$\beta = 92.216 \ (5)^{\circ}$

Z = 2

V = 3138.8 (16) Å³

Mo $K\alpha$ radiation

 $0.48 \times 0.37 \times 0.09 \text{ mm}$

22006 measured reflections

7181 independent reflections

6007 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.10 \text{ mm}^{-1}$

T = 98 K

 $R_{\rm int} = 0.056$

refinement $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,9-dimethyl-1,10-phenanthrolin-1ium) 2,5-dicarboxybenzene-1,4-dicarboxylate-2,9-dimethyl-1,10-phenanthroline-benzene-1,2,4,5-tetracarboxylic acid (1/2/1)

Hadi D. Arman,^a Trupta Kaulgud^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 10 August 2013; accepted 12 August 2013

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.062; wR factor = 0.148; data-to-parameter ratio = 15.4.

The asymmetric unit of the title co-crystal, $2C_{14}H_{13}N_2^+$. $C_{10}H_4O_8^{2-} \cdot 2C_{14}H_{12}N_2 \cdot C_{10}H_6O_8$, comprises a 2,9-dimethyl-1,10-phenanthrolin-1-ium cation (Me₂PhenH⁺) and a 2,9dimethyl-1,10-phenanthroline molecule (Me₂Phen), each in a general position, and half each of a 2,5-dicarboxybenzene-1,4dicarboxylate dianion (LH_2^{2-}) and a benzene-1,2,4,5-tetracarboxylic acid molecule (LH_4) , each being disposed about a centre of inversion. Small twists are evident in the dianion [the C-C-C-O torsion angles are 168.41 (18) and 16.2 (3)°], whereas a major twist is found for one carboxylic acid group in the neutral molecule $[C-C-C-O = 66.3 (2) \text{ and } 18.2 (3)^{\circ}].$ The most prominent feature of the crystal packing is the formation of linear supramolecular chains along [001] mediated by charge-assisted $O-H \cdots O^-$ hydrogen bonding between alternating LH_4 and LH_2^{2-} . These are connected to the Me₂PhenH⁺ and Me₂Phen species by N-H···O and O-H...N hydrogen bonds, respectively. A three-dimensional architecture is formed by C-H···O and π - π interactions [inter-centroid distance = 3.5337(17) Å].

Related literature

For salt formation with benzene-1,2,4,5-tetracarboxylic acid, see: Arman & Tiekink (2013). For a co-crystal involving 2,9-dimethyl-1,10-phenanthroline, see: Arman *et al.* (2010). For the structure of a 2,9-dimethyl-1,10-phenanthrolin-1-ium carboxylate salt, see: Derikvand & Olmstead (2011).

Experimental

Crystal data

 $\begin{array}{l} 2{\rm C}_{14}{\rm H}_{13}{\rm N}_2^{+}{\rm \cdot}{\rm C}_{10}{\rm H}_4{\rm O}_8^{-2}{\rm \cdot}{\rm 2}{\rm C}_{14}{\rm H}_{12}{\rm N}_2{\rm \cdot}{\rm -}{\rm C}_{10}{\rm H}_6{\rm O}_8 \\ M_r = 1341.32 \\ {\rm Monoclinic, $P2_1/n$} \\ a = 11.798 \ (4) \ {\rm \AA} \\ b = 13.893 \ (4) \ {\rm \AA} \\ c = 19.163 \ (6) \ {\rm \AA} \end{array}$

Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.723, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.148$ S = 1.117181 reflections 467 parameters 4 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 04 - H10 \cdots 01 \\ 06 - H20 \cdots 02^{i} \\ 08 - H30 \cdots N4^{ii} \\ N1 - H1n \cdots 03^{iii} \\ N1 - H1n \cdots 04^{iii} \\ C13 - H13 \cdots 07^{iv} \end{array}$	0.85 (2) 0.85 (1) 0.85 (2) 0.89 (2) 0.89 (2) 0.95	1.55 (2) 1.74 (1) 1.79 (2) 2.41 (2) 2.35 (2) 2.28	2.403 (2) 2.577 (2) 2.636 (2) 3.257 (2) 2.957 (2) 3.225 (3)	176 (3) 168 (2) 173 (2) 161 (2) 126 (2) 171
$C28-H28\cdots O5^{v}$	0.95	2.40	3.320 (3)	162
Symmetry codes:	(i) $x + \frac{1}{2}, -y$	$y + \frac{1}{2}, z + \frac{1}{2};$ (ii)	i) $-x + 1, -y,$	-z + 1; (iii)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (ii) -x + 1, -y, -z + 1; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$ (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5731).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2602.Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289–294.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Derikvand, Z. & Olmstead, M. M. (2011). *Acta Cryst.* E67, 087–088.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1995). ORTEPII. Report ORNL-5138. Oak Ridge National

Johnson, C. K. (1976). OKTEPH. Report OKNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation & Rigaku (2005). *CrystalClear*. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2013). E69, o1445-o1446 [doi:10.1107/S1600536813022691]

Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) 2,5-dicarboxybenzene-1,4-dicarboxylate-2,9-dimethyl-1,10-phenanthroline-benzene-1,2,4,5-tetracarboxylic acid (1/2/1)

Hadi D. Arman, Trupta Kaulgud and Edward R. T. Tiekink

S1. Comment

In continuation of on-going structural studies of salts/co-crystals formed between carboxylic acids and various pyridyl derivatives (Arman *et al.*, 2010; Arman & Tiekink, 2013), the title salt co-crystal, (I), was isolated from the 2:3 co-crystallization of benzene-1,2,4,5-tetracarboxylic acid (*L*H₄) and 2,9-dimethyl-1,10-phenanthroline (Me₂Phen).

