

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Epibisdehydroneotuberostemonine I

Lu Jin,^a Rong-Rong Zhang,^a Hai-Yan Tian,^a Paul Pui-Hay But^b and Ren-Wang liang^a*

^aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and ^bSchool of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China Correspondence e-mail: trwjiang@jnu.edu.cn

Received 4 July 2013; accepted 29 July 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.093; data-to-parameter ratio = 7.8.

The title compound, C22H29NO4, a stemona alkaloid, is composed of two lactone rings (A and E), a six-membered ring (B), a pyrrole ring (C) and a seven-membered ring (D). The five-membered rings A and E exhibit envelope conformations (C atoms as flaps) while ring C is planar. Ring B exhibits a twist-chair conformation due to fusion with pyrrole ring Cwhile ring D adopts a chair conformation. The junction between rings A and B is cis. In the crystal, weak $C-H \cdots O$ interactions involving the two carbonyl groups, a methylene and a methyl group give rise to a three-dimensional network.

Related literature

For general background to the structures and biological activity of stemona alkaloids, see: Pilli et al. (2010). For the antitussive activity of epibisdehydroneotuberostemonine J and other stemona alkaloids, see: Chung et al. (2003); Xu et al. (2010). For other properties of and studies on Stemona alkaloids, see: Chung et al. (2003); Frankowski et al. (2008, 2011); Jiang et al. (2006); Zhang et al. (2011). For an absolute structure reference, see: Jiang et al. (2010). For related isomers, see: Pham et al. (2002).

organic compounds

2449 measured reflections

 $R_{\rm int} = 0.022$

1 restraint

 $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

1914 independent reflections

1383 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

C22H29NO4	V = 985.6 (4) Å ³
$M_r = 371.46$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 6.3596 (19) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 18.495 (3) Å	$T = 291 { m K}$
c = 8.3875 (15) Å	$0.43 \times 0.28 \times 0.20 \text{ mm}$
$\beta = 92.521 \ (18)^{\circ}$	

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min}=0.831,\;T_{\rm max}=1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ wR(F²) = 0.093 S = 1.051914 reflections 245 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C5 - H5A \cdots O2^{i}$ $C5 - H5B \cdots O4^{ii}$ $C22 - H22B \cdots O4^{iii}$	0.97 0.97 0.96	2.60 2.66 2.63	3.531 (4) 3.595 (3) 3.496 (4)	161 162 150

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) x, y, z + 1; (iii) x - 1, y, z.

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SAINT and XPREP (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a grant of the Guangdong High Level Talent Scheme (RWJ) from Guangdong province and the Fundamental Research Funds for the Cental Universities (21612603) from the Ministry of Education, P. R. of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2558).

References

- Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA
- Chung, H.-S., Hon, P.-M., Lin, G., But, P. P.-H. & Dong, H. (2003). Planta Med. **69**, 914–920.
- Frankowski, K.-J., Golden, J.-E., Zeng, Y., Lei, Y. & Aubé, J. (2008). J. Am. Chem. Soc. 130, 6018-6024.
- Frankowski, K.-J., Setola, V., Evans, J.-M., Neuenswander, B., Roth, B.-L. & Aubé, J. (2011). Proc. Natl. Acad. Sci. USA, 108, 6727-6732.
- Jiang, R.-W., Hon, P.-M., Zhou, Y., Xu, Y.-T., Chan, Y.-M., Xu, Y.-T., Xu, H.-X., Shaw, P.-C. & But, P. P.-H. (2006). J. Nat. Prod. 69, 749-754.
- Jiang, R.-W., Ye, W.-C., Shaw, P.-C., But, P. P.-H. & Mak, T. C.-W. (2010). J. Mol. Struct. 966, 18-22.
- Pham, H.-D., Yu, B.-W., Chau, V.-M., Ye, Y. & Qin, G.-W. (2002). J. Asian Nat. Prod. Res. 4, 81-85.

