Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido-dichloridobis\{8-[2-(di-methylamino)ethylamino]quinoline\}dicadmium monohydrate

Abdul-Razak H. Al-Sudani ${ }^{\text {a }}$ and Benson M. Kariuki ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, College of Science for Women, Baghdad University, Baghdad, Iraq, and ${ }^{\mathbf{b}}$ School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
Correspondence e-mail: alsudani@uobaghdad.edu.iq

Received 22 July 2013; accepted 7 August 2013

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.021 ; w R$ factor $=0.053$; data-to-parameter ratio $=23.0$.

The title complex, $\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, is centrosymmetic and contains two Cd^{2+} ions bridged by two Cl^{-}ions, leading to a strictly planar $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ core. Each Cd^{2+} ion is further coordinated by an additional Cl^{-}ion and three N atoms of a tridentate 8-[2-(dimethylamino)ethylamino]quinoline ligand in the form of a considerably distorted octahedron for the overall coordination sphere. A lattice water molecule is located on a twofold rotation axis and links pairs of complexes through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For background to N -containing ligands including quinoline derivatives, see: Chaudhuri et al. (2007); Kizirian (2008); Miodragovic et al. (2008); Puviarasan et al. (2004); Singh et al. (2008); Van Asselt \& Elsevier (1994); Zhang et al. (2009). For the synthetic procedure, see: Amoroso et al. (2009); Hartshorn \& Baird (1946).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}} \\
& M_{r}=815.21
\end{aligned}
$$

$b=10.1590(2) \AA$
$c=15.5574$ (3) \AA
$\beta=107.315$ (1) ${ }^{\circ}$
$V=3125.77(10) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.702, T_{\text {max }}=0.723$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.06$
4216 reflections
183 parameters

Mo $K \alpha$ radiation
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.22 \times 0.22 \times 0.20 \mathrm{~mm}$

7231 measured reflections 4216 independent reflections 3946 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.93	2.08	$2.9765(17)$	163
$\mathrm{O}_{1}-\mathrm{H} 1 O \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.87(3)$	$2.26(3)$	$3.0758(9)$	$158(3)$

Symmetry code: (i) $-x,-y,-z$.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and ACD/Chemsketch (Advanced Chemistry Development, 2008).

The authors extend their appreciation to Cardiff University for supporting this research. Professor P. G. Edwards and Dr A. J. Amoroso are thanked for their advice and financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2762).

References

Advanced Chemistry Development (2008). ACD/Chemsketch. Advanced Chemistry Development, Inc., Toronto, Ontario, Canada.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Amoroso, A. J., Edwards, P. G., Howard, S. T., Kariuki, B. M., Knight, J. C., Ooi, L.-L., Malik, K. M. A., Stratford, L. \& Al-Sudani, A.-R. H. (2009). Dalton Trans. pp. 8356-8362.
Chaudhuri, U. P., Whiteaker, L. R., Mondal, A., Klein, E. L., Powell, D. R. \& Houser, R. P. (2007). Inorg. Chim. Acta, 360, 3610-3618.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hartshorn, E. B. \& Baird, S. L. Jr (1946). J. Am. Chem. Soc. 68, 1562-1563.
Kizirian, J.-C. (2008). Chem. Rev. 108, 140-205.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Miodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. \& Vitnik, Z. (2008). Inorg. Chim. Acta, 361, 86-94.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

metal-organic compounds

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Puviarasan, N., Arjunan, V. \& Mohan, S. (2004). Turk. J. Chem. 28, 53-65.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Singh, A. K., Kumari, S. \& Kumar, K. R. (2008). Polyhedron, 27, 181-186. Van Asselt, R. \& Elsevier, C. J. (1994). Tetrahedron, 50, 323-334.
Zhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. \& Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519-3525.

supporting information

Acta Cryst. (2013). E69, m491-m492 [doi:10.1107/S160053681302206X]

Di- μ-chlorido-dichloridobis\{8-[2-(dimethylamino)ethylamino]quinoline\}dicadmium monohydrate