The asymmetric unit of (I) comprises a centrosymmetric, doubly deprotonated LH_2^{2-} dianion, a centrosymmetric neutral LH_4 molecule, a protonated Me₂PhenH⁺ cation and a neutral Me₂Phen molecule, Fig. 1, and is formulated as a combination of a 2:1 Me₂Phen⁺: LH_2^{2-} salt combined with a 2:1 Me₂Phen:HL₄ co-crystal. A salt formed between Me₂PhenH⁺ and a hydrogen(*S*,*S*)-tartrate has been reported (Derikvand & Olmstead, 2011).

Small twists are evident in the $LH_2^{2^-}$ dianion as seen in the C2—C1—C4—O2 and C1—C2—C5—O4 torsion angles of 168.41 (18) and 16.2 (3)°, respectively. This arrangement is stabilized by intramolecular O—H···O hydrogen bonds, Table 1. By contrast, a considerable twist is evident in LH_4 with the C7—C6—C9—O6 and C6—C7—C10—O7 torsion angles being 66.3 (2) and 18.2 (3)°, respectively. Such variations in conformation have been discussed in some detail (Arman & Tiekink, 2013). The Me₂Phen molecule and Me₂PhenH⁺ cation are each planar with the r.m.s. deviation for the 16 non-hydrogen atoms being 0.037 and 0.036 Å, respectively.

The prominent feature of the crystal packing is the formation of linear supramolecular chains along [0 0 1] comprising alternating LH_4 and $LH_2^{2^2}$ species connected *via* charge-assisted O6—H···O2 hydrogen bonding, Table 1. The hydroxyl-O8 forms an O—H···N4 hydrogen bond with the neutral Me₂Phen molecules, one to either side of the carboxylic acid/carboxylate chain. The O3,O4 carboxylic acid residue accepts hydrogen bonds from the N1—H1n atom of the Me₂PhenH⁺ cation, again, from symmetry, one to either side, leading to the supramolecular chain shown in Fig. 2a; an end-on view is shown in Fig. 2b. The Me₂Phen and Me₂PhenH⁺ cations inter-digitate along the *c* axis and are connected by π — π [*Cg*(C15–C20)···*Cg*(C29—C34)ⁱ = 3.5337 (17) Å for *i*: *x*, 1 + *y*, *z*] interactions between Me₂PhenH⁺ and Me₂Phen. Additional contacts are of the type C—H···O, Table 1, as illustrated in the crystal packing diagram, Fig. 3.

S2. Experimental

Crystals of (I) were obtained by the co-crystallization of benzene-1,2,4,5-tetracarboxylic acid (Sigma-Aldrich), 0.06 mmol) and 2,9-dimethylphenanthroline (ACROS, 0.09 mmol) in ethanol solution. Crystals were obtained by slow evaporation.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The O-and N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraints of O—H = 0.84 ± 0.01 Å and N—H = 0.88 ± 0.01 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$. Owing to being affected by the beam-stop, three reflections, *i.e.* (0 0 1), (1 0 1) and (-6 0 2), were omitted from the final cycles of refinement.

Figure 1

Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level: (*a*) LH_2^{2-} , (*b*) LH_4 , (*c*) Me₂PhenH⁺ and (*d*) Me₂Phen.

Figure 2

Views (*a*) side-on and (*b*) end-on of the supramolecular chain in (I). The O—H…O (orange), O—H…N (blue) and N—H…O (blue) hydrogen bonds are shown as dashed lines.

Figure 3

Unit-cell contents in (I) viewed in projection down the c axis. The C—H···O interactions are shown green dashed lines.

Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) 2,5-dicarboxybenzene-1,4-dicarboxylate-2,9-dimethyl-1,10-phenanthroline-benzene-1,2,4,5-tetracarboxylic acid (1/2/1)

Crystal data

$2C_{14}H_{13}N_2^+ \cdot C_{10}H_4O_8^{2-} \cdot 2C_{14}H_{12}N_2 \cdot C_{10}H_6O_8$	F(000) = 1400
$M_r = 1341.32$	$D_{\rm x} = 1.419 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2yn	Cell parameters from 12762 reflections
a = 11.798 (4) Å	$\theta = 2.0-40.7^{\circ}$
b = 13.893 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 19.163 (6) Å	T = 98 K
$\beta = 92.216 \ (5)^{\circ}$	Prism, colourless
$V = 3138.8 (16) Å^3$	$0.48 \times 0.37 \times 0.09 \text{ mm}$
Z = 2	

