metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Difluoridotetrakis(pyridine-*κN*)chromium(III) perchlorate from synchrotron radiation

Dohyun Moon^a and Jong-Ha Choi^{b*}

^aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea

Correspondence e-mail: jhchoi@andong.ac.kr

Received 15 August 2013; accepted 16 August 2013

Key indicators: single-crystal synchrotron study; T = 99 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 19.9.

The are two independent complex cations in the title salt, $[CrF_2(C_5H_5N)_4]ClO_4$, each located on a centre of inversion, as well as an independent perchlorate counter-ion. The complex cations adopt slightly distorted octahedral coordination environments around the Cr^{III} ion, defined by four pyridine (py) N atoms in the equatorial plane and two F⁻ ligands in the axial positions; intramolecular C-H···F contacts are noted. The mean Cr-N(py) and Cr-F bond lengths are 2.088 (6) and 1.8559 (10) Å, respectively. The three-dimensional architecture is sustained by hydrogen bonds involving the pyridine C-H groups as donors, and F and O atoms as acceptors.

Related literature

For background to geometric isomerism in transition metal comlexes, see: Knight & Scott (2003); Ronconi & Sadler (2007). For the synthesis, see: Glerup *et al.* (1970). For the structure of *trans*-[Cr(py)₄F₂]PF₆, see: Fochi *et al.* (1991).

Experimental

Crystal data $[CrF_2(C_5H_5N)_4]CIO_4$ $M_r = 505.85$ Triclinic, $P\overline{1}$ a = 9.5690 (19) Å b = 10.615 (2) Å c = 12.663 (3) Å

 $\begin{aligned} &\alpha = 68.46 \ (3)^{\circ} \\ &\beta = 68.31 \ (3)^{\circ} \\ &\gamma = 79.38 \ (3)^{\circ} \\ &V = 1109.9 \ (5) \ \text{\AA}^{3} \\ &Z = 2 \end{aligned}$ Synchrotron radiation

 $\lambda = 0.63001 \text{ Å}$ $\mu = 0.49 \text{ mm}^{-1}$

Data collection

ADSC Q210 CCD area-detector Absorption correction: empirical (*HKL3000sm*; Otwinowski & Minor, 1997) $T_{\rm min} = 0.985, T_{\rm max} = 0.993$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.055842 reflections

Table 1

Hydrogen-bond geometry (Å, °).

11523 measured reflections 5842 independent reflections 4912 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

 $0.03 \times 0.03 \times 0.02 \text{ mm}$

T = 99 K

293 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.61 \text{ e } \text{\AA}^{-3}$

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C1 - H1 \cdots F1$	0.95	2.36	2.892 (2)	115
C6−H6···F1	0.95	2.31	2.874 (2)	118
$C11 - H11 \cdots F2$	0.95	2.32	2.879 (2)	117
$C16-H16\cdots F2$	0.95	2.39	2.915 (2)	115
$C14 - H14 \cdots O1P$	0.95	2.61	3.154 (2)	117
$C9 - H9 \cdots O2P$	0.95	2.63	3.320 (3)	130
$C1 - H1 \cdots O3P^{i}$	0.95	2.41	3.107 (2)	130
$C4 - H4 \cdots O1P^{ii}$	0.95	2.51	3.368 (2)	150
$C5-H5\cdots F1^{iii}$	0.95	2.38	2.900 (2)	114
C10−H10···F1 ⁱⁱⁱ	0.95	2.31	2.863 (2)	117
$C15 - H15 \cdots F2^{iv}$	0.95	2.29	2.856 (2)	117
$C20 - H20 \cdot \cdot \cdot F2^{iv}$	0.95	2.34	2.860 (2)	114
$C15 - H15 \cdots O3P^{v}$	0.95	2.64	3.466 (2)	146
$C19 - H19 \cdots O2P^{vi}$	0.95	2.58	3.227 (3)	125

Symmetry codes: (i) x - 1, y + 1, z; (ii) x - 1, y, z; (iii) -x, -y + 2, -z; (iv) -x, -y + 2, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) x, y + 1, z.

Data collection: *PAL ADSC Quantum-210 ADX Software* (Arvai & Nielsen, 1983); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm*; program(s) used to solve structure: *SHELX-2013-XS* (Sheldrick, 2008); program(s) used to refine structure: *SHELX-2013-XL* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

This work was supported by a grant from the 2012 Academic Research Fund of Andong National University. The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5248).