Abdul-Razak H. Al-Sudani and Benson M. Kariuki

S1. Comment

Metal complexes of N-containing ligands occupy an important position in coordination chemistry (Chaudhuri et al., 2007; Singh et al., 2008; Miodragovic et al., 2008; Van Asselt \& Elsevier, 1994; Kizirian, 2008; Zhang et al., 2009). Some quinoline-containing ligands show interesting biological activities (Puviarasan et al., 2004), such as antiphlogistic activity in rats, bacterial inhibitors, are precursors to a number of antimalarial and cancer drugs, or act as local anaesthetics. In addition, they are also active against staphylococcus, epidermis, neisseria and gonorrhea. Derivatives of aminoquinoline are used as inhibitors of the human immunedefciency virus (HIV). Although the biologically active ligand 8-[2-(diethylamino)ethylamino]quinoline was synthesized some time ago (Hartshorn \& Baird, 1946), to the best of our knowledge, the methyl analogue has not been reported up to date. In addition, complexation properties of such tridentate asymmetric ligands have been neglected. Inspired by the multifarious properties shown by quinoline-containing ligands, the methyl analogue of the tridentate ligand 8-[2-(diethylamino)ethylamino]quinoline, has been synthesized and some aspects of its coordination chemistry are currently being investigated. One of the results is reported here, viz. synthesis and crystal structure of the title complex, $\left[\mathrm{Cd}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3}\right)\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, (I).
Complex (I) is centrosymmetic and hence the asymmetric unit contains one half of the molecule (Fig. 1). The two Cd^{2+} ions are bridged by two Cl^{-}ions. In addition to the bridging ions, each Cd^{2+} is also coordinated by another Cl^{-}ion and three N atoms from the tridentate ligand in the form of a considerably distorted octahedron. Large deviations from right angles are observed, with angles ranging from 69.48 (5) ${ }^{\circ}$ to 101.08 (4) ${ }^{\circ}$. The crystal structure (Fig. 2) also contains a water molecule located on a twofold rotation axis. The water molecule is both an acceptor and a donor to hydrogen bonding, accepting two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds and donating two $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ bonds to a pairs of the complex units (Fig. 3, Table 1).

S2. Experimental

The ligand was prepared by the standard Bucherer procedure (Amoroso et al., 2009; Hartshorn \& Baird, 1946). To a stirred dry methanolic solution (30 ml) of cadmium dichloride ($0.2 \mathrm{~g} ; 0.0011 \mathrm{~mol}$) kept under a positive nitrogen pressure, a dry methanolic solution (10 ml) of the ligand $(0.24 \mathrm{~g} ; 0.0011 \mathrm{~mol})$ was slowly added. The resulting solution was stirred at room temperature for 3 h . The solvent was then removed under vacuum and the sticky solid obtained was washed twice with dry diethyl ether (10 ml each). The resulting solid was recrystallized by slow diffusion of diethyl ether in ethanolic solution of the complex. The crystallization method gave colourless crystals in 40% yield (0.17 g), m.p. > 573 K. Anal. Calc. for $\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{NN}^{\prime} \mathrm{N}{ }^{\prime}\right)_{2}\right] ; \mathrm{C} ; 39.15, \mathrm{H} ; 4.27$, and $\mathrm{N} ; 10.54$. Found: C; 39.25, $\mathrm{H} ; 4.42$, and $\mathrm{N} ; 10.42 .{ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz): $2.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 2.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 3.2\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 6.3$ (broad s, $1 \mathrm{H}, \mathrm{HN}-$ quin.); the other 6 H -quin appear at $7.15,7.4,7.5,7.65,8.4$, and 8.85 . The crystal finally measured was a monohydrate, presumably originating from insufficiently dried solvents. The solid sample of the complex is stable in open air, the
organic solution of the complex, however, is slowly oxidized in open air. No attempt was made to identify the oxidation product.

S3. Refinement

Ligand H atoms were positioned geometrically and refined using a riding model with $U_{\text {iso }}(\mathrm{H})$ constrained to be 1.2 times U_{eq} for the atom it is bonded to (except for methyl groups where it was 1.5 times with free rotation about the $\mathrm{C}-\mathrm{C}$ bond). The water hydrogen was refined freely. Of the low angle reflections missing from the refinement, reflections (110), (200), ($\overline{2} 02$) and ($\overline{1} 11$) were omitted due to deviant intensities consistent with obstruction by the beamstop; the rest of the missing reflections were eliminated automatically during data processing, possibly as overloads.