Data collection

Rigaku AFC12K/SATURN724 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.723, T_{max} = 1.000$ <i>Refinement</i>	22006 measured reflections 7181 independent reflections 6007 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -18 \rightarrow 24$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.148$ S = 1.11 7181 reflections 467 parameters 4 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 1.3348P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.60101 (12)	0.56642 (11)	0.32029 (7)	0.0298 (3)	
O2	0.42698 (12)	0.50799 (11)	0.31498 (7)	0.0271 (3)	
03	0.80815 (11)	0.52832 (11)	0.50668 (7)	0.0276 (3)	
O4	0.75764 (12)	0.58534 (11)	0.40310 (7)	0.0275 (3)	
H1O	0.7039 (17)	0.5802 (19)	0.3723 (11)	0.041*	
05	1.04388 (12)	0.10773 (11)	0.67551 (7)	0.0279 (3)	
O6	0.93416 (12)	-0.02423 (10)	0.68129 (6)	0.0225 (3)	
H2O	0.941 (2)	-0.0150 (17)	0.7251 (5)	0.034*	
O7	0.78053 (11)	0.10681 (9)	0.60744 (6)	0.0217 (3)	
08	0.69585 (11)	0.03734 (10)	0.51309 (7)	0.0225 (3)	
H3O	0.6399 (14)	0.0441 (18)	0.5394 (10)	0.034*	
N1	0.49493 (13)	1.05719 (11)	0.10595 (8)	0.0216 (3)	
H1N	0.5525 (13)	1.0368 (16)	0.0816 (10)	0.026*	
N2	0.59146 (14)	0.87982 (12)	0.11607 (8)	0.0242 (4)	
N3	0.38546 (15)	0.11239 (12)	0.39446 (8)	0.0251 (4)	

N4	0.48691 (13)	-0.06451 (12)	0.41450 (8)	0.0212 (3)
C1	0.51592 (16)	0.51633 (13)	0.42769 (9)	0.0183 (4)
C2	0.61045 (15)	0.52086 (13)	0.47597 (9)	0.0174 (3)
C3	0.59041 (15)	0.50468 (13)	0.54626 (9)	0.0185 (4)
Н3	0.6533	0.5082	0.5787	0.022*
C4	0.51495 (16)	0.53048 (14)	0.34896 (9)	0.0206 (4)
C5	0.73412 (16)	0.54460 (14)	0.46160 (10)	0.0215 (4)
C6	0.99235 (15)	0.02306 (12)	0.57069 (9)	0.0172 (3)
C7	0.89506 (15)	0.02660 (12)	0.52636 (9)	0.0170 (3)
C8	0.90372 (15)	0.00341 (13)	0.45593 (9)	0.0177 (4)
H8	0.8380	0.0057	0 4257	0.021*
C9	0.99120 (15)	0.04220 (13)	0.64807 (9)	0.0191 (4)
C10	0.78392(15)	0.06034(13)	0.55334(9)	0.0191(1)
C11	0.70392(13) 0.51318(18)	1,21161(15)	0.000001(0)	0.0102(1)
H11A	0.5737	1 2474	0.0733	0.023*
HIIR	0.3737	1.2474	0.0755	0.043*
	0.457	1.2309	0.0277	0.043*
	0.3437	1.1/51 1.1/676(14)	0.0112	0.043
C12	0.43001(10)	1.140/0(14) 1.17504(14)	0.09806(10) 0.12827(10)	0.0234(4)
U13	0.364/6 (17)	1.1/394 (14)	0.13837 (10)	0.0261 (4)
HI3	0.3340	1.2388	0.1328	0.031*
C14	0.32018 (17)	1.11385 (15)	0.18567 (10)	0.0258 (4)
HI4	0.2590	1.1343	0.2128	0.031*
C15	0.36416 (16)	1.01985 (14)	0.19451 (10)	0.0220 (4)
C16	0.45351 (16)	0.99289 (13)	0.15246 (10)	0.0206 (4)
C17	0.32532 (16)	0.95298 (15)	0.24508 (10)	0.0245 (4)
H17	0.2658	0.9708	0.2744	0.029*
C18	0.37276 (17)	0.86434 (15)	0.25149 (10)	0.0253 (4)
H18	0.3459	0.8209	0.2854	0.030*
C19	0.46257 (16)	0.83521 (13)	0.20811 (10)	0.0225 (4)
C20	0.50465 (16)	0.89957 (13)	0.15806 (10)	0.0214 (4)
C21	0.51552 (18)	0.74414 (15)	0.21224 (11)	0.0284 (4)
H21	0.4910	0.6975	0.2446	0.034*
C22	0.60207 (18)	0.72363 (15)	0.16957 (11)	0.0301 (5)
H22	0.6371	0.6621	0.1717	0.036*
C23	0.64006 (17)	0.79384 (15)	0.12197 (11)	0.0271 (4)
C24	0.73845 (19)	0.77429 (16)	0.07645 (12)	0.0353 (5)
H24A	0.7311	0.8138	0.0342	0.053*
H24B	0.7389	0.7061	0.0635	0.053*
H24C	0.8095	0.7903	0.1020	0.053*
C25	0.2311 (2)	0.21602 (17)	0.42569 (13)	0.0394 (6)
H25A	0.1657	0.1888	0.3995	0.059*
H25B	0.2202	0.2855	0.4314	0.059*
H25C	0.2385	0.1854	0 4717	0.059*
C26	0.3371 (2)	0.19826 (15)	0.38637 (11)	0.0310 (5)
C27	0.3831(2)	0 27008 (16)	0 34338 (12)	0.0391 (6)
H27	0 3487	0.3318	0.3400	0.047*
C28	0.760 (2)	0.24006 (18)	0.3400	0.0421 (6)
U20	0.4709 (2)	0.24770 (10)	0.30002 (12)	0.0421(0) 0.051*
П20	0.5070	0.29/3	0.2/09	0.031*

