organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Isopropyl-1-{2-[(1-methyl-1*H*-tetrazol-5-yl)sulfanyl]acetyl]-2,6-diphenylpiperidin-4-one hemihydrate

S. Ganesan,^{a,b} P. Sugumar,^c S. Ananthan^b and M. N. Ponnuswamy^c*

^aResearch Development Centre, Orchid Chemicals and Pharmaceuticals Ltd, Sozhinganallur, Chennai 600 119, India, ^bDepartment of Chemistry, Presidency College (Autonomous), Chennai 600 005, India, and ^cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600.025 India

Correspondence e-mail: mnpsy2004@yahoo.com

Received 4 September 2013; accepted 25 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.146; data-to-parameter ratio = 20.2.

In the title compound, $C_{24}H_{27}N_5O_2S \cdot 0.5H_2O$, the piperidine ring adopts a distorted boat conformation. The phenyl rings subtend dihedral angles of 69.7 (1) and 88.7 (1) $^{\circ}$ with the best plane through the piperidine moiety. In the crystal, symmetryrelated molecules are linked through a network of $C-H \cdots O$ and $C-H \cdot \cdot \cdot N$ interactions, the former connecting them into zigzag chains along the *c*-axis direction and the latter forming an $R_2^2(4)$ motif. The dimer formation (C-H···N) and the repetition of symmetry-related molecules $(C-H \cdots O)$ along the *b*-axis direction stabilize the packing mode. The water molecule is located on a twofold rotation axis.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C24H27N5O2S·0.5H2O $M_r = 458.57$ Monoclinic, C2/c a = 28.7522 (9) Å b = 11.1809 (4) Å c = 16.5584 (5) Å $\beta = 115.303(2)^{\circ}$

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.964, \ T_{\max} = 0.972$

Refinement

$wR(F^2) = 0.146$ H-atom parameters constraine	$F^2 > 2\sigma(F^2)$] = 0.046	297 parameters
	$R(F^2) = 0.146$	H-atom parameters constrained
$S = 1.04 \qquad \qquad \Delta \rho_{\rm max} = 0.42 \text{ e} \text{\AA}^{-3}$	1.04	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
6013 reflections $\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$	13 reflections	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

V = 4812.4 (3) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.19 \times 0.17 \text{ mm}$

22058 measured reflections

6013 independent reflections

4157 reflections with $I > 2\sigma(I)$

 $\mu = 0.17 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.026$

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	$\cdots A$
$C25 - H25C \cdots O1^{i}$ $C18 - H18 \cdots O1^{ii}$ $C25 - H25B \cdots N4^{iii}$	0.96 0.93 0.96	2.47 2.54 2.54	3.406 (3) 3.312 (2) 3.472 (3)	166 140 165	
Symmetry codes: (i)	$-r + \frac{1}{2}v - \frac{1}{2}$	$-7 \pm \frac{1}{2}$ (ii)	-r+1 - v + 1	$-7 \perp 1$	(iii)

 $-x + \frac{1}{2}, y$ $-z + \frac{1}{2};$ (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

SG wishes to thank Orchid Chemicals and Pharmaceuticals Limited (www.orchidpharma.com), Chennai, India, for consent to perform the research. PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6930).

References

- Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o1598 [doi:10.1107/S1600536813026500]

3-Isopropyl-1-{2-[(1-methyl-1*H*-tetrazol-5-yl)sulfanyl]acetyl}-2,6-diphenylpiperidin-4-one hemihydrate

S. Ganesan, P. Sugumar, S. Ananthan and M. N. Ponnuswamy

S1. Comment

In a way to find piperidin-4-one based lead drug molecules for the antimicrobial therapy, various piperidin-4-ones were prepared by condensing *N*-chloroacetyl-2,6-diphenylpiperidin-4-one with 5-mercapto-(1-methyltetrazole) (Aridoss *et al.*, 2009). 5-Mercapto-(1-methyl tetrazole) is the active part of a number of cephalosporanic drugs like Cefamandole, Cefoperazone, Cefmetazole sodium & Cefotetan and responsible for its activity. The present investigation was undertaken to establish the structure and conformation of the title compound by X-ray crystallographic methods.