Figure 1

The molecular structure of the centrosymmetric complex (I), showing atom labels and atoms with their displacement ellipsoids at the 50% probability level for non-H atoms. Non-labelled atoms are generated by symmetry code $-x,-y,-z$.

Figure 2
Crystal packing in the structure of complex (I) in a projection along [010] with H atoms omitted for clarity.

Figure 3

$\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions involving the lattice water molecule and a pair of complex molecules.

Di- μ-chlorido-dichloridobis\{8-[2-(dimethylamino)ethylamino]quinoline\}dicadmium monohydrate

Crystal data

$\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=815.21$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=20.7162$ (3) \AA
$b=10.1590$ (2) \AA
$c=15.5574$ (3) \AA
$\beta=107.315$ (1) ${ }^{\circ}$
$V=3125.77(10) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
CCD slices, ω and phi scans
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.702, T_{\text {max }}=0.723$
7231 measured reflections
$F(000)=1624$
$D_{\mathrm{x}}=1.732 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3946 reflections
$\theta=3.6-30.1^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.22 \times 0.22 \times 0.20 \mathrm{~mm}$

4216 independent reflections
3946 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=30.1^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-27 \rightarrow 29$
$k=-13 \rightarrow 12$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.06$
4216 reflections

183 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0199 P)^{2}+4.8395 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.008 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} *^{*} U_{\text {eq }}$
C1	$0.12451(10)$	$0.41925(18)$	$0.06077(13)$	$0.0253(4)$
H1	0.1339	0.4087	0.0050	0.030^{*}
C2	$0.12079(11)$	$0.54785(19)$	$0.09262(14)$	$0.0303(4)$
H2	0.1289	0.6218	0.0599	0.036^{*}
C3	$0.10534(10)$	$0.56478(19)$	$0.17143(14)$	$0.0258(4)$
H3	0.1006	0.6509	0.1926	0.031^{*}
C4	$0.09641(8)$	$0.45336(18)$	$0.22120(12)$	$0.0199(3)$
C5	$0.10348(8)$	$0.32726(17)$	$0.18565(11)$	$0.0167(3)$
C6	$0.09650(8)$	$0.21255(17)$	$0.23430(11)$	$0.0174(3)$
C7	$0.08071(9)$	$0.22509(19)$	$0.31363(12)$	$0.0215(3)$
H7	0.0759	0.1485	0.3462	0.026^{*}
C8	$0.07154(9)$	$0.3509(2)$	$0.34740(12)$	$0.0249(4)$
H8	0.0595	0.3577	0.4016	0.030^{*}
C9	$0.07972(9)$	$0.46252(19)$	$0.30298(12)$	$0.0233(4)$
H9	0.0742	0.5464	0.3269	0.028^{*}
C10	$0.17837(9)$	$0.04031(19)$	$0.24198(12)$	$0.0226(3)$
H10A	0.1810	-0.0031	0.2999	0.027^{*}
H10B	0.2091	0.1173	0.2550	0.027^{*}
C11	$0.20163(9)$	$-0.05516(18)$	$0.18250(13)$	$0.0224(3)$
H11A	0.2484	-0.0834	0.2140	0.027^{*}
H11B	0.1724	-0.1342	0.1723	0.027^{*}
C12	$0.21395(10)$	$-0.1006(2)$	$0.03647(15)$	$0.0289(4)$
H12A	0.2588	-0.1381	0.0652	0.043^{*}
H12B	0.2129	-0.0623	-0.0217	0.043^{*}
H12C	0.1797	-0.1700	0.0271	0.043^{*}
C13	$0.24979(9)$	$0.10901(19)$	$0.10403(15)$	$0.0259(4)$
H13A	0.2404	0.1794	0.1417	0.039^{*}
H13B	0.2470	0.1442	0.0444	0.039^{*}
H13C	0.2953	0.0740	0.1322	0.039^{*}
N1	$0.11566(7)$	$0.31225(14)$	$0.10437(10)$	
			$0.0184(3)$	

