt an envelope conformation with the puckering parameters of Q=0.516 (5) Å, φ =182.8 (6)° for O₅/C₈₋₁₁ and Q=0.611 (5) Å, φ =3.5 (5)° for O₅/C_{8,13,12,11}, respectively. The other five-membered ring, pyrrolidine, has the puckering parameters of Q=0.288 (5) Å and φ =277.2 (9)°. The six-membered ring, C₈₋₁₃, has a boat conformation, according to the puckering parameters [Q=0.928 (5) Å, θ =87.5 (3)° and φ =180.8 (3)°] (Cremer & Pople, 1975).

The crystal packing of is stabilized by C—H···O hydrogen bonds. While the C7—H7A···O2 hydrogen bonds generate $R^2_2(20)$ rings, the combination of C7—H7A···O2 and C9—H9···O4 hydrogen bonds generate $R^4_4(26)$ rings (Fig. 4). These adjacent rings are running parallel to *ac*-plane. Additionally, C3—H3···O3 hydrogen bonds forming a C(6) chain link the molecules through *b* axis (Fig 3) (Bernstein *et al.* 1995).

S2. Experimental

2-Chloro-*N*-(furan-2-ylmethyl)prop-2-en-1-amine, 1 (0.32 g, 1.72 mmol) in water (50 ml) was added *p*-nitrobenzenesulfonyl chloride (0.45 g, 2.06 mmol) portion wise followed by potassium carbonate (0.9 g, 6.45 mol). The reaction mixture was stirred for 48 h at 369 K. Then, the reaction mixture was allowed to warm up to room temperature and NaOH 10% (35 ml) was added. The mixture was then extracted with ethyl acetate (3x35 ml) and brine (35 ml). Combined organic phases were dried over magnesium sulfate, filtered and evaporated. The purification by column chromatography afforded colourless crystals (0.42 g, 66% yield). t.l.c., (Hexane:Ethylacetate); (8:2), Rf: 0.42). Recrystallization was performed in DCM:Hexane. Melting Point: 444–445 K.

S3. Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.97, 0.98 and 0.93 Å for CH₂, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with $U_{iso}(H) = 1.2U_{eq}$ (aromatic, methylene or methine C).

Figure 1

Synthesis of the title compound.

Figure 2

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 4

Part of the crystal structure of the title compound, showing the formation of $R_2^2(10)$ and $R_4^4(26)$ rings.

(3aR, 6S, 7aR)-7a-Chloro-6-methyl-2-(4-nitrophenylsulfonyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

Crystal data	
$C_{15}H_{15}CIN_{2}O_{5}S$ $M_{r} = 370.80$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 8.6049$ (5) Å $b = 7.1949$ (3) Å $c = 26.8195$ (15) Å $\beta = 101.186$ (4)° $V = 1628.89$ (15) Å ³ $Z = 4$	F(000) = 768 $D_x = 1.512 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13941 reflections $\theta = 1.6-27.2^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 296 K Plate, colorless $0.48 \times 0.24 \times 0.02 \text{ mm}$
Data collection	
Stoe IPDS 2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	rotation method scans Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002) $T_{min} = 0.894, T_{max} = 0.992$

13941 measured reflections	$\theta_{\rm max} = 26.8^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
3449 independent reflections	$h = -10 \rightarrow 10$
1564 reflections with $I > 2\sigma(I)$	$k = -9 \rightarrow 9$
$R_{\rm int} = 0.090$	<i>l</i> = −33→33