C29	0.5297 (2)	0.15893 (17)	0.31328 (11)	0.0347 (5)
C30	0.48077 (17)	0.09257 (15)	0.35951 (9)	0.0253 (4)
C31	0.6265 (2)	0.1311 (2)	0.27508 (11)	0.0434 (7)
H31	0.6579	0.1756	0.2435	0.052*
C32	0.6740 (2)	0.0432 (2)	0.28292 (11)	0.0418 (6)
H32	0.7377	0.0265	0.2566	0.050*
C33	0.62883 (17)	-0.02531 (18)	0.33100 (11)	0.0322 (5)
C34	0.53289 (16)	-0.00081 (15)	0.36943 (10)	0.0239 (4)
C35	0.67628 (18)	-0.11709 (18)	0.34117 (12)	0.0379 (6)
H35	0.7416	-0.1353	0.3169	0.045*
C36	0.62834 (18)	-0.18028 (17)	0.38602 (12)	0.0342 (5)
H36	0.6598	-0.2427	0.3929	0.041*
C37	0.53169 (17)	-0.15191 (14)	0.42193 (11)	0.0256 (4)
C38	0.47268 (19)	-0.22145 (15)	0.46823 (12)	0.0326 (5)
H38A	0.4480	-0.1877	0.5099	0.049*
H38B	0.5250	-0.2734	0.4822	0.049*
H38C	0.4065	-0.2487	0.4428	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0286 (8)	0.0431 (9)	0.0180 (7)	-0.0085 (6)	0.0034 (6)	0.0057 (6)
O2	0.0271 (8)	0.0398 (8)	0.0145 (6)	-0.0042 (6)	0.0010 (5)	-0.0001 (6)
03	0.0188 (7)	0.0367 (8)	0.0272 (7)	0.0001 (6)	-0.0012 (6)	0.0025 (6)
O4	0.0218 (7)	0.0401 (8)	0.0208 (7)	-0.0060 (6)	0.0042 (5)	0.0038 (6)
05	0.0260 (7)	0.0373 (8)	0.0204 (7)	-0.0079 (6)	0.0032 (5)	-0.0083 (6)
06	0.0290 (7)	0.0263 (7)	0.0122 (6)	-0.0009 (5)	0.0024 (5)	0.0003 (5)
O7	0.0234 (7)	0.0229 (7)	0.0191 (6)	-0.0006 (5)	0.0035 (5)	-0.0034 (5)
08	0.0170 (6)	0.0313 (7)	0.0193 (7)	-0.0010 (5)	0.0029 (5)	-0.0039 (5)
N1	0.0181 (8)	0.0210 (8)	0.0256 (8)	0.0010 (6)	0.0007 (6)	-0.0010 (6)
N2	0.0229 (8)	0.0232 (8)	0.0264 (8)	0.0045 (6)	-0.0002 (6)	-0.0027 (6)
N3	0.0280 (9)	0.0243 (9)	0.0229 (8)	0.0006 (7)	-0.0024 (7)	0.0001 (6)
N4	0.0174 (7)	0.0246 (8)	0.0215 (8)	-0.0004 (6)	-0.0010 (6)	-0.0052 (6)
C1	0.0231 (9)	0.0168 (8)	0.0152 (8)	0.0017 (7)	0.0010 (7)	0.0004 (6)
C2	0.0190 (9)	0.0181 (8)	0.0152 (8)	0.0010 (6)	0.0022 (6)	-0.0010 (6)
C3	0.0190 (9)	0.0212 (9)	0.0152 (8)	0.0024 (7)	0.0002 (6)	0.0006 (7)
C4	0.0229 (9)	0.0235 (9)	0.0155 (8)	0.0028 (7)	0.0027 (7)	0.0003 (7)
C5	0.0211 (9)	0.0223 (9)	0.0212 (9)	-0.0010 (7)	0.0027 (7)	-0.0035 (7)
C6	0.0208 (9)	0.0177 (8)	0.0133 (8)	-0.0016 (7)	0.0036 (6)	-0.0010 (6)
C7	0.0188 (8)	0.0166 (8)	0.0156 (8)	-0.0012 (6)	0.0026 (6)	0.0005 (6)
C8	0.0164 (8)	0.0204 (9)	0.0160 (8)	-0.0008 (6)	-0.0018 (6)	-0.0004 (6)
C9	0.0170 (8)	0.0252 (9)	0.0153 (8)	0.0024 (7)	0.0013 (6)	-0.0013 (7)
C10	0.0205 (9)	0.0172 (8)	0.0172 (8)	0.0000 (7)	0.0020 (7)	0.0016 (6)
C11	0.0310 (11)	0.0250 (10)	0.0300 (11)	0.0021 (8)	0.0003 (8)	0.0029 (8)
C12	0.0221 (9)	0.0220 (9)	0.0257 (10)	0.0010 (7)	-0.0033 (7)	-0.0006 (7)
C13	0.0245 (10)	0.0218 (10)	0.0318 (11)	0.0062 (7)	-0.0020 (8)	-0.0048 (8)
C14	0.0216 (9)	0.0276 (10)	0.0283 (10)	0.0037 (7)	0.0022 (8)	-0.0062 (8)
C15	0.0187 (9)	0.0249 (9)	0.0221 (9)	0.0004 (7)	-0.0027 (7)	-0.0041 (7)