N2	$0.10774(7)$	$0.08637(14)$	$0.19907(10)$	$0.0176(3)$
H2A	0.0780	0.0256	0.2111	0.021^{*}
N3	$0.19961(7)$	$0.00256(15)$	$0.09472(10)$	$0.0191(3)$
C11	$-0.04043(2)$	$0.14862(4)$	$-0.01821(3)$	$0.01998(9)$
C12	$0.11929(2)$	$0.17411(5)$	$-0.10028(3)$	$0.02352(9)$
Cd1	$0.088388(5)$	$0.096714(11)$	$0.037735(7)$	$0.01464(5)$
O1	0.0000	$-0.0595(2)$	0.2500	$0.0243(4)$
H1O	$-0.0257(15)$	$-0.110(3)$	$0.209(2)$	$0.050(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0340(10)$	$0.0211(9)$	$0.0220(9)$	$-0.0026(7)$	$0.0102(7)$	$0.0035(7)$
C2	$0.0416(11)$	$0.0174(9)$	$0.0299(10)$	$-0.0025(8)$	$0.0078(8)$	$0.0049(8)$
C3	$0.0274(9)$	$0.0161(8)$	$0.0301(10)$	$0.0012(7)$	$0.0025(7)$	$-0.0012(7)$
C4	$0.0157(7)$	$0.0201(8)$	$0.0213(8)$	$-0.0023(6)$	$0.0016(6)$	$-0.0034(7)$
C5	$0.0123(7)$	$0.0187(8)$	$0.0176(8)$	$-0.0018(6)$	$0.0022(6)$	$-0.0005(6)$
C6	$0.0132(7)$	$0.0188(8)$	$0.0194(8)$	$-0.0042(6)$	$0.0036(6)$	$-0.0024(6)$
C7	$0.0205(8)$	$0.0258(9)$	$0.0180(8)$	$-0.0053(7)$	$0.0053(6)$	$-0.0014(7)$
C8	$0.0222(9)$	$0.0329(10)$	$0.0197(8)$	$-0.0049(7)$	$0.0065(7)$	$-0.0080(7)$
C9	$0.0206(8)$	$0.0241(9)$	$0.0237(8)$	$-0.0019(7)$	$0.0043(6)$	$-0.0090(7)$
C10	$0.0212(8)$	$0.0249(9)$	$0.0200(8)$	$0.0021(7)$	$0.0036(6)$	$0.0059(7)$
C11	$0.0198(8)$	$0.0190(8)$	$0.0277(9)$	$0.0033(6)$	$0.0061(7)$	$0.0064(7)$
C12	$0.0234(9)$	$0.0287(10)$	$0.0373(11)$	$0.0049(7)$	$0.0133(8)$	$-0.0030(8)$
C13	$0.0146(8)$	$0.0265(9)$	$0.0354(11)$	$-0.0024(7)$	$0.0055(7)$	$0.0075(8)$
N1	$0.0198(7)$	$0.0167(7)$	$0.0185(7)$	$-0.0018(5)$	$0.0056(5)$	$0.0009(5)$
N2	$0.0170(7)$	$0.0161(7)$	$0.0204(7)$	$-0.0025(5)$	$0.0066(5)$	$0.0002(5)$
N3	$0.0159(6)$	$0.0185(7)$	$0.0239(7)$	$-0.0006(5)$	$0.0072(5)$	$0.0019(6)$
C11	$0.01501(17)$	$0.01287(18)$	$0.0307(2)$	$0.00086(13)$	$0.00476(15)$	$-0.00112(15)$
C12	$0.0249(2)$	$0.0277(2)$	$0.01924(19)$	$-0.00542(16)$	$0.00846(16)$	$0.00022(16)$
Cd1	$0.01324(7)$	$0.01439(7)$	$0.01632(7)$	$-0.00110(4)$	$0.00444(5)$	$-0.00040(4)$
O1	$0.0240(9)$	$0.0220(9)$	$0.0242(9)$	0.000	$0.0028(7)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 1$	$1.323(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	$1.408(3)$	$\mathrm{C} 11-\mathrm{N} 3$	$1.475(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	$1.367(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 12-\mathrm{N} 3$	$1.472(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.414(3)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9800
$\mathrm{C} 4-\mathrm{C} 9$	$1.417(3)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	$1.420(2)$	$\mathrm{C} 13-\mathrm{N} 3$	$1.477(2)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.369(2)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9800
$\mathrm{C} 5-\mathrm{C} 6$	$1.420(2)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	0.9800
$\mathrm{C} 6-\mathrm{C} 7$	$1.374(2)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{C}$	0.9800
$\mathrm{C} 6-\mathrm{N} 2$	$1.440(2)$	$\mathrm{N} 1-\mathrm{Cd} 1$	$2.4166(15)$