References

- Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
- Brandenburg, K. (2007). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fochi, G., Stäahle, J. & Ging, F. (1991). Inorg. Chem. 30, 4669-4671.
- Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.
- Knight, P. D. & Scott, P. (2003). Coord. Chem. Rev. 242, 125-143.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m514 [doi:10.1107/S1600536813023052]

trans-Difluoridotetrakis(pyridine-*kN*)chromium(III) perchlorate from synchrotron radiation

Dohyun Moon and Jong-Ha Choi

S1. Comment

The study of geometrical isomerism in octahedral transition metal complexes with mixed ligands has generated considerable interest, and has provided much basic structural information and spectroscopic properties (Knight & Scott, 2003). The geometry of various ligands in the metal complexes are very important in medical applications, and is likely to be a major factor in determining the anti-viral activity and its side-effects (Ronconi & Sadler, 2007). The [Cr(py)₄X₂]ⁿ⁺ cation (X = monodentate; py = pyridine) can be either *trans* or *cis* geometric isomers. The infrared, electronic absorption and emission spectroscopic properties are useful in distinguishing the geometric isomers of chromium(III) complexes. However, it should be noted that the geometric and conformational assignments based on spectroscopic properties are not always definitive.

In this communication, we describe the structure of *trans*-[Cr(py)₄F₂]ClO₄ in order to confirm the coordination of four pyridine molecules in equatorial plane and two fluoride ligands in axial positions. Counter anionic species play a very important role in coordination chemistry. This is another example of a *trans*-[Cr(py)₄F₂]⁺ structure but with a different counter anion.

The structural analysis shows the Cr^{III} complex cation to be coordinated by four nitrogen atoms of four py ligands in the equatorial sites and the two mutually *trans* fluoride atoms. The Cr1 and Cr2 complex cations are in half occupancy in the asymmetric unit. That is, each molecule is contributing a charge of +0.5. Thus, the salt comprises *trans*-[Cr(py)₄F₂]⁺ and ClO₄⁻. An ellipsoid plot of one independent complex cation and the anion is depicted in Fig. 1.

Atoms Cr1 and Cr2 are located at a crystallographic center of symmetry, so these Cr complex cations have molecular C_i symmetry.

The Cr—N(py) distances vary from 2.0799 (17) to 2.0929 (15) Å and the Cr–F distances are in the range of 1.8552 (10) to 1.8566 (10) Å. These bond lengths are in good agreement with those observed in *trans*-[Cr(py)₄F₂]PF₆ (Fochi *et al.*, 1991).

The ClO_4^- anion remains outside the coordination sphere. The crystal packing is stabilized by hydrogen bonding interactions between the C—H groups of the py ligand and the oxygens of the ClO_4^- anion, Table 1. As expected, the ClO_4^- counter ion has slightly distorted tetrahedral geometry due to the influence of hydrogen bonding on the Cl—O bond lengths and the O—Cl–O angles. Consideration of the crystal packing shows that intermolecular C—H…F hydrogen bonds are also present, Table 1.

S2. Experimental

All chemicals were reagent grade materials and used without further purification. The *trans*- $[Cr(py)_4F_2]ClO_4$ salt was prepared as described previously (Glerup *et al.*, 1970), and allowed to stand in 0.1 M HClO₄ solution at room temperature for 1-2 days to give very small crystals suitable for X-ray structural analysis.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C—H = 0.95) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2U_{eq}(C)$.

Figure 1

A perspective drawing (50% probability level) of one independent complex cation and the unique perchlorate anion in the structure of *trans*- $[Cr(py)_4F_2]ClO_4$

trans-Difluoridotetrakis(pyridine-kN)chromium(III) perchlorate

Crystal data	
Crystal data $[CrF_{2}(C_{5}H_{5}N)_{4}]ClO_{4}$ $M_{r} = 505.85$ Triclinic, P1 Hall symbol: -P1 a = 9.5690 (19) Å b = 10.615 (2) Å c = 12.663 (3) Å $a = 68.46 (3)^{\circ}$ $\beta = 68.31 (3)^{\circ}$ $\gamma = 79.38 (3)^{\circ}$	Z = 2 F(000) = 518 $D_x = 1.514 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.63001 \text{ Å}$ Cell parameters from 33119 reflections $\theta = 0.4-33.6^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 99 K Pink, plate $0.03 \times 0.03 \times 0.02 \text{ mm}$
V = 1109.9 (5) Å ³	