C16	0.0173 (9)	0.0228 (9)	0.0213 (9)	-0.0015 (7)	-0.0029 (7)	-0.0016 (7)
C17	0.0205 (9)	0.0316 (11)	0.0214 (9)	-0.0034 (8)	-0.0002 (7)	-0.0025 (8)
C18	0.0268 (10)	0.0267 (10)	0.0222 (9)	-0.0051 (8)	-0.0023 (8)	0.0012 (7)
C19	0.0241 (9)	0.0206 (9)	0.0223 (9)	-0.0021 (7)	-0.0049 (7)	-0.0026 (7)
C20	0.0212 (9)	0.0207 (9)	0.0222 (9)	0.0010 (7)	-0.0036 (7)	-0.0032 (7)
C21	0.0315 (11)	0.0226 (10)	0.0303 (11)	-0.0020 (8)	-0.0085 (8)	0.0010 (8)
C22	0.0328 (11)	0.0211 (10)	0.0357 (11)	0.0050 (8)	-0.0072 (9)	-0.0024 (8)
C23	0.0249 (10)	0.0258 (10)	0.0302 (10)	0.0035 (8)	-0.0038 (8)	-0.0056 (8)
C24	0.0323 (12)	0.0307 (11)	0.0432 (13)	0.0112 (9)	0.0034 (10)	-0.0051 (9)
C25	0.0454 (14)	0.0277 (11)	0.0444 (13)	0.0117 (10)	-0.0056 (11)	-0.0029 (10)
C26	0.0396 (12)	0.0256 (10)	0.0268 (10)	-0.0002 (9)	-0.0113 (9)	-0.0008 (8)
C27	0.0559 (16)	0.0267 (11)	0.0334 (12)	-0.0054 (10)	-0.0178 (11)	0.0059 (9)
C28	0.0616 (17)	0.0373 (13)	0.0263 (11)	-0.0224 (12)	-0.0150 (11)	0.0104 (9)
C29	0.0425 (13)	0.0411 (13)	0.0202 (10)	-0.0199 (10)	-0.0035 (9)	0.0016 (9)
C30	0.0283 (10)	0.0304 (10)	0.0168 (9)	-0.0091 (8)	-0.0024 (7)	-0.0017 (7)
C31	0.0448 (14)	0.0651 (18)	0.0203 (10)	-0.0326 (13)	0.0019 (9)	-0.0003 (10)
C32	0.0334 (12)	0.0664 (18)	0.0265 (11)	-0.0236 (12)	0.0105 (9)	-0.0155 (11)
C33	0.0211 (10)	0.0505 (14)	0.0252 (10)	-0.0123 (9)	0.0036 (8)	-0.0151 (9)
C34	0.0183 (9)	0.0321 (11)	0.0215 (9)	-0.0074 (8)	0.0015 (7)	-0.0055 (8)
C35	0.0176 (10)	0.0558 (15)	0.0404 (13)	-0.0023 (9)	0.0035 (9)	-0.0252 (11)
C36	0.0228 (10)	0.0381 (12)	0.0412 (12)	0.0078 (9)	-0.0039 (9)	-0.0193 (10)
C37	0.0200 (9)	0.0268 (10)	0.0297 (10)	0.0030 (7)	-0.0044 (8)	-0.0090 (8)
C38	0.0321 (11)	0.0244 (10)	0.0408 (12)	0.0035 (8)	-0.0062 (9)	-0.0006 (9)

Geometric parameters (Å, °)