Pilli, R.-A., Rossoa, G.-B. & Ferreira de Oliveira, M.-C. (2010). *Nat. Prod. Rep.* **27**, 1908–1937.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Xu, Y.-T., Shaw, P.-C., Jiang, R.-W., Hon, P.-M., Chan, Y.-M. & But, P. P.-H. (2010). J. Ethnopharmacol. 128, 679–684.
- Zhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, 03056.

supporting information

Acta Cryst. (2013). E69, o1369-o1370 [doi:10.1107/S1600536813021077]

Epibisdehydroneotuberostemonine J

Lu Jin, Rong-Rong Zhang, Hai-Yan Tian, Paul Pui-Hay But and Ren-Wang Jiang

S1. Comment

Radix Stemonae extracts derived from the root of Stemona tuberosa (Stemonaceae family) are often used as an antitussive drug to treat respiratory disorders. The alkaloids were found to be the major components responsible for the antitussive activity (Xu *et al.*, 2010). The intriguing structures and pharmacological activities of this fascinating class of compounds have attracted considerable attention (Pilli *et al.*, 2010), and a number of total syntheses (Frankowski *et al.*, 2008), structural modifications (Frankowski *et al.*, 2011) and phytochemical studies (Jiang *et al.*, 2006, Zhang *et al.*, 2011) on new Stemona alkaloids have appeared in recent years.

The title compound $C_{22}H_{29}N_1O_4$ (Fig. 1) is a Stemona alkaloid. It was first isolated from the roots of Stemona tuberosa ten years ago (Chung *et al.*, 2003) and found to show antitussive activity (Chung *et al.*, 2003); however, its crystal structure had not been reported.

During our on-going search for antitussive natural products, epibisdehydroneotuberostemonine J was isolated again from Stemona tuberosa. It is an isomer of bisdehydroneotuberostemonine (Pham *et al.*, 2002) at C-9 and C-18. The molecule is composed of two lactone ring (A and E), a six-membered ring (B), a pyrrole ring (C) and a seven-membered ring (D). The five-membered rings A and E exhibit envelope conformations while ring C is planar. The six-membered ring B exhibits a twist chair conformation due to fusion with the pyrrole ring C. The seven-membered ring D adopts a chair conformation, in which the atoms C-5, C-6, C-8, C-9 form a plane with a mean deviation of 0.043 (2) Å, and the atoms C-9 A, N-4 and C-7 displaced by -1.070 (3), -1.040 (2) and 0.662 (4) Å from the plane, respectively.

Weak intermolecular C–H···O interactions (Table 1) involving the two carbonyl groups (O-2 and O-4), a methylene (C-5) and a methyl group (C-22) give a three-dimensional structure.

S2. Experimental

A dry ground herbal sample of Radix Stemonae (5.0 kg) was suspended in 95% EtOH (10 *L*) and heated for two hours to reflux of the solvent. After filtration, the solvent was evaporated under reduced pressure. The residue was acidified with 4% HCl (400 ml) and filtered with Whatman filter papers, then the filtrate (acidic aqueous solution) was washed with diethyl ether (500 ml). The H₂O layer was basified to pH = 9 with aqueous ammonia (35%) and then extracted with Et₂O (500 ml). The Et₂O layer was evaporated to afford the crude alkaloids (15 g), which were subjected to column chromatography over silica gel, and eluted with chloroform: methanol: amonia (98: 2: 0.05) to yield ten fractions. Fraction 3 (2 g), a low polar fraction with an Rf value larger than 0.7 on a normal phase TLC plate (mobile phase cyclohexane: ethyl acetate 1: 1), was subjected to a second separation by silica-gel chromatography with cyclohexane: ethyl acetate (7: 3) as the eluent to yield the title compound (180 mg, colorless powder, Rf = 0.76 at the same TLC condition as bulk fraction 3), which was identified by comparision of the physical and spectroscopic data with the literature (Chung *et al.*, 2003). Colorless crystals suitable for single crystal diffraction were obtained from a mixture of cyclohexane: ethyl acetate at room temperature.

S3. Refinement

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH₃) and $U_{iso}(H) = 1.5U_{eq}(C)$; 0.97 Å (CH₂) and $U_{iso}(H) = 1.2U_{eq}(C)$; 0.98 Å (CH) and $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of anomalous scatterers and a low Friedel pair coverage the absolute configuration was assigned based on the closely related reference molecule neostenine with known configurations at C-10 and C-13 (Jiang *et al.* (2010)). The highest residual electron density is 0.13 and of no physical meaning.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Packing diagram viewed down the *a* axis.