Data collection

ADSC Q210 CCD area-detector diffractometer Radiation source: PLSII 2D bending magnet ω scan Absorption correction: empirical (using intensity measurements) (<i>HKL3000sm</i> ; Otwinowski & Minor, 1997) $T_{\min} = 0.985, T_{\max} = 0.993$	11523 measured reflections 5842 independent reflections 4912 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.05 5842 reflections 293 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.5188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.51 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.61 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL</i> , Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.062 (4)

Special details

Experimental. Since the Pohang Accelerator Laboratory goniostat has only one omega-axis, diffrn_measured_fraction_theta_full is not fully covered as 0.944, especially for the low symmetry such as a triclinic system. As this is an inherent problem, other command and option (such as *OMIT*) were not helpful to improve the completeness.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
0.0000	1.0000	0.0000	0.01263 (9)
0.01103 (10)	1.14193 (9)	0.04859 (8)	0.01655 (19)
-0.16449 (15)	0.91455 (13)	0.16450 (12)	0.0144 (2)
-0.24067 (17)	0.99130 (16)	0.23459 (14)	0.0160 (3)
-0.2177	1.0836	0.2077	0.019*
-0.35141 (18)	0.94021 (17)	0.34453 (15)	0.0184 (3)
-0.4036	0.9969	0.3918	0.022*
-0.38521 (19)	0.80573 (18)	0.38478 (15)	0.0206 (3)
-0.4594	0.7682	0.4605	0.025*
-0.30797 (19)	0.72648 (17)	0.31164 (16)	0.0213 (3)
-0.3294	0.6341	0.3366	0.026*
-0.19964 (18)	0.78444 (16)	0.20218 (15)	0.0177 (3)
-0.1484	0.7307	0.1520	0.021*
0.17550 (15)	0.89172 (13)	0.06286 (12)	0.0150 (3)
0.24772 (18)	0.94873 (16)	0.10540 (14)	0.0182 (3)
0.2131	1.0362	0.1120	0.022*
0.37130 (19)	0.88404 (18)	0.14009 (16)	0.0212 (3)
	$\begin{array}{c} x \\ \hline 0.0000 \\ 0.01103 (10) \\ -0.16449 (15) \\ -0.24067 (17) \\ -0.2177 \\ -0.35141 (18) \\ -0.4036 \\ -0.38521 (19) \\ -0.4594 \\ -0.30797 (19) \\ -0.3294 \\ -0.19964 (18) \\ -0.1484 \\ 0.17550 (15) \\ 0.24772 (18) \\ 0.2131 \\ 0.37130 (19) \end{array}$	xy 0.0000 1.0000 $0.01103 (10)$ $1.14193 (9)$ $-0.16449 (15)$ $0.91455 (13)$ $-0.24067 (17)$ $0.99130 (16)$ -0.2177 1.0836 $-0.35141 (18)$ $0.94021 (17)$ -0.4036 0.9969 $-0.38521 (19)$ $0.80573 (18)$ -0.4594 0.7682 $-0.30797 (19)$ $0.72648 (17)$ $-0.19964 (18)$ $0.78444 (16)$ -0.1484 0.7307 $0.17550 (15)$ $0.89172 (13)$ $0.24772 (18)$ $0.94873 (16)$ 0.2131 1.0362 $0.37130 (19)$ $0.88404 (18)$	x y z 0.0000 1.0000 0.0000 $0.01103 (10)$ $1.14193 (9)$ $0.04859 (8)$ $-0.16449 (15)$ $0.91455 (13)$ $0.16450 (12)$ $-0.24067 (17)$ $0.99130 (16)$ $0.23459 (14)$ -0.2177 1.0836 0.2077 $-0.35141 (18)$ $0.94021 (17)$ $0.34453 (15)$ -0.4036 0.9969 0.3918 $-0.38521 (19)$ $0.80573 (18)$ $0.38478 (15)$ -0.4594 0.7682 0.4605 $-0.30797 (19)$ $0.72648 (17)$ $0.31164 (16)$ -0.3294 0.6341 0.3366 $-0.19964 (18)$ $0.78444 (16)$ $0.20218 (15)$ -0.1484 0.7307 0.1520 $0.17550 (15)$ $0.89172 (13)$ $0.06286 (12)$ $0.24772 (18)$ $0.94873 (16)$ $0.10540 (14)$ 0.2131 1.0362 $0.14009 (16)$