The *ORTEP* plot of the molecule is shown in Fig. 1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983): $q_2=0.662$ (2) Å, $q_3 = 0.079$ (2) Å, $\varphi_2 = 76.86$ (2)° and $\Delta_s(N1 \& C4) = 74.11$ (2)°.

The methyltetrazol ring is planar with the maximum deviation -0.003 (2) Å for N4 atom. The endocyclic bond lengths of N2–N3=1.362 (4)°, N3–N4= 1.278 (4) Å & N4–N5 = 1.348 (3) Å, clearly indicate that they are alternate single and double bonds.

The carbonyl group is almost *anti-periplanar* to C2 and C6, $[C2-C3-C4-O1 = 155.9 (2)^\circ; C6-C5-C4-O1 = 151.1 (2)^\circ]$. The dihedral angles between the best plane through the piperidine ring and the phenyl rings are 69.7 (1)° & 88.7 (1)°. The two phenyl rings are oriented to each other with a dihedral angle of 70.5 (1)°.

Symmetry related molecules are linked through a network of intermolecular C—H···O and C—H···N interactions. C18–H18···O1 and C25–H25B···O1 connect the molecules to zigzag chains. Another motif $R^2_2(4)$, involving the weak interaction C25—H25A···N4 is shown in Fig. 2 (Bernstein *et al.*, 1995).

S2. Experimental

To anhydrous DMF(10 ml), *N*-Chloroacetyl-3-isopropyl-2,6-diphenylpiperidin-4-one (1 mole), 5-Mercapto-1-methyltetrazole(1 mole) followed by potassium carbonate (1.5 mole) was added and stirred for 1 hr at room temperature. The reaction mass was heated to 60°C and stirred and monitored using TLC. After completion of reaction, the reaction mass was quenched into water and the product was extracted with dichloromethane. The dichloromethane layer distilled completely and to the residue methanol was added and kept in overnight. The solid obtained was filtered and dried at 60° C under vacuum. Single crystals were obtained by re-crystallization using ethanol.

S3. Refinement

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms. The ADP value for the water molecules is rather high. Since the H atoms of the solvent water molecule could not be located, they were not included in the refinement.

Figure 1

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Figure 2

The crystal packing of the molecules viewed down c axis.

3-Isopropyl-1-{2-[(1-methyl-1*H*-tetrazol-5-yl)sulfanyl]acetyl}-2,6-diphenylpiperidin-4-one hemihydrate

Crystal data	
$C_{24}H_{27}N_5O_2S \cdot 0.5H_2O$	c = 16.5584 (5) Å
$M_r = 458.57$	$\beta = 115.303 \ (2)^{\circ}$
Monoclinic, $C2/c$	V = 4812.4 (3) Å ³
Hall symbol: -C 2yc	Z = 8
a = 28.7522 (9) Å	F(000) = 1944
b = 11.1809 (4) Å	$D_{\rm x} = 1.266 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 4157 reflections $\theta = 2.5-28.5^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD	22058 measured reflections
diffractometer	6013 independent reflections
Radiation source: fine-focus sealed tube	4157 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω and φ scans	$\theta_{\rm max} = 28.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -38 \rightarrow 37$
(SADABS; Bruker, 2008)	$k = -14 \rightarrow 14$
$T_{\min} = 0.964, \ T_{\max} = 0.972$	$l = -22 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: different
T and a manual matrices full	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.04	H-atom parameters constrained
6013 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0657P)^2 + 3.1292P]$
297 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.25 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 293 K