(9*R*,10*R*,11*S*,14*S*,15*R*)-3-[(2*S*,5*S*)-4,5-dimethyloxolan-2-yl]-10-ethyl-14-methyl-12-oxa-4-azatetracyclo[7.6.1.0^{4,16}.0^{11,15}]hexadeca-1(16),2-dien-13-one

Crystal data	
$C_{22}H_{29}NO_4$ $M_r = 371.46$ Monoclinic, $P2_1$ $a = 6.3596$ (19) Å $b = 18.495$ (3) Å $c = 8.3875$ (15) Å $\beta = 92.521$ (18)° $V = 985.6$ (4) Å ³ $Z = 2$	F(000) = 400 $D_x = 1.252 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2449 reflections $\theta = 2.2-24.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 291 K Prism, colorless $0.43 \times 0.28 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer Radiation source: sealed tube ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.831, T_{\max} = 1.000$ 2449 measured reflections	1914 independent reflections 1383 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -1 \rightarrow 7$ $k = -1 \rightarrow 21$ $l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.0285P]$
S = 1.05	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1914 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
245 parameters	$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
01	0.5763 (4)	0.32620 (15)	0.2326 (4)	0.0552 (8)
O2	0.6531 (5)	0.36723 (17)	-0.0073 (4)	0.0716 (9)
O3	0.4293 (4)	0.02284 (15)	-0.1869 (3)	0.0472 (7)
O4	0.5576 (4)	-0.01361 (17)	-0.4150 (3)	0.0611 (9)
C1	0.2603 (6)	0.2093 (2)	0.1225 (5)	0.0451 (11)
C2	0.1727 (6)	0.1714 (2)	-0.0118 (5)	0.0469 (10)
H2A	0.0781	0.1903	-0.0886	0.056*
C3	0.2514 (6)	0.1021 (2)	-0.0095 (5)	0.0418 (10)
N4	0.3821 (5)	0.09614 (16)	0.1254 (4)	0.0404 (8)
C5	0.5164 (6)	0.0346 (2)	0.1696 (5)	0.0449 (10)
H5A	0.4792	-0.0063	0.1015	0.054*
H5B	0.4929	0.0208	0.2790	0.054*
C6	0.7464 (6)	0.0528 (2)	0.1536 (5)	0.0483 (11)
H6A	0.8247	0.0079	0.1468	0.058*
H6B	0.7611	0.0785	0.0540	0.058*
C7	0.8456 (6)	0.0977 (2)	0.2873 (5)	0.0505 (11)
H7A	0.9952	0.1014	0.2707	0.061*
H7B	0.8298	0.0720	0.3868	0.061*
C8	0.7586 (6)	0.1742 (2)	0.3066 (5)	0.0472 (10)
H8A	0.7729	0.2005	0.2076	0.057*
H8B	0.8419	0.1991	0.3892	0.057*
C9A	0.3875 (6)	0.1609 (2)	0.2037 (5)	0.0426 (10)
C9	0.5259 (6)	0.1751 (2)	0.3501 (4)	0.0440 (10)