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.192$	neighbouring sites
<i>S</i> = 0.89	H-atom parameters constrained
3449 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1022P)^2]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5887 (5)	0.4475 (7)	0.44296 (17)	0.0556 (12)	
C2	0.5543 (5)	0.2605 (7)	0.44330 (18)	0.0618 (13)	
H2	0.4667	0.2139	0.4209	0.074*	
C3	0.6482 (6)	0.1425 (7)	0.47633 (17)	0.0616 (13)	
H3	0.6257	0.0161	0.4764	0.074*	
C4	0.7759 (5)	0.2143 (7)	0.50928 (17)	0.0579 (12)	
C5	0.8113 (5)	0.4015 (8)	0.51046 (17)	0.0630 (13)	
Н5	0.8979	0.4474	0.5334	0.076*	
C6	0.7182 (5)	0.5177 (7)	0.47768 (18)	0.0608 (13)	
H6	0.7405	0.6443	0.4783	0.073*	
C7	0.7168 (6)	0.6656 (7)	0.34900 (18)	0.0594 (12)	
H7A	0.7832	0.6501	0.3824	0.071*	
H7B	0.7080	0.7971	0.3410	0.071*	
C8	0.7840 (5)	0.5617 (6)	0.30954 (17)	0.0573 (12)	
C9	0.9556 (6)	0.5353 (7)	0.3091 (2)	0.0727 (15)	
H9	1.0398	0.5502	0.3363	0.087*	
C10	0.9638 (6)	0.4871 (8)	0.2628 (2)	0.0741 (15)	
H10	1.0550	0.4557	0.2510	0.089*	
C11	0.7968 (6)	0.4919 (7)	0.23212 (18)	0.0599 (12)	
C12	0.7102 (6)	0.3187 (7)	0.2476 (2)	0.0691 (14)	
H12A	0.6075	0.3012	0.2257	0.083*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12B	0.7730	0.2068	0.2476	0.083*
C13	0.6946 (6)	0.3746 (6)	0.30125 (18)	0.0594 (12)
C14	0.5329 (5)	0.4221 (7)	0.31263 (18)	0.0613 (12)
H14A	0.4592	0.4537	0.2816	0.074*
H14B	0.4906	0.3178	0.3286	0.074*
C15	0.7767 (7)	0.5299 (9)	0.1765 (2)	0.0832 (17)
H15A	0.8270	0.6456	0.1714	0.100*
H15B	0.6659	0.5372	0.1618	0.100*
H15C	0.8244	0.4314	0.1605	0.100*
N1	0.8795 (6)	0.0885 (8)	0.54414 (17)	0.0793 (13)
N2	0.5591 (4)	0.5831 (5)	0.34738 (13)	0.0522 (9)
01	0.8474 (6)	-0.0760 (7)	0.54284 (18)	0.1241 (18)
O2	0.9903 (6)	0.1529 (6)	0.57330 (19)	0.1193 (17)
03	0.4999 (4)	0.7806 (5)	0.41540 (13)	0.0780 (10)
O4	0.3234 (4)	0.5168 (6)	0.38233 (13)	0.0780 (11)
05	0.7281 (4)	0.6367 (4)	0.25862 (11)	0.0637 (9)
S1	0.47826 (14)	0.59405 (19)	0.39663 (5)	0.0621 (4)
Cl1	0.79058 (18)	0.2099 (2)	0.34891 (6)	0.0899 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	<i>U</i> ¹²	U ¹³	U^{23}
C1	0.050 (2)	0.063 (3)	0.052 (3)	-0.006 (2)	0.007 (2)	-0.009 (2)
C2	0.055 (3)	0.072 (4)	0.054 (3)	-0.019 (2)	0.002 (2)	-0.012 (2)
C3	0.072 (3)	0.059 (3)	0.053 (3)	-0.020 (2)	0.011 (2)	-0.006 (2)
C4	0.058 (3)	0.066 (3)	0.048 (3)	-0.005 (2)	0.007 (2)	0.003 (2)
C5	0.057 (3)	0.079 (4)	0.049 (3)	-0.017 (3)	0.001 (2)	-0.004 (3)
C6	0.062 (3)	0.064 (3)	0.055 (3)	-0.015 (2)	0.009 (2)	-0.009(2)
C7	0.067 (3)	0.049 (3)	0.058 (3)	-0.011 (2)	0.001 (2)	-0.006 (2)
C8	0.054 (3)	0.052 (3)	0.061 (3)	-0.002 (2)	-0.002 (2)	-0.004(2)
C9	0.057 (3)	0.073 (4)	0.086 (4)	-0.014 (3)	0.007 (3)	0.000 (3)
C10	0.065 (3)	0.069 (4)	0.090 (4)	-0.007 (3)	0.018 (3)	0.001 (3)
C11	0.069 (3)	0.050 (3)	0.061 (3)	0.005 (2)	0.014 (2)	-0.003 (2)
C12	0.066 (3)	0.060 (3)	0.079 (4)	-0.002 (3)	0.007 (3)	-0.018 (3)
C13	0.070 (3)	0.045 (3)	0.066 (3)	-0.004 (2)	0.018 (2)	-0.004(2)
C14	0.058 (3)	0.056 (3)	0.066 (3)	-0.002(2)	0.000(2)	-0.018 (2)
C15	0.100 (4)	0.081 (4)	0.071 (4)	0.009 (3)	0.022 (3)	0.002 (3)
N1	0.085 (3)	0.083 (4)	0.064 (3)	-0.015 (3)	-0.001 (2)	0.008 (3)
N2	0.0494 (19)	0.054 (2)	0.050(2)	-0.0019 (18)	0.0006 (16)	-0.0083 (18)
01	0.158 (4)	0.077 (3)	0.110 (4)	-0.019 (3)	-0.042 (3)	0.016 (3)
O2	0.111 (3)	0.097 (3)	0.122 (4)	-0.026 (3)	-0.047 (3)	0.024 (3)
O3	0.084 (2)	0.073 (2)	0.073 (2)	0.0175 (19)	0.0053 (18)	-0.0221 (19)
O4	0.0455 (18)	0.107 (3)	0.078 (2)	0.0014 (18)	0.0031 (16)	-0.012 (2)
05	0.076 (2)	0.054 (2)	0.0566 (19)	0.0075 (16)	0.0016 (16)	0.0036 (15)
S 1	0.0529 (7)	0.0696 (9)	0.0603 (7)	0.0052 (6)	0.0027 (5)	-0.0132 (7)
Cl1	0.1013 (11)	0.0687 (9)	0.1046 (12)	0.0213 (8)	0.0322 (9)	0.0296 (8)