Block, white crystalline

 $0.22 \times 0.19 \times 0.17$ mm

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C2	0.36794 (6)	0.31060 (16)	0.37251 (12)	0.0412 (4)	
H2	0.3603	0.2457	0.3289	0.049*	
C3	0.40052 (7)	0.40262 (18)	0.35071 (12)	0.0492 (4)	
H3	0.4339	0.3659	0.3635	0.059*	
C4	0.41000 (7)	0.51029 (18)	0.41040 (13)	0.0519 (5)	
C5	0.37256 (7)	0.52979 (16)	0.45051 (12)	0.0465 (4)	
H5A	0.3715	0.6147	0.4617	0.056*	
H5B	0.3856	0.4894	0.5078	0.056*	
C6	0.31739 (6)	0.48676 (14)	0.39456 (11)	0.0388 (4)	
H6	0.3012	0.5417	0.3441	0.047*	
C7	0.28781 (6)	0.49375 (15)	0.45121 (11)	0.0402 (4)	
C8	0.25431 (7)	0.58770 (17)	0.43993 (14)	0.0519 (5)	

H8	0.2485	0.6437	0.3951	0.062*
C9	0.22951 (9)	0.5988 (2)	0.49479 (18)	0.0661 (6)
H9	0.2071	0.6625	0.4868	0.079*
C10	0.23757 (9)	0.5170 (2)	0.56082 (17)	0.0682 (6)
H10	0.2211	0.5253	0.5981	0.082*
C11	0.27031 (9)	0.4222 (2)	0.57168 (15)	0.0638 (6)
H11	0.2755	0.3657	0.6159	0.077*
C12	0.29535 (8)	0.41052 (17)	0.51762 (13)	0.0508 (4)
H12	0.3175	0.3464	0.5257	0.061*
C13	0.39463 (6)	0.25381 (16)	0.46536 (12)	0.0439 (4)
C14	0.36763 (7)	0.16991 (17)	0.48954 (14)	0.0525 (5)
H14	0.3345	0.1489	0.4490	0.063*
C15	0.38885 (9)	0.1164 (2)	0.57293 (15)	0.0640 (6)
H15	0.3698	0.0611	0.5883	0.077*
C16	0.43792 (9)	0.1451 (2)	0.63289 (16)	0.0708 (6)
H16	0.4522	0.1097	0.6891	0.085*
C17	0.46572 (8)	0.2261 (2)	0.60943 (16)	0.0712 (7)
H17	0.4991	0.2450	0.6498	0.085*
C18	0.44445 (7)	0.28039 (19)	0.52588 (14)	0.0570 (5)
H18	0.4638	0.3349	0.5106	0.068*
C19	0.37600 (8)	0.4421 (2)	0.25143 (14)	0.0598 (5)
H19	0.3441	0.4849	0.2402	0.072*
C20	0.36228 (12)	0.3358 (3)	0.18807 (16)	0.0836 (8)
H20A	0.3481	0.3639	0.1275	0.125*
H20B	0.3374	0.2867	0.1968	0.125*
H20C	0.3927	0.2896	0.2000	0.125*
C21	0.41134(12)	0.5283(3)	0.2321 (2)	0.1060 (11)
H21A	0.4432	0.4888	0 2434	0.159*
H21B	0.4181	0.5971	0.2701	0.159*
H21C	0 3950	0 5530	0 1707	0.159*
C22	0.27371 (6)	0.31101 (15)	0.30215(11)	0.0386(4)
C23	0.27371(0) 0.22425(6)	0 37998 (17)	0.27937(12)	0.0300(1) 0.0456(4)
H23A	0.2283	0.4620	0.2643	0.055*
H23R	0.2209	0.3808	0.3303	0.055*
C24	0.12585 (7)	0.3000	0.5505	0.035
C24	0.12585(7) 0.06530(10)	0.41117(17) 0.3638(2)	0.17409(13) 0.01360(17)	0.0499(4)
U25	0.00000 (10)	0.3657	-0.0062	0.0018 (8)
1125A 1125D	0.0921	0.3007	-0.0202	0.123*
11250	0.0552	0.4030	0.0292	0.123*
N1	0.0373 0.21797 (5)	0.2619 0.26560(12)	0.0199 0.35824 (0)	0.125°
	0.31787(3) 0.12550(7)	0.30309(12)	0.53824(9)	0.0308(3)
INZ	0.12330(7)	0.46734(19)	0.23410(14) 0.10271(18)	0.0093(3)
N3	0.08016 (8)	0.54/8(2)	0.193/1 (18)	0.0833 (6)
N4	0.05421 (7)	0.51015 (18)	0.11397 (18)	0.0799 (6)
IND OI	0.08241 (6)	0.42381 (15)	0.0993 / (12)	0.0600 (5)
	0.44618 (6)	0.57684 (16)	0.42809 (13)	0.0792 (5)
02	0.2/217 (5)	0.21064 (12)	0.2/106 (9)	0.0508 (3)
SI	0.173492 (17)	0.30767 (4)	0.18556 (3)	0.04999 (15)
O1W	0.0000	0.7061 (7)	0.2500	0.373 (7)