H9A	0.5059	0.1348	0.4236	0.053*
C10	0.4468 (7)	0.2435 (2)	0.4320 (5)	0.0501 (11)
H10A	0.3150	0.2295	0.4798	0.060*
C11	0.3881 (7)	0.3036 (2)	0.3145 (5)	0.0557 (12)
H11A	0.3360	0.3449	0.3742	0.067*
C12	0.2296 (6)	0.2868 (2)	0.1766 (5)	0.0493 (11)
H12A	0.0855	0.2939	0.2102	0.059*
C13	0.2864 (7)	0.3445 (2)	0.0563 (5)	0.0561 (12)
H13A	0.2310	0.3903	0.0954	0.067*
C14	0.5207 (8)	0.3479 (2)	0.0821 (6)	0.0556 (12)
C15	0.2115 (7)	0.3382 (3)	-0.1162 (6)	0.0708 (14)
H15A	0.2599	0.3792	-0.1745	0.106*
H15B	0.0605	0.3368	-0.1232	0.106*
H15C	0.2665	0.2947	-0.1608	0.106*
C16	0.5885 (7)	0.2711 (3)	0.5694 (5)	0.0615 (13)
H16A	0.5235	0.3133	0.6154	0.074*
H16B	0.7215	0.2863	0.5279	0.074*
C17	0.6320 (8)	0.2152 (3)	0.7012 (6)	0.0754 (15)
H17A	0.7226	0.2360	0.7836	0.113*
H17B	0.6990	0.1736	0.6573	0.113*
H17C	0.5016	0.2009	0.7454	0.113*
C18	0.2231 (5)	0.0417 (2)	-0.1246 (5)	0.0438 (10)
H18A	0.1681	-0.0004	-0.0688	0.053*
C19	0.0829 (7)	0.0565 (2)	-0.2721 (5)	0.0574 (12)
H19A	-0.0591	0.0393	-0.2578	0.069*
H19B	0.0778	0.1078	-0.2957	0.069*
C20	0.1851 (6)	0.0151 (3)	-0.4045 (5)	0.0504 (11)
H20A	0.1825	0.0449	-0.5011	0.060*
C21	0.4088 (6)	0.0065 (2)	-0.3421 (5)	0.0457 (10)
C22	0.0893 (7)	-0.0577 (3)	-0.4437 (7)	0.0806 (16)
H22A	0.1641	-0.0799	-0.5278	0.121*
H22B	-0.0558	-0.0516	-0.4776	0.121*
H22C	0.0985	-0.0879	-0.3507	0.121*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0521 (19)	0.0380 (17)	0.076 (2)	-0.0075 (15)	0.0086 (17)	0.0000 (16)
O2	0.072 (2)	0.051 (2)	0.093 (2)	-0.0096 (18)	0.0255 (19)	0.0111 (19)
O3	0.0362 (15)	0.0522 (17)	0.0528 (17)	0.0054 (14)	-0.0032 (13)	-0.0032 (16)
O4	0.0454 (18)	0.079 (2)	0.0597 (18)	0.0066 (18)	0.0107 (16)	0.0065 (18)
C1	0.038 (2)	0.036 (2)	0.062 (3)	-0.001 (2)	0.009 (2)	0.002 (2)
C2	0.032 (2)	0.041 (2)	0.068 (3)	0.003 (2)	-0.001 (2)	0.005 (2)
C3	0.034 (2)	0.034 (2)	0.057 (3)	-0.0011 (19)	0.002 (2)	-0.001 (2)
N4	0.0352 (17)	0.0295 (18)	0.056 (2)	0.0002 (16)	0.0012 (16)	-0.0011 (17)
C5	0.047 (2)	0.036 (2)	0.052 (2)	0.005 (2)	-0.001 (2)	0.001 (2)
C6	0.042 (2)	0.042 (2)	0.061 (3)	0.006 (2)	-0.002 (2)	0.000 (2)
C7	0.038 (2)	0.053 (3)	0.060 (3)	0.002 (2)	0.002 (2)	0.008 (2)

C8	0.038 (2)	0.046 (2)	0.058 (3)	-0.008 (2)	0.0031 (19)	-0.004 (2)	
C9A	0.035 (2)	0.036 (2)	0.058 (3)	-0.0071 (19)	0.006 (2)	-0.002 (2)	
C9	0.044 (2)	0.036 (2)	0.052 (2)	-0.007 (2)	0.0098 (19)	-0.005 (2)	
C10	0.048 (3)	0.037 (2)	0.066 (3)	-0.008(2)	0.013 (2)	-0.004 (2)	
C11	0.054 (3)	0.040 (3)	0.074 (3)	0.002 (2)	0.018 (3)	-0.015 (2)	
C12	0.041 (2)	0.038 (2)	0.070 (3)	0.004 (2)	0.010 (2)	0.001 (2)	
C13	0.059 (3)	0.033 (2)	0.076 (3)	0.009 (2)	0.009 (3)	0.002 (2)	
C14	0.071 (3)	0.024 (2)	0.074 (3)	-0.004 (2)	0.015 (3)	0.001 (2)	
C15	0.074 (3)	0.047 (3)	0.092 (4)	0.006 (3)	0.009 (3)	0.008 (3)	
C16	0.072 (3)	0.053 (3)	0.061 (3)	-0.009 (3)	0.010 (3)	-0.012 (3)	
C17	0.083 (4)	0.077 (4)	0.066 (3)	0.000 (3)	0.003 (3)	-0.008 (3)	
C18	0.029 (2)	0.044 (3)	0.059 (2)	-0.001 (2)	0.0064 (19)	-0.006(2)	
C19	0.042 (2)	0.054 (3)	0.076 (3)	0.008 (2)	-0.012 (2)	-0.008 (3)	
C20	0.045 (2)	0.051 (3)	0.055 (2)	0.008 (2)	-0.008(2)	0.004 (2)	
C21	0.042 (2)	0.043 (2)	0.052 (3)	0.002 (2)	-0.001 (2)	0.007 (2)	
C22	0.055 (3)	0.062 (3)	0.123 (4)	0.008 (3)	-0.020 (3)	-0.022 (3)	