H7	0.4210	0.9271	0.1691	0.025*
C8	0.42122 (19)	0.75607 (18)	0.13180 (15)	0.0214 (3)
H8	0.5052	0.7097	0.1556	0.026*
C9	0.34678 (19)	0.69668 (17)	0.08827 (16)	0.0210 (3)
H9	0.3789	0.6089	0.0817	0.025*
C10	0.22513 (18)	0.76705 (16)	0.05457 (15)	0.0181 (3)
H10	0.1746	0.7262	0.0245	0.022*
Cr2	0.0000	1.0000	0.5000	0.01280 (9)
F2	-0.15818 (10)	1.01373 (10)	0.44431 (8)	0.01706 (19)
N3	0.08874 (14)	0.82597 (13)	0.45187 (11)	0.0148 (3)
C11	0.02042 (18)	0.77691 (17)	0.40054 (15)	0.0179 (3)
H11	-0.0646	0.8267	0.3805	0.022*
C12	0.06960 (19)	0.65643 (17)	0.37590 (15)	0.0204 (3)
H12	0.0185	0.6242	0.3400	0.024*
C13	0.19391 (19)	0.58355 (17)	0.40415 (15)	0.0209 (3)
H13	0.2300	0.5010	0.3875	0.025*
C14	0.26469 (19)	0.63353 (17)	0.45721 (15)	0.0205 (3)
H14	0.3502	0.5855	0.4776	0.025*
C15	0.20934 (18)	0.75428 (17)	0.48022 (14)	0.0179 (3)
H15	0.2578	0.7877	0.5171	0.022*
N4	0.12228 (15)	1.12831 (14)	0.33344 (12)	0.0157 (3)
C16	0.05298 (18)	1.21171 (16)	0.25660 (14)	0.0177 (3)
H16	-0.0518	1.2052	0.2758	0.021*
C17	0.1294 (2)	1.30722 (17)	0.14993 (15)	0.0215 (3)
H17	0.0773	1.3660	0.0976	0.026*
C18	0.2822 (2)	1.31577 (18)	0.12077 (16)	0.0246 (4)
H18	0.3368	1.3805	0.0483	0.030*
C19	0.3546 (2)	1.2278 (2)	0.19953 (17)	0.0263 (4)
H19	0.4600	1.2304	0.1809	0.032*
C20	0.27139 (18)	1.13681 (18)	0.30494 (15)	0.0211 (3)
H20	0.3208	1.0781	0.3593	0.025*
Cl1P	0.64390 (4)	0.40483 (4)	0.24420 (3)	0.01718 (10)
O1P	0.53210 (15)	0.45637 (14)	0.33397 (13)	0.0305 (3)
O2P	0.5964 (2)	0.44001 (15)	0.14139 (13)	0.0374 (4)
O3P	0.66002 (17)	0.26002 (13)	0.29401 (13)	0.0304 (3)
O4P	0.78435 (15)	0.46338 (17)	0.20959 (16)	0.0387 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.01311 (16)	0.01227 (16)	0.01356 (16)	0.00203 (12)	-0.00396 (13)	-0.00714 (12)
F1	0.0183 (4)	0.0153 (4)	0.0190 (4)	0.0016 (3)	-0.0062 (4)	-0.0100 (3)
N1	0.0146 (6)	0.0150 (6)	0.0150 (6)	0.0008 (5)	-0.0050 (5)	-0.0071 (5)
C1	0.0153 (7)	0.0167 (7)	0.0178 (7)	0.0020 (5)	-0.0060 (6)	-0.0086 (6)
C2	0.0142 (7)	0.0245 (8)	0.0184 (7)	0.0011 (6)	-0.0046 (6)	-0.0110 (6)
C3	0.0161 (7)	0.0263 (8)	0.0183 (7)	-0.0041 (6)	-0.0036 (6)	-0.0067 (6)
C4	0.0225 (8)	0.0195 (8)	0.0223 (8)	-0.0046 (6)	-0.0066 (7)	-0.0063 (6)
C5	0.0197 (7)	0.0157 (7)	0.0195 (7)	0.0000 (6)	-0.0065 (6)	-0.0081 (6)