01—C4	1.275 (2)	C15—C16	1.402 (3)
O2—C4	1.244 (2)	C15—C17	1.431 (3)
O3—C5	1.226 (2)	C16—C20	1.432 (3)
O4—C5	1.295 (2)	C17—C18	1.356 (3)
O4—H1O	0.853 (10)	C17—H17	0.9500
О5—С9	1.211 (2)	C18—C19	1.430 (3)
O6—C9	1.320 (2)	C18—H18	0.9500
O6—H2O	0.850 (10)	C19—C21	1.412 (3)
O7—C10	1.223 (2)	C19—C20	1.415 (3)
O8—C10	1.309 (2)	C21—C22	1.363 (3)
O8—H3O	0.851 (10)	C21—H21	0.9500
N1-C12	1.333 (2)	C22—C23	1.420 (3)
N1-C16	1.366 (2)	C22—H22	0.9500
N1—H1N	0.886 (10)	C23—C24	1.503 (3)
N2-C23	1.328 (3)	C24—H24A	0.9800
N2-C20	1.355 (3)	C24—H24B	0.9800
N3—C26	1.329 (3)	C24—H24C	0.9800
N3—C30	1.359 (3)	C25—C26	1.505 (3)
N4—C37	1.330 (3)	C25—H25A	0.9800
N4—C34	1.364 (3)	C25—H25B	0.9800
C1-C3 ⁱ	1.399 (3)	C25—H25C	0.9800
C1—C2	1.423 (2)	C26—C27	1.415 (3)

C1—C4	1.521 (2)	C27—C28	1.362 (4)
С2—С3	1.395 (2)	C27—H27	0.9500
C2—C5	1.531 (3)	C28—C29	1.413 (4)
C3-C1 ⁱ	1.399 (3)	C28—H28	0.9500
С3—Н3	0.9500	C29—C30	1.417 (3)
C6—C8 ⁱⁱ	1.396 (3)	C29—C31	1.433 (4)
С6—С7	1.402 (2)	C30—C34	1.445 (3)
С6—С9	1.507 (2)	C31—C32	1.349 (4)
С7—С8	1.395 (2)	C31—H31	0.9500
C7—C10	1.503 (3)	C32—C33	1.442 (3)
C8—C6 ⁱⁱ	1.396 (3)	C32—H32	0.9500
C8—H8	0.9500	C33—C35	1.403 (3)
C11—C12	1.492 (3)	C33—C34	1.415 (3)
C11—H11A	0.9800	C35—C36	1.366 (3)
C11—H11B	0.9800	С35—Н35	0.9500
C11—H11C	0.9800	C36—C37	1.411 (3)
C12—C13	1.409 (3)	C36—H36	0.9500
C13—C14	1.371 (3)	C37—C38	1.501 (3)
С13—Н13	0.9500	C38—H38A	0.9800
C14—C15	1.413 (3)	C38—H38B	0.9800
C14—H14	0.9500	C38—H38C	0.9800
C5—O4—H1O	112.6 (18)	C20—C19—C18	120.15 (17)
С9—О6—Н2О	109.7 (17)	N2—C20—C19	124.58 (18)
С10—О8—НЗО	103.9 (16)	N2—C20—C16	117.70 (18)
C12—N1—C16	123.66 (17)	C19—C20—C16	117.71 (18)
C12—N1—H1N	120.4 (15)	C22—C21—C19	119.6 (2)
C16—N1—H1N	115.9 (15)	C22—C21—H21	120.2
C23—N2—C20	117.74 (18)	C19—C21—H21	120.2
C26—N3—C30	118.95 (19)	C21—C22—C23	120.28 (19)
C37—N4—C34	119.62 (18)	C21—C22—H22	119.9
$C3^{i}$ — $C1$ — $C2$	117.94 (16)	C23—C22—H22	119.9
$C3^{i}$ — $C1$ — $C4$	114.11 (15)	N2—C23—C22	121.8 (2)
C2C1C4	127.95 (17)	N2—C23—C24	116.98 (19)
C3—C2—C1	117.58 (17)	C22—C23—C24	121.24 (19)
C3—C2—C5	114.00 (15)	C23—C24—H24A	109.5
C1—C2—C5	128.39 (16)	C23—C24—H24B	109.5
$C2-C3-C1^{i}$	124.48 (16)	H24A—C24—H24B	109.5
С2—С3—Н3	117.8	C23—C24—H24C	109.5
$C1^{i}$ — $C3$ — $H3$	117.8	H24A—C24—H24C	109.5
02 - C4 - 01	122.35(17)	H^24B — C^24 — H^24C	109.5
02 - C4 - C1	117 46 (17)	C26—C25—H25A	109.5
01 - C4 - C1	120 17 (16)	$C_{26} - C_{25} - H_{25B}$	109.5
03 - 05 - 04	121.32 (18)	H25A—C25—H25B	109.5
03-C5-C2	119 44 (17)	C_{26} C_{25} H_{25} C_{26} C_{25} H_{25} C_{26} H_{25} H_{25} C_{26} H_{25} C_{26} H_{25} H_{25} C_{26} H_{25} H_{25} C_{26} H_{25} H	109.5
04 - C5 - C2	119 17 (16)	$H_{25A} = C_{25} = H_{25C}$	109.5
$C8^{ii}$ —C6—C7	119.87 (16)	H25B_C25_H25C	109.5
$C8^{ii}$ —C6—C9	116 60 (15)	N3-C26-C27	121.9 (2)
	110,00 (10)		1 <u>4</u> 1 + 7 \ 4 1