supporting information

H1W	0.0172	0.0	5692	0.2298	0.560*		
Atomic di	Atomic displacement parameters ($Å^2$)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³	
C2	0.0302 (8)	0.0449 (9)	0.0444 (9)	-0.0009 (7)	0.0121 (7)	-0.0003 (7)	
C3	0.0349 (9)	0.0609 (12)	0.0488 (10)	-0.0035 (8)	0.0152 (8)	0.0055 (8)	
C4	0.0369 (9)	0.0564 (11)	0.0538 (11)	-0.0119 (8)	0.0110 (8)	0.0054 (8)	
C5	0.0403 (9)	0.0427 (9)	0.0481 (9)	-0.0116 (7)	0.0109 (8)	-0.0033 (7)	
C6	0.0345 (8)	0.0355 (8)	0.0397 (8)	-0.0034 (6)	0.0093 (7)	0.0020 (6)	
C7	0.0379 (8)	0.0378 (9)	0.0405 (8)	-0.0080 (7)	0.0125 (7)	-0.0056 (6)	
C8	0.0477 (10)	0.0447 (10)	0.0582 (11)	-0.0021 (8)	0.0178 (9)	-0.0059 (8)	
C9	0.0559 (12)	0.0567 (13)	0.0906 (16)	-0.0078 (10)	0.0360 (12)	-0.0249 (12)	
C10	0.0721 (14)	0.0690 (14)	0.0807 (15)	-0.0302 (12)	0.0491 (13)	-0.0313 (12)	
C11	0.0796 (15)	0.0617 (13)	0.0586 (12)	-0.0225 (11)	0.0377 (12)	-0.0074 (10)	
C12	0.0568 (11)	0.0444 (10)	0.0514 (10)	-0.0058 (8)	0.0234 (9)	-0.0009 (8)	
C13	0.0315 (8)	0.0431 (9)	0.0488 (9)	0.0015 (7)	0.0091 (7)	0.0029 (7)	
C14	0.0369 (9)	0.0475 (10)	0.0594 (11)	-0.0039 (8)	0.0076 (9)	0.0079 (8)	
C15	0.0550 (12)	0.0554 (12)	0.0684 (13)	-0.0029 (10)	0.0138 (11)	0.0173 (10)	
C16	0.0609 (13)	0.0701 (14)	0.0577 (12)	0.0018 (11)	0.0028 (11)	0.0188 (11)	
C17	0.0433 (11)	0.0793 (15)	0.0615 (13)	-0.0053 (11)	-0.0057 (10)	0.0118 (11)	
C18	0.0340 (9)	0.0624 (12)	0.0614 (12)	-0.0061 (8)	0.0077 (9)	0.0094 (10)	
C19	0.0508 (11)	0.0727 (14)	0.0510(11)	-0.0044 (10)	0.0170 (9)	0.0103 (10)	
C20	0.096 (2)	0.0965 (19)	0.0498 (12)	-0.0058 (16)	0.0236 (13)	0.0015 (12)	
C21	0.104 (2)	0.139 (3)	0.0702 (16)	-0.043 (2)	0.0331 (16)	0.0237 (17)	
C22	0.0305 (8)	0.0454 (9)	0.0335 (7)	-0.0032 (7)	0.0076 (6)	0.0004 (7)	
C23	0.0312 (8)	0.0503 (10)	0.0426 (9)	-0.0025 (7)	0.0036 (7)	-0.0051 (8)	
C24	0.0332 (9)	0.0517 (10)	0.0541 (10)	-0.0021 (8)	0.0085 (8)	0.0071 (8)	
C25	0.0601 (14)	0.0748 (16)	0.0668 (14)	0.0057 (12)	-0.0146 (12)	0.0038 (12)	
N1	0.0279 (6)	0.0386 (7)	0.0373 (7)	-0.0025 (5)	0.0077 (5)	-0.0008(5)	
N2	0.0495 (10)	0.0756 (13)	0.0749 (12)	0.0097 (9)	0.0185 (9)	-0.0033 (10)	
N3	0.0576 (12)	0.0761 (14)	0.1063 (17)	0.0158 (11)	0.0254 (12)	-0.0021 (13)	
N4	0.0472 (10)	0.0623 (12)	0.1054 (17)	0.0130 (9)	0.0089 (11)	0.0096 (11)	
N5	0.0376 (8)	0.0515 (9)	0.0681 (11)	0.0017 (7)	0.0009 (8)	0.0113 (8)	
01	0.0542 (9)	0.0838 (11)	0.0987 (12)	-0.0338 (8)	0.0320 (9)	-0.0138 (9)	
O2	0.0399 (7)	0.0483 (7)	0.0540 (7)	-0.0035 (5)	0.0104 (6)	-0.0138 (6)	
S 1	0.0327 (2)	0.0534 (3)	0.0470 (3)	-0.00136 (19)	0.00093 (18)	-0.0049 (2)	
O1W	0.275 (9)	0.202 (7)	0.68 (2)	0.000	0.242 (13)	0.000	