Geometric parameters (Å, °)

O1—C14	1.356 (5)	C10—C16	1.519 (5)
01—C11	1.467 (5)	C10—C11	1.520 (6)
O2—C14	1.207 (5)	C10—H10A	0.9800
O3—C21	1.337 (4)	C11—C12	1.533 (6)
O3—C18	1.475 (4)	C11—H11A	0.9800
O4—C21	1.207 (4)	C12—C13	1.523 (6)
C1C9A	1.368 (5)	C12—H12A	0.9800
C1—C2	1.420 (5)	C13—C14	1.498 (6)
C1-C12	1.518 (6)	C13—C15	1.507 (6)
C2—C3	1.375 (5)	C13—H13A	0.9800
C2—H2A	0.9300	C15—H15A	0.9600
C3—N4	1.378 (5)	C15—H15B	0.9600
C3—C18	1.483 (5)	C15—H15C	0.9600
N4—C9A	1.366 (5)	C16—C17	1.530 (6)
N4—C5	1.462 (5)	C16—H16A	0.9700
C5—C6	1.513 (5)	C16—H16B	0.9700
С5—Н5А	0.9700	C17—H17A	0.9600
С5—Н5В	0.9700	C17—H17B	0.9600
С6—С7	1.512 (5)	C17—H17C	0.9600
С6—Н6А	0.9700	C18—C19	1.518 (5)
С6—Н6В	0.9700	C18—H18A	0.9800
С7—С8	1.529 (6)	C19—C20	1.518 (6)
C7—H7A	0.9700	C19—H19A	0.9700
С7—Н7В	0.9700	C19—H19B	0.9700
C8—C9	1.540 (5)	C20—C21	1.503 (5)
C8—H8A	0.9700	C20—C22	1.508 (6)
C8—H8B	0.9700	C20—H20A	0.9800
С9А—С9	1.502 (5)	C22—H22A	0.9600
C9—C10	1.534 (6)	C22—H22B	0.9600