C7—C6—C9	123.48 (16)	N3—C26—C25	116.8 (2)
C8—C7—C6	119.28 (17)	C27—C26—C25	121.4 (2)
C8—C7—C10	120.16 (15)	C28—C27—C26	119.5 (2)
C6—C7—C10	120.47 (16)	С28—С27—Н27	120.3
C7—C8—C6 ⁱⁱ	120.85 (16)	С26—С27—Н27	120.3
С7—С8—Н8	119.6	C27—C28—C29	120.2 (2)
С6 ^{іі} —С8—Н8	119.6	C27—C28—H28	119.9
05-09-06	125.37 (17)	C29—C28—H28	119.9
05-09-06	122.40 (17)	C28—C29—C30	116.7 (2)
06-09-06	112.04 (15)	C_{28} C_{29} C_{31}	123.6 (2)
07-010-08	125 23 (17)	C_{30} C_{29} C_{31}	1197(2)
07-C10-C7	120.91(16)	N3-C30-C29	122.7(2)
08-C10-C7	113 84 (15)	N3-C30-C34	118 23 (18)
C12-C11-H11A	109 5	C_{29} C_{30} C_{34}	110.25(10) 1190(2)
C12 $C11$ $H11B$	109.5	C_{32} C_{31} C_{29}	119.5(2) 121.5(2)
$H_{11}A = C_{11} = H_{11}B$	109.5	$C_{32} = C_{31} = H_{31}$	119.2
	109.5	C_{29} C_{31} H_{31}	119.2
	109.5	C_{2} C_{3} C_{3} C_{3}	119.2 120.4(2)
HIIR CII HIIC	109.5	$C_{31} = C_{32} = C_{33}$	120.4 (2)
$\frac{11110}{1110} = \frac{111}{1110}$	119.5	$C_{31} = C_{32} = H_{32}$	119.8
N1 - C12 - C13	110.27(10) 118.20(18)	$C_{33} = C_{32} = C_{34}$	119.0
N1 - C12 - C11	110.29(10) 122.41(19)	$C_{35} = C_{35} = C_{34}$	110.0(2)
C13 - C12 - C11	123.41(18) 120.16(18)	$C_{33} = C_{33} = C_{32}$	122.3(2)
C14 - C13 - C12	120.10 (18)	$C_{34} = C_{33} = C_{32}$	119.8(2)
C14—C13—H13	119.9	N4-C34-C33	121.3 (2)
C12—C13—H13	119.9	N4—C34—C30	119.23 (18)
C13—C14—C15	120.83 (18)	C33—C34—C30	119.49 (19)
C13—C14—H14	119.6	C36—C35—C33	119.9 (2)
С15—С14—Н14	119.6	С36—С35—Н35	120.0
C16—C15—C14	117.30 (18)	С33—С35—Н35	120.0
C16—C15—C17	118.90 (18)	C35—C36—C37	119.3 (2)
C14—C15—C17	123.76 (19)	С35—С36—Н36	120.4
N1—C16—C15	119.75 (17)	С37—С36—Н36	120.4
N1—C16—C20	118.73 (18)	N4—C37—C36	121.9 (2)
C15—C16—C20	121.51 (18)	N4—C37—C38	117.36 (18)
C18—C17—C15	120.61 (19)	C36—C37—C38	120.71 (19)
C18—C17—H17	119.7	С37—С38—Н38А	109.5
С15—С17—Н17	119.7	С37—С38—Н38В	109.5
C17—C18—C19	121.10 (19)	H38A—C38—H38B	109.5
C17—C18—H18	119.4	С37—С38—Н38С	109.5
C19—C18—H18	119.4	H38A—C38—H38C	109.5
C21—C19—C20	115.99 (19)	H38B—C38—H38C	109.5
C21—C19—C18	123.85 (19)		
C3 ⁱ —C1—C2—C3	-0.5 (3)	C18—C19—C20—N2	177.97 (17)
C4—C1—C2—C3	-179.62 (17)	C21—C19—C20—C16	-179.72 (16)
C3 ⁱ —C1—C2—C5	-178.40 (17)	C18—C19—C20—C16	-0.6 (3)
C4—C1—C2—C5	2.4 (3)	N1-C16-C20-N2	-0.6 (2)
C1-C2-C3-C1 ⁱ	0.5 (3)	C15—C16—C20—N2	-179.19 (16)
	× /		× /