Geometric parameters (Å, °)

C2—N1	1.489 (2)	C16—C17	1.370 (3)	
C2—C13	1.532 (2)	C16—H16	0.9300	
C2—C3	1.535 (2)	C17—C18	1.390 (3)	
С2—Н2	0.9800	C17—H17	0.9300	
C3—C4	1.507 (3)	C18—H18	0.9300	
C3—C19	1.551 (3)	C19—C20	1.522 (3)	
С3—Н3	0.9800	C19—C21	1.530 (3)	

C4—O1	1.209 (2)	С19—Н19	0.9800
C4—C5	1.503 (3)	С20—Н20А	0.9600
C5—C6	1.533 (2)	C20—H20B	0.9600
C5—H5A	0.9700	С20—Н20С	0.9600
С5—Н5В	0.9700	C21—H21A	0.9600
C6—N1	1,484 (2)	C21—H21B	0.9600
C6—C7	1.514 (2)	C21—H21C	0.9600
С6—Н6	0.9800	C22—O2	1.228 (2)
C7—C8	1.383 (3)	C22—N1	1.357 (2)
C7—C12	1.385 (3)	C22—C23	1.517 (2)
C8—C9	1.379 (3)	C23—S1	1.8052 (17)
C8—H8	0.9300	C23—H23A	0.9700
C9—C10	1.367 (4)	C23—H23B	0.9700
C9—H9	0.9300	C24—N2	1.313 (3)
C10—C11	1.378 (3)	C24—N5	1.338 (2)
C10—H10	0.9300	C24—\$1	1.741 (2)
C_{11} C_{12}	1 374 (3)	C_{25} N5	1.452(3)
C11—H11	0.9300	C25—H25A	0.9600
С12—Н12	0.9300	C25—H25B	0.9600
C13—C14	1.382 (3)	C25—H25C	0.9600
C13—C18	1.385 (2)	N2—N3	1.362 (3)
C14—C15	1.384 (3)	N3—N4	1.279 (3)
C14—H14	0.9300	N4—N5	1.347 (3)
C15—C16	1.372 (3)	O1W—H1W	0.8163
C15—H15	0.9300		
N1—C2—C13	111.48 (14)	C17—C16—H16	120.2
N1—C2—C3	109.35 (14)	C15—C16—H16	120.2
C13—C2—C3	114.81 (14)	C16—C17—C18	120.61 (19)
N1—C2—H2	106.9	C16—C17—H17	119.7
С13—С2—Н2	106.9	C18—C17—H17	119.7
С3—С2—Н2	106.9	C13—C18—C17	120.36 (19)
C4—C3—C2	109.80 (15)	C13—C18—H18	119.8
C4—C3—C19	109.92 (17)	C17—C18—H18	119.8
C2—C3—C19	113.18 (15)	C20—C19—C21	110.3 (2)
С4—С3—Н3	107.9	C20—C19—C3	111.99 (19)
С2—С3—Н3	107.9	C21—C19—C3	111.05 (18)
С19—С3—Н3	107.9	С20—С19—Н19	107.8
O1—C4—C5	120.56 (19)	C21—C19—H19	107.8
O1—C4—C3	123.12 (19)	С3—С19—Н19	107.8
C5—C4—C3	116.29 (15)	C19—C20—H20A	109.5
C4—C5—C6	116.04 (15)	C19—C20—H20B	109.5
C4—C5—H5A	108.3	H20A—C20—H20B	109.5
С6—С5—Н5А	108.3	С19—С20—Н20С	109.5
C4—C5—H5B	108.3	H20A—C20—H20C	109.5
С6—С5—Н5В	108.3	H20B-C20-H20C	109.5
H5A—C5—H5B	107.4	C19—C21—H21A	109.5
N1—C6—C7	113.78 (13)	C19—C21—H21B	109.5

N1—C6—C5	110.17 (14)	H21A—C21—H21B	109.5