Geometric parameters (Å, °)

C1—C2	1.378 (7)	C10—C11	1.512 (7)
C1—C6	1.401 (6)	C10—H10	0.9300
C1—S1	1.761 (5)	C11—O5	1.450 (5)
C2—C3	1.372 (7)	C11—C15	1.494 (7)
С2—Н2	0.9300	C11—C12	1.549 (7)
C3—C4	1.371 (6)	C12—C13	1.524 (7)
С3—Н3	0.9300	C12—H12A	0.9700
C4—C5	1.380 (7)	C12—H12B	0.9700
C4—N1	1.471 (7)	C13—C14	1.520 (6)
С5—С6	1.357 (7)	C13—C11	1.819 (5)
С5—Н5	0.9300	C14—N2	1.476 (5)
С6—Н6	0.9300	C14—H14A	0.9700
C7—N2	1.474 (6)	C14—H14B	0.9700
С7—С8	1.500 (7)	C15—H15A	0.9600
С7—Н7А	0.9700	C15—H15B	0.9600
С7—Н7В	0.9700	C15—H15C	0.9600
C8—O5	1.460 (5)	N1—O2	1.202 (6)
С8—С9	1.492 (7)	N101	1.214 (6)
C8—C13	1.545 (6)	N2—S1	1.610 (4)
C9—C10	1.302 (7)	O3—S1	1.433 (4)
С9—Н9	0.9300	O4—S1	1.426 (3)
C2—C1—C6	119 5 (4)	C15—C11—C12	116 5 (4)
$C_2 = C_1 = S_1$	120.1(3)	C10-C11-C12	10.5(1)
C_{6} C_{1} S_{1}	120.1(3) 120.3(4)	C_{13} $-C_{12}$ $-C_{11}$	100.1 (4)
$C_{3} - C_{2} - C_{1}$	120.5(4)	C13 $-C12$ $-H12A$	111 7
$C_{3} - C_{2} - H_{2}$	119 7	C11—C12—H12A	111.7
C1 - C2 - H2	119.7	C_{13} C_{12} H_{12B}	111.7
C4 - C3 - C2	118.8 (5)	C11—C12—H12B	111.7
C4—C3—H3	120.6	H12A— $C12$ — $H12B$	109.5
C2-C3-H3	120.6	C14-C13-C12	120.0 (4)
C3-C4-C5	121.9 (5)	C14-C13-C8	103.0 (4)
C3-C4-N1	119.3 (5)	C12-C13-C8	103.5 (4)
C5-C4-N1	118.8 (4)	C14-C13-C11	108.3 (3)
C6-C5-C4	119.1 (4)	C12—C13—C11	112.4 (3)
С6—С5—Н5	120.4	C8-C13-C11	108.7(3)
C4—C5—H5	120.4	N2-C14-C13	105.7 (4)
C5-C6-C1	120.2 (5)	N2—C14—H14A	110.6
С5—С6—Н6	119.9	C13—C14—H14A	110.6
С1—С6—Н6	119.9	N2—C14—H14B	110.6
N2—C7—C8	104.9 (3)	C13—C14—H14B	110.6
N2—C7—H7A	110.8	H14A—C14—H14B	108.7
С8—С7—Н7А	110.8	C11—C15—H15A	109.5
N2—C7—H7B	110.8	C11—C15—H15B	109.5
С8—С7—Н7В	110.8	H15A—C15—H15B	109.5
H7A—C7—H7B	108.8	C11—C15—H15C	109.5