C5-C2-C3-C1 ⁱ	178.73 (17)	N1-C16-C20-C19	178.12 (15)
C3 ⁱ —C1—C4—O2	-10.8 (2)	C15-C16-C20-C19	-0.5 (3)
C2-C1-C4-O2	168.41 (18)	C20—C19—C21—C22	0.4 (3)
C3 ⁱ —C1—C4—O1	167.52 (17)	C18—C19—C21—C22	-178.69 (18)
C2-C1-C4-01	-13.3 (3)	C19—C21—C22—C23	1.0 (3)
C3—C2—C5—O3	15.2 (3)	C20—N2—C23—C22	1.1 (3)
C1—C2—C5—O3	-166.75 (18)	C20—N2—C23—C24	-178.25 (17)
C3—C2—C5—O4	-161.82(17)	C21—C22—C23—N2	-1.8 (3)
C1—C2—C5—O4	16.2 (3)	C21—C22—C23—C24	177.49 (19)
C8 ⁱⁱ —C6—C7—C8	0.0 (3)	C30—N3—C26—C27	-1.1 (3)
C9—C6—C7—C8	-177.05 (16)	C30—N3—C26—C25	179.39 (17)
C8 ⁱⁱ —C6—C7—C10	-176.53 (16)	N3—C26—C27—C28	2.7 (3)
C9—C6—C7—C10	6.4 (3)	C25—C26—C27—C28	-177.8 (2)
C6C7C8C6 ⁱⁱ	0.0 (3)	C26—C27—C28—C29	-1.7 (3)
C10—C7—C8—C6 ⁱⁱ	176.54 (16)	C27—C28—C29—C30	-0.8 (3)
C8 ⁱⁱ —C6—C9—O5	64.4 (2)	C27—C28—C29—C31	178.0 (2)
C7—C6—C9—O5	-118.4 (2)	C26—N3—C30—C29	-1.5 (3)
C8 ⁱⁱ —C6—C9—O6	-110.89 (18)	C26—N3—C30—C34	179.41 (16)
C7—C6—C9—O6	66.3 (2)	C28—C29—C30—N3	2.5 (3)
C8—C7—C10—O7	-158.38 (17)	C31—C29—C30—N3	-176.38 (18)
C6—C7—C10—O7	18.2 (3)	C28—C29—C30—C34	-178.51 (17)
C8—C7—C10—O8	20.0 (2)	C31—C29—C30—C34	2.7 (3)
C6—C7—C10—O8	-163.44 (16)	C28—C29—C31—C32	-180.0 (2)
C16—N1—C12—C13	-2.0 (3)	C30—C29—C31—C32	-1.2 (3)
C16—N1—C12—C11	176.50 (16)	C29—C31—C32—C33	-0.6 (3)
N1—C12—C13—C14	1.8 (3)	C31—C32—C33—C35	-179.5 (2)
C11—C12—C13—C14	-176.64 (18)	C31—C32—C33—C34	1.0 (3)
C12—C13—C14—C15	-0.4 (3)	C37—N4—C34—C33	-1.0(3)
C13—C14—C15—C16	-0.8 (3)	C37—N4—C34—C30	177.42 (16)
C13—C14—C15—C17	176.99 (17)	C35—C33—C34—N4	-0.6 (3)
C12—N1—C16—C15	0.8 (3)	C32—C33—C34—N4	178.94 (17)
C12—N1—C16—C20	-177.88 (16)	C35—C33—C34—C30	-179.09 (17)
C14—C15—C16—N1	0.7 (3)	C32—C33—C34—C30	0.5 (3)
C17—C15—C16—N1	-177.25 (16)	N3—C30—C34—N4	-1.7 (3)
C14—C15—C16—C20	179.30 (16)	C29—C30—C34—N4	179.23 (16)
C17—C15—C16—C20	1.4 (3)	N3—C30—C34—C33	176.79 (16)
C16—C15—C17—C18	-1.1 (3)	C29—C30—C34—C33	-2.3 (3)
C14—C15—C17—C18	-178.89 (18)	C34—C33—C35—C36	1.3 (3)
C15—C17—C18—C19	0.0 (3)	C32—C33—C35—C36	-178.27 (19)
C17—C18—C19—C21	179.92 (18)	C33—C35—C36—C37	-0.4 (3)
C17—C18—C19—C20	0.9 (3)	C34—N4—C37—C36	2.0 (3)
C23—N2—C20—C19	0.4 (3)	C34—N4—C37—C38	-175.67 (16)
C23—N2—C20—C16	179.00 (16)	C35—C36—C37—N4	-1.4 (3)
C21—C19—C20—N2	-1.1 (3)	C35—C36—C37—C38	176.27 (18)
			(-)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*, -*z*+1.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
O4—H10…O1	0.85 (2)	1.55 (2)	2.403 (2)	176 (3)
O6—H2o…O2 ⁱⁱⁱ	0.85(1)	1.74 (1)	2.577 (2)	168 (2)
O8—H3o…N4 ^{iv}	0.85 (2)	1.79 (2)	2.636 (2)	173 (2)
N1—H1n···O3 ^v	0.89 (2)	2.41 (2)	3.257 (2)	161 (2)
N1—H1n····O4 ^v	0.89 (2)	2.35 (2)	2.957 (2)	126 (2)
C13—H13…O7 ^{vi}	0.95	2.28	3.225 (3)	171
C28—H28…O5 ^{vii}	0.95	2.40	3.320 (3)	162

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+1, -y, -z+1; (v) -x+3/2, y+1/2, -z+1/2; (vi) x-1/2, -y+3/2, z-1/2; (vii) x-1/2, -y+1/2, z-1/2.