C7—C6—C5	108.64 (14)	C19—C21—H21C	109.5
N1—C6—H6	108.0	H21A—C21—H21C	109.5
С7—С6—Н6	108.0	H21B—C21—H21C	109.5
С5—С6—Н6	108.0	O2—C22—N1	123.69 (16)
C8—C7—C12	118.77 (18)	O2—C22—C23	119.90 (15)
C8—C7—C6	119.93 (16)	N1—C22—C23	116.41 (14)
С12—С7—С6	121.23 (16)	C22—C23—S1	108.28 (12)
C9—C8—C7	120.4 (2)	С22—С23—Н23А	110.0
С9—С8—Н8	119.8	S1—C23—H23A	110.0
С7—С8—Н8	119.8	С22—С23—Н23В	110.0
С10—С9—С8	120.5 (2)	S1—C23—H23B	110.0
С10—С9—Н9	119.7	H23A—C23—H23B	108.4
С8—С9—Н9	119.7	N2—C24—N5	108.97 (18)
C9—C10—C11	119.5 (2)	N2—C24—S1	127.57 (15)
C9—C10—H10	120.3	N5—C24—S1	123.46 (16)
C11—C10—H10	120.3	N5—C25—H25A	109.5
C12—C11—C10	120.5 (2)	N5—C25—H25B	109.5
C12—C11—H11	119.8	H25A—C25—H25B	109.5
C10—C11—H11	119.8	N5—C25—H25C	109.5
C11—C12—C7	120.4 (2)	H25A—C25—H25C	109.5
C11—C12—H12	119.8	H25B—C25—H25C	109.5
C7—C12—H12	119.8	C22—N1—C6	121.37 (13)
C14—C13—C18	118.14 (17)	C22—N1—C2	118.73 (14)
C14—C13—C2	118.02 (15)	C6—N1—C2	119.27 (13)
C18—C13—C2	123.84 (17)	C24—N2—N3	105.37 (19)
C13—C14—C15	121.32 (18)	N4—N3—N2	111.0 (2)
C13—C14—H14	119.3	N3—N4—N5	106.89 (18)
C15—C14—H14	119.3	C24—N5—N4	107.78 (19)
C16—C15—C14	120.0 (2)	C24—N5—C25	130.34 (19)
C16—C15—H15	120.0	N4—N5—C25	121.86 (18)
C14—C15—H15	120.0	C24—S1—C23	96.05 (9)
C17—C16—C15	119.6 (2)		
N1—C2—C3—C4	59.75 (18)	C2-C13-C18-C17	179.1 (2)
C13—C2—C3—C4	-66.4 (2)	C16—C17—C18—C13	0.4 (4)
N1—C2—C3—C19	-63.5 (2)	C4—C3—C19—C20	-176.12 (19)
C13—C2—C3—C19	170.36 (17)	C2—C3—C19—C20	-53.0 (2)
C2—C3—C4—O1	155.9 (2)	C4—C3—C19—C21	60.0 (3)
C19—C3—C4—O1	-79.0 (2)	C2—C3—C19—C21	-176.8 (2)
C2—C3—C4—C5	-22.2 (2)	O2—C22—C23—S1	-14.3 (2)
C19—C3—C4—C5	102.97 (19)	N1-C22-C23-S1	166.62 (12)
O1-C4-C5-C6	151.13 (19)	O2—C22—N1—C6	-179.37 (15)
C3—C4—C5—C6	-30.8 (2)	C23—C22—N1—C6	-0.3 (2)
C4—C5—C6—N1	45.1 (2)	O2-C22-N1-C2	9.8 (2)
C4—C5—C6—C7	170.36 (15)	C23—C22—N1—C2	-171.18 (14)
N1—C6—C7—C8	-135.30 (16)	C7—C6—N1—C22	61.59 (19)
C5—C6—C7—C8	101.58 (18)	C5—C6—N1—C22	-176.13 (14)