supporting information

С9—Н9А	0.9800	С22—Н22С	0.9600
C14	109.6 (3)	C1—C12—C11	109.1 (3)
$C_{21} = 0_{3} = C_{18}$	1104(3)	C_{13} C_{12} C_{11}	101.0(3)
C9A-C1-C2	106.0(3)	C1-C12-H12A	110.3
C9A-C1-C12	1233(4)	C_{13} C_{12} H_{12A}	110.3
C_{2} C_{1} C_{1} C_{12}	129.5(1) 130.7(4)	C_{11} C_{12} H_{12A}	110.3
C_{3} C_{2} C_{1}	108.6(4)	C_{14} C_{13} C_{15}	1144(4)
$C_3 - C_2 - H_2 A$	125.7	C_{14} C_{13} C_{12}	101.3(4)
C1 - C2 - H2A	125.7	C_{15} C_{13} C_{12} C_{12}	101.5(4) 120 5(4)
$C_1 = C_2 = M_2 A$	123.7 107.0(4)	C14 $C13$ $H13A$	120.5 (4)
$C_2 = C_3 = C_1 R$	107.0(4) 131.3(4)	C_{15} C_{13} H_{13A}	106.6
$C_2 - C_3 - C_{18}$	131.3(4) 121.7(2)	C_{12} C_{12} H_{12} H_{12}	106.6
N4 - C3 - C18	121.7(3) 100.1(2)	C12 - C13 - HISA	100.0
C9A = N4 = C5	109.1(3) 124.0(2)	02 - 014 - 01	120.4(4)
$C_{2} N_{4} C_{5}$	124.0(5)	02 - C14 - C13	129.8(3)
C_3 —N4—C5	120.5 (5)	OI = C14 = C13	109.9 (4)
N4-C5-C6	111.1 (3)	CI3—CI5—HI5A	109.5
N4—C5—H5A	109.4	С13—С15—Н15В	109.5
С6—С5—Н5А	109.4	Н15А—С15—Н15В	109.5
N4—C5—H5B	109.4	C13—C15—H15C	109.5
C6—C5—H5B	109.4	H15A—C15—H15C	109.5
H5A—C5—H5B	108.0	H15B—C15—H15C	109.5
C7—C6—C5	115.5 (3)	C10—C16—C17	113.8 (4)
С7—С6—Н6А	108.4	C10—C16—H16A	108.8
С5—С6—Н6А	108.4	C17—C16—H16A	108.8
С7—С6—Н6В	108.4	C10—C16—H16B	108.8
С5—С6—Н6В	108.4	C17—C16—H16B	108.8
H6A—C6—H6B	107.5	H16A—C16—H16B	107.7
C6—C7—C8	116.5 (3)	С16—С17—Н17А	109.5
С6—С7—Н7А	108.2	С16—С17—Н17В	109.5
С8—С7—Н7А	108.2	H17A—C17—H17B	109.5
С6—С7—Н7В	108.2	C16—C17—H17C	109.5
С8—С7—Н7В	108.2	H17A—C17—H17C	109.5
H7A—C7—H7B	107.3	H17B—C17—H17C	109.5
C7—C8—C9	113.1 (3)	O3—C18—C3	108.9 (3)
С7—С8—Н8А	109.0	O3—C18—C19	104.7 (3)
С9—С8—Н8А	109.0	C3—C18—C19	116.4 (3)
С7—С8—Н8В	109.0	O3—C18—H18A	108.9
C9—C8—H8B	109.0	C3—C18—H18A	108.9
H8A—C8—H8B	107.8	C19—C18—H18A	108.9
N4-C9A-C1	109.4 (3)	C_{20} C_{19} C_{18}	1045(3)
N4—C9A—C9	1233(3)	C20-C19-H19A	110.9
C1—C9A—C9	127.2 (4)	C18—C19—H19A	110.9
C9A - C9 - C10	108 6 (3)	C20—C19—H19B	110.9
C9A - C9 - C8	109.8 (3)	C18— $C19$ — $H19B$	110.9
C10-C9-C8	116.9 (3)	H10A - C19 - H10R	108.9
$C_{0} = C_{0} = H_{0}$	107.0	C_{21} C_{20} C_{22}	110.4(A)
C10-C9-H9A	107.0	$C_{21} = C_{20} = C_{22}$	103 2 (3)
-0	10/.0	021 - 020 - 017	100.2 (0)