N2	0.0149 (6)	0.0152 (6)	0.0149 (6)	0.0021 (5)	-0.0042 (5)	-0.0069 (5)
C6	0.0188 (7)	0.0180 (7)	0.0182 (7)	0.0018 (6)	-0.0054 (6)	-0.0085 (6)
C7	0.0196 (7)	0.0241 (8)	0.0227 (8)	0.0014 (6)	-0.0089 (7)	-0.0101 (6)
C8	0.0176 (7)	0.0234 (8)	0.0212 (8)	0.0047 (6)	-0.0068 (6)	-0.0075 (6)
C9	0.0198 (7)	0.0193 (7)	0.0230 (8)	0.0061 (6)	-0.0067 (7)	-0.0098 (6)
C10	0.0185 (7)	0.0170 (7)	0.0188 (7)	0.0022 (6)	-0.0053 (6)	-0.0083 (6)
Cr2	0.00999 (15)	0.01573 (17)	0.01295 (16)	0.00214 (12)	-0.00418 (12)	-0.00595 (12)
F2	0.0138 (4)	0.0204 (5)	0.0191 (4)	0.0021 (3)	-0.0077 (4)	-0.0080 (4)
N3	0.0133 (6)	0.0163 (6)	0.0135 (6)	0.0011 (5)	-0.0033 (5)	-0.0057 (5)
C11	0.0153 (7)	0.0199 (7)	0.0187 (7)	0.0013 (6)	-0.0056 (6)	-0.0076 (6)
C12	0.0190 (7)	0.0213 (8)	0.0225 (8)	0.0003 (6)	-0.0065 (6)	-0.0101 (6)
C13	0.0200 (7)	0.0180 (7)	0.0218 (8)	0.0023 (6)	-0.0035 (6)	-0.0084 (6)
C14	0.0172 (7)	0.0214 (8)	0.0198 (7)	0.0056 (6)	-0.0053 (6)	-0.0072 (6)
C15	0.0146 (7)	0.0220 (8)	0.0176 (7)	0.0033 (6)	-0.0055 (6)	-0.0087 (6)
N4	0.0140 (6)	0.0183 (6)	0.0149 (6)	0.0007 (5)	-0.0035 (5)	-0.0076 (5)
C16	0.0175 (7)	0.0193 (7)	0.0165 (7)	0.0023 (6)	-0.0056 (6)	-0.0077 (6)
C17	0.0266 (8)	0.0191 (7)	0.0178 (7)	0.0018 (6)	-0.0068 (7)	-0.0068 (6)
C18	0.0272 (9)	0.0224 (8)	0.0196 (8)	-0.0054 (7)	-0.0003 (7)	-0.0073 (6)
C19	0.0183 (8)	0.0327 (10)	0.0242 (8)	-0.0051 (7)	-0.0013 (7)	-0.0090 (7)
C20	0.0149 (7)	0.0275 (8)	0.0194 (7)	-0.0010 (6)	-0.0046 (6)	-0.0073 (6)
Cl1P	0.01680 (17)	0.01445 (17)	0.02051 (18)	0.00369 (12)	-0.00615 (14)	-0.00815 (13)
O1P	0.0234 (6)	0.0276 (7)	0.0369 (8)	0.0019 (5)	0.0019 (6)	-0.0201 (6)
O2P	0.0580 (10)	0.0308 (8)	0.0269 (7)	-0.0049 (7)	-0.0253 (7)	-0.0007 (6)
O3P	0.0427 (8)	0.0139 (6)	0.0382 (8)	0.0093 (5)	-0.0219 (7)	-0.0092 (5)
O4P	0.0178 (6)	0.0411 (8)	0.0597 (10)	-0.0049 (6)	-0.0017 (7)	-0.0291 (8)

Geometric parameters (Å, °)

Cr1—F1 ⁱ	1.8566 (10)	Cr2—N4	2.0799 (17)
Cr1—F1	1.8566 (10)	Cr2—N4 ⁱⁱ	2.0800 (17)
Cr1—N1 ⁱ	2.0867 (16)	Cr2—N3 ⁱⁱ	2.0908 (14)
Cr1—N1	2.0867 (16)	Cr2—N3	2.0908 (14)
Cr1-N2 ⁱ	2.0929 (15)	N3—C11	1.345 (2)
Cr1—N2	2.0929 (15)	N3—C15	1.350 (2)
N1-C1	1.3478 (19)	C11—C12	1.385 (2)
N1-C5	1.348 (2)	C11—H11	0.9500
C1—C2	1.386 (2)	C12—C13	1.383 (2)
C1—H1	0.9500	C12—H12	0.9500
C2—C3	1.384 (2)	C13—C14	1.386 (3)
С2—Н2	0.9500	C13—H13	0.9500
C3—C4	1.396 (2)	C14—C15	1.385 (2)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.386 (2)	C15—H15	0.9500
C4—H4	0.9500	N4—C16	1.341 (2)
С5—Н5	0.9500	N4—C20	1.348 (2)
N2C6	1.343 (2)	C16—C17	1.387 (2)
N2—C10	1.350 (2)	C16—H16	0.9500
C6—C7	1.388 (2)	C17—C18	1.382 (3)