C7-C8	1.416 (3)
C7-H7	0.9500
C8-C9	1.365 (3)
C8-H8	0.9500
C9-H9	0.9500
C10-N2	1.491 (2)
C10-C11	1.515 (3)
C10-H10A	0.9900
N1-C1-C2	123.49 (18)
N1-C1-H1	118.3
C2- $21-\mathrm{H} 1$	118.3
C3-C2-C1	118.98 (18)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5
C2-C3-C4	119.60 (17)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
C3-C4-C9	123.05 (17)
C3-C4-C5	117.60 (16)
C9-C4-C5	119.33 (17)
N1-C5-C4	121.92 (15)
N1-C5-C6	118.47 (15)
C4-C5-C6	119.60 (16)
C7-C6-C5	119.48 (16)
C7-C6-N2	122.22 (16)
C5-C6-N2	118.29 (15)
C6-C7-C8	120.74 (17)
C6-C7-H7	119.6
C8-C7-H7	119.6
C9-C8-C7	120.77 (17)
C9-C8-H8	119.6
C7-C8-H8	119.6
C8-C9-C4	120.02 (17)
C8-C9-H9	120.0
C4-C9-H9	120.0
N2-C10-C11	112.06 (14)
N2-C10-H10A	109.2
C11-C10-H10A	109.2
N2-C10-H10B	109.2
C11-C10-H10B	109.2
H10A-C10-H10B	107.9
N3-C11-C10	112.61 (14)
N3-C11-H11A	109.1
C10-C11-H11A	109.1
N3-C11-H11B	109.1
C10-C11-H11B	109.1
H11A-C11-H11B	107.8

N2-Cd1	2.4234 (15)
N2-H2A	0.9300
N3-Cd1	2.4070 (14)
Cl1-Cd1	2.6028 (4)
$\mathrm{Cl} 1-\mathrm{Cd} 1^{\text {i }}$	2.6667 (4)
Cl2-Cd1	2.5410 (4)
$\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	2.6667 (4)
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.87 (3)
H12A-C12-H12B	109.5
N3-C12-H12C	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
N3-C13-H13A	109.5
N3-C13-H13B	109.5
H13A-C13-H13B	109.5
N3-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
C1-N1-C5	118.28 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	125.10 (12)
C5-N1-Cd1	114.41 (11)
C6-N2-C10	110.93 (14)
C6-N2-Cd1	111.09 (10)
C10-N2-Cd1	108.36 (10)
C6-N2-H2A	108.8
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{Cd} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
C12-N3-C11	109.36 (15)
C12-N3-C13	108.44 (15)
C11-N3-C13	112.03 (14)
C12-N3-Cd1	113.73 (11)
C11-N3-Cd1	105.02 (10)
C13-N3-Cd1	108.29 (11)
Cd1-Cll- $\mathrm{Cdl}^{\text {i }}$	99.142 (13)
N3-Cd1-N1	97.25 (5)
N3-Cd1-N2	75.88 (5)
N1-Cd1-N2	69.48 (5)
N3-Cd1-Cl2	88.85 (4)
N1-Cd1- ${ }^{\text {Cl2 }}$	89.81 (4)
N2- $\mathrm{Cd} 1-\mathrm{Cl} 2$	152.01 (4)
N3-Cd1-Cl1	167.81 (4)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	92.60 (4)
N2-Cd1-Cl1	101.08 (4)
$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$	98.388 (14)
N3-Cd1- $\mathrm{Cl1}^{\text {i }}$	87.36 (4)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	158.02 (4)
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	91.07 (3)

$\mathrm{N} 3-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\mathrm{i}}$	$111.836(14)$
$\mathrm{N} 3-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\mathrm{i}}$	$80.858(13)$

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1$	0.93	2.08	$2.9765(17)$	163
$\mathrm{O} 1 — \mathrm{H} 1 O \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.87(3)$	$2.26(3)$	$3.0758(9)$	$158(3)$

Symmetry code: (i) $-x,-y,-z$.