N1—C6—C7—C12 C5—C6—C7—C12 C12—C7—C8—C9 C6—C7—C8—C9	47.8 (2) -75.3 (2) 0.9 (3) -176.10 (17) -0.2 (3)	C7—C6—N1—C2 C5—C6—N1—C2 C13—C2—N1—C22 C3—C2—N1—C22	-127.61 (15) -5.3 (2) -107.47 (17) 124.49 (16) 81.48 (17)
$\begin{array}{c} C8-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C7\\ C8-C7-C12-C11\\ C6-C7-C12-C11\\ N1-C2-C13-C14\\ C3-C2-C13-C14\\ N1-C2-C13-C18\\ C3-C2-C13-C18\\ C18-C13-C14-C15\\ \end{array}$	-0.7 (3) 1.0 (3) -0.3 (3) -0.7 (3) 176.30 (17) 55.1 (2) -179.87 (17) -125.88 (19) -0.8 (3) 2.1 (3)	C3-C2-N1-C6 N5-C24-N2-N3 S1-C24-N2-N3 C24-N2-N3-N4 N2-N3-N4-N5 N2-C24-N5-N4 S1-C24-N5-N4 N2-C24-N5-C25 S1-C24-N5-C25 N3-N4-N5-C24	-46.55 (19) 0.1 (2) -179.61 (17) 0.3 (3) -0.6 (3) -0.4 (2) 179.29 (15) 177.7 (2) -2.5 (3) 0.6 (3)
C2-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C15-C16-C17-C18 C14-C13-C18-C17	-178.76 (19) -1.1 (4) -0.4 (4) 0.7 (4) -1.8 (3)	N3—N4—N5—C25 N2—C24—S1—C23 N5—C24—S1—C23 C22—C23—S1—C24	-177.7 (2) -19.8 (2) 160.54 (17) -176.64 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C25—H25C····O1 ⁱ	0.96	2.47	3.406 (3)	166
C18—H18…O1 ⁱⁱ	0.93	2.54	3.312 (2)	140
C25—H25 <i>B</i> ····N4 ⁱⁱⁱ	0.96	2.54	3.472 (3)	165

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*.