05—C8—C9	100.7 (4)	H15A—C15—H15C	109.5
O5—C8—C7	111.9 (4)	H15B—C15—H15C	109.5
C9—C8—C7	126.0 (4)	O2—N1—O1	122.8 (5)
O5—C8—C13	97.0 (3)	O2—N1—C4	118.9 (5)
C9—C8—C13	110.7 (4)	01—N1—C4	118.4 (4)
C7—C8—C13	106.6 (4)	C7—N2—C14	111.2 (3)
C10—C9—C8	106.2 (5)	C7—N2—S1	119.9 (3)
С10—С9—Н9	126.9	C14—N2—S1	121.3 (3)
С8—С9—Н9	126.9	C11—O5—C8	95.8 (3)
C9—C10—C11	107.0 (5)	O4—S1—O3	120.7 (2)
С9—С10—Н10	126.5	O4—S1—N2	106.86 (19)
C11—C10—H10	126.5	O3—S1—N2	106.7 (2)
O5—C11—C15	112.3 (4)	O4—S1—C1	107.7 (2)
O5—C11—C10	100.6 (4)	O3—S1—C1	107.3 (2)
C15—C11—C10	117.5 (4)	N2—S1—C1	106.8 (2)
O5—C11—C12	100.6 (4)		
C6—C1—C2—C3	-1.8 (7)	O5—C8—C13—Cl1	159.5 (3)
S1—C1—C2—C3	174.2 (4)	C9—C8—C13—Cl1	55.2 (5)
C1—C2—C3—C4	0.6 (7)	C7—C8—C13—Cl1	-85.1 (4)
C2—C3—C4—C5	0.7 (7)	C12—C13—C14—N2	-139.8 (4)
C2—C3—C4—N1	-178.7 (4)	C8—C13—C14—N2	-25.7 (5)
C3—C4—C5—C6	-0.8 (7)	Cl1—C13—C14—N2	89.3 (4)
N1—C4—C5—C6	178.6 (4)	C3—C4—N1—O2	-179.2 (5)
C4—C5—C6—C1	-0.4 (7)	C5—C4—N1—O2	1.4 (8)
C2-C1-C6-C5	1.7 (7)	C3—C4—N1—O1	-0.6 (8)
S1—C1—C6—C5	-174.3 (4)	C5-C4-N1-O1	180.0 (5)
N2—C7—C8—O5	83.0 (4)	C8—C7—N2—C14	5.6 (5)
N2—C7—C8—C9	-154.3 (4)	C8—C7—N2—S1	155.4 (3)
N2—C7—C8—C13	-21.9 (5)	C13—C14—N2—C7	13.2 (5)
O5—C8—C9—C10	-34.8 (5)	C13—C14—N2—S1	-136.2(3)
C7—C8—C9—C10	-162.2 (5)	C15—C11—O5—C8	-174.7 (4)
C13—C8—C9—C10	67.1 (5)	C10-C11-O5-C8	-48.9 (4)
C8—C9—C10—C11	2.9 (6)	C12—C11—O5—C8	60.7 (4)
C9—C10—C11—O5	30.0 (5)	C9—C8—O5—C11	51.2 (4)
C9—C10—C11—C15	152.2 (5)	C7—C8—O5—C11	-172.7 (4)
C9—C10—C11—C12	-74.5 (5)	C13—C8—O5—C11	-61.6 (4)
O5—C11—C12—C13	-33.9 (4)	C7—N2—S1—O4	175.4 (3)
C15—C11—C12—C13	-155.5 (4)	C14—N2—S1—O4	-37.8 (4)
C10-C11-C12-C13	70.7 (5)	C7—N2—S1—O3	45.1 (4)
C11—C12—C13—C14	110.0 (5)	C14—N2—S1—O3	-168.1 (3)
C11—C12—C13—C8	-3.9 (5)	C7—N2—S1—C1	-69.4 (4)
C11—C12—C13—C11	-121.0 (4)	C14—N2—S1—C1	77.3 (4)
O5—C8—C13—C14	-85.8 (4)	C2—C1—S1—O4	28.7 (5)
C9—C8—C13—C14	169.9 (4)	C6—C1—S1—O4	-155.3 (4)
C7—C8—C13—C14	29.7 (5)	C2—C1—S1—O3	160.1 (4)
O5—C8—C13—C12	39.9 (4)	C6—C1—S1—O3	-23.9 (4)
C9—C8—C13—C12	-64.4 (5)	C2-C1-S1-N2	-85.8 (4)

supporting information

C7—C8—C13—C12	155.3 (4)	C6—C1—S1—N2	9	00.2 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —H	Н…А	D··· A	D—H···A
C3—H3…O3 ⁱ	0.93	2.46	3.205 (6)	138
C7—H7A····O2 ⁱⁱ	0.97	2.51	3.219 (6)	129
C9—H9····O4 ⁱⁱⁱ	0.93	2.52	3.388 (6)	155

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+2, –*y*+1, –*z*+1; (iii) *x*+1, *y*, *z*.