С8—С9—Н9А	107.0	C22—C20—C19	115.3 (4)
C16—C10—C11	111.5 (3)	C21—C20—H20A	109.2
C16—C10—C9	114.9 (4)	С22—С20—Н20А	109.2
C11—C10—C9	112.8 (3)	С19—С20—Н20А	109.2
C16—C10—H10A	105.6	O4—C21—O3	121.2 (3)
C11—C10—H10A	105.6	04-C21-C20	127.4 (4)
C9-C10-H10A	105.6	03-C21-C20	1114(4)
01-C11-C10	109.3 (3)	C20—C22—H22A	109 5
01 - C11 - C12	103.1(3)	$C_{20} = C_{22} = H_{22}R$	109.5
C_{10} C_{11} C_{12}	105.1(3) 118.4(3)	H_{22} H_{22} H_{22} H_{22} H_{22} H_{22}	109.5
01 011 H11A	108.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{10} C_{11} H_{11A}	108.5		109.5
	108.5	H22A - C22 - H22C	109.5
C12— $C12$ — $C12$	108.5	П22Б—С22—П22С	109.5
C1 = C12 = C13	115.3 (3)		
C9A—C1—C2—C3	-0.9(5)	C9A—C1—C12—C13	122.1 (4)
$C_{12} - C_{1} - C_{2} - C_{3}$	179 3 (4)	C_{2} C_{1} C_{12} C_{13}	-581(6)
C1 - C2 - C3 - N4	179.3(1)	$C_{2} = C_{1} = C_{12} = C_{13}$	93(5)
C1 - C2 - C3 - C18	-175.9(4)	C_{2} C_{1} C_{12} C_{11}	-170.9(4)
$C_1 = C_2 = C_3 = C_{18}$	-1.1(4)	01 011 012 011	86 1 (4)
$C_2 = C_3 = N_4 = C_3 A$	1.1(4) 176A(3)	$C_{10} = C_{11} = C_{12} = C_{1}$	-347(5)
C_{10} C_{2} C_{3} C_{4} C_{5}	170.4(3)	C10-C11-C12-C1	-34.7(3)
$C_2 = C_3 = N_4 = C_5$	-1/5.7(5)	01 - 01 - 012 - 013	-33.8(4)
C18 - C3 - N4 - C5	3.8 (6)	C10-C11-C12-C13	-156.5 (4)
C9A—N4—C5—C6	-62.4 (5)	C1—C12—C13—C14	-80.9 (4)
C3—N4—C5—C6	109.1 (4)	C11—C12—C13—C14	36.6 (4)
N4—C5—C6—C7	78.0 (4)	C1—C12—C13—C15	46.5 (5)
C5—C6—C7—C8	-64.2 (5)	C11—C12—C13—C15	163.9 (4)
C6—C7—C8—C9	63.6 (5)	C11—O1—C14—O2	-178.3 (4)
C3—N4—C9A—C1	0.5 (4)	C11—O1—C14—C13	2.8 (4)
C5—N4—C9A—C1	173.3 (3)	C15—C13—C14—O2	24.3 (7)
C3—N4—C9A—C9	-175.8 (3)	C12-C13-C14-O2	155.6 (4)
C5—N4—C9A—C9	-3.0 (6)	C15-C13-C14-O1	-157.0 (3)
C2-C1-C9A-N4	0.2 (4)	C12-C13-C14-O1	-25.7 (4)
C12—C1—C9A—N4	-180.0 (4)	C11—C10—C16—C17	173.3 (4)
C2—C1—C9A—C9	176.4 (4)	C9—C10—C16—C17	-56.7 (5)
C12—C1—C9A—C9	-3.8 (6)	C21—O3—C18—C3	-141.6(3)
N4—C9A—C9—C10	-163.9 (4)	C21—O3—C18—C19	-16.5 (4)
C1—C9A—C9—C10	20.4 (6)	C2-C3-C18-O3	117.6 (4)
N4—C9A—C9—C8	67.1 (5)	N4—C3—C18—O3	-59.2(4)
C1-C9A-C9-C8	-108.6(5)	C_{2} C_{3} C_{18} C_{19}	-0.4(6)
C7-C8-C9-C9A	-781(4)	N4-C3-C18-C19	-1772(3)
C7-C8-C9-C10	157 7 (4)	03-C18-C19-C20	237(4)
$C_{0}^{0} - C_{0}^{0} - C_{10}^{0} - C_{16}^{16}$	-1719(3)	C_{3} C_{18} C_{19} C_{20}	144.0(3)
C_{8} C_{9} C_{10} C_{16}	-47.0(5)	C18 - C19 - C20 - C21	-221(4)
$C_{0} = C_{0} = C_{10} = C_{10}$	-425(3)	$C_{10} = C_{10} = C_{20} = C_{21}$	22.1(7)
C_{3} C_{4} C_{10} C_{11}	۲2.3 (ד) 82.3 (5)	$C_{10} = C_{17} = C_{20} = C_{22}$	-1767(4)
$C_{14} = C_{10} = C_{11} = C_{10}$	1491(2)	$C_{10} = 0_{3} = 0_{4}$	1/0.7(4)
$C_{14} = O_{1} = C_{11} = C_{10}$	140.1(3)	$C_{10} = 0_{3} = 0_{21} = 0_{21}$	2.1(3)
U14 - U1 - U11 - U12	21.5 (4)	$U_{22} - U_{20} - U_{21} - U_{4}$	08.0(6)

C16—C10—C11—O1	67.9 (4)	C19—C20—C21—O4	-168.2 (4)
C9—C10—C11—O1	-63.2 (4)	C22—C20—C21—O3	-110.7 (4)
C16-C10-C11-C12	-174.5 (3)	C19—C20—C21—O3	13.1 (5)
C9—C10—C11—C12	54.4 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5A···O2 ⁱ	0.97	2.60	3.531 (4)	161
C5—H5 <i>B</i> ···O4 ⁱⁱ	0.97	2.66	3.595 (3)	162
C22—H22 <i>B</i> ···O4 ⁱⁱⁱ	0.96	2.63	3.496 (4)	150

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) *x*, *y*, *z*+1; (iii) *x*-1, *y*, *z*.