С6—Н6	0.9500	C17—H17	0.9500
С7—С8	1.383 (2)	C18—C19	1.391 (3)
С7—Н7	0.9500	C18—H18	0.9500
C8—C9	1.386 (3)	C19—C20	1.378 (3)
C8—H8	0.9500	C19—H19	0.9500
C_{0}	1.381(2)	C20_H20	0.9500
C_{0} H0	0.9500	Clip O/P	1,4342(15)
C10 H10	0.9500	$C_{11} = O_{11}$	1.4342(13)
Cr2 E2ii	1.9552 (10)		1.4342(14) 1.4251(15)
$C_1 2 - F_2^{-1}$	1.8552(10)	Clip Olp	1.4331(13)
Cr2—F2	1.8552 (10)	CIIP—OIP	1.4416 (14)
Eli Cri El	190.0		00.2((f))
FI-CI-FI	180.0	$F2^{}Cf2^{}N4^{+-}$	90.36 (6)
FI'-CrI-NI'	90.52 (5)	$F2$ — $Cr2$ — $N4^{"}$	89.64 (6)
$F1$ — $Cr1$ — $N1^{1}$	89.48 (5)	N4—Cr2—N4 ⁿ	180.0
F1'—Cr1—N1	89.48 (5)	$F2^{n}$ — $Cr2$ — $N3^{n}$	90.31 (5)
F1—Cr1—N1	90.52 (5)	$F2$ — $Cr2$ — $N3^{ii}$	89.69 (5)
N1 ⁱ —Cr1—N1	180.00 (7)	N4—Cr2—N3 ⁱⁱ	87.08 (6)
$F1^{i}$ — $Cr1$ — $N2^{i}$	90.40 (5)	N4 ⁱⁱ —Cr2—N3 ⁱⁱ	92.92 (6)
F1-Cr1-N2 ⁱ	89.60 (5)	F2 ⁱⁱ —Cr2—N3	89.68 (5)
N1 ⁱ —Cr1—N2 ⁱ	92.68 (6)	F2—Cr2—N3	90.32 (5)
N1—Cr1—N2 ⁱ	87.32 (6)	N4—Cr2—N3	92.92 (6)
$F1^{i}$ — $Cr1$ — $N2$	89.60 (5)	N4 ⁱⁱ —Cr2—N3	87.08 (6)
F1—Cr1—N2	90.40 (5)	N3 ⁱⁱ —Cr2—N3	180.0
$N1^{i}$ —Cr1—N2	87.32 (6)	C11—N3—C15	118.33 (14)
N1— $Cr1$ — $N2$	92.68 (6)	$C11 - N3 - Cr^{2}$	120.91 (11)
$N2^{i}$ Cr1 N2	180.0	$C15 - N3 - Cr^2$	120.51(11) 120.55(11)
C1 - N1 - C5	118 53 (14)	N3C11C12	120.39(11) 122.38(15)
C1 - N1 - Cr1	110.55 (14)	N3C11H11	118.8
C_{1} N1 C_{*1}	119.00(11) 121.77(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.0
C_{3} C_{1} C_{2}	121.77(11) 122.25(15)	C_{12} C_{12} C_{11}	110.0
	122.23 (13)	C13 - C12 - C11	119.23 (10)
NI—CI—HI	118.9	C13—C12—H12	120.4
C2—C1—H1	118.9	СП—СІ2—НІ2	120.4
C3—C2—C1	119.33 (15)	C12—C13—C14	118.63 (15)
C3—C2—H2	120.3	C12—C13—H13	120.7
C1—C2—H2	120.3	C14—C13—H13	120.7
C2—C3—C4	118.55 (15)	C15—C14—C13	119.30 (15)
С2—С3—Н3	120.7	C15—C14—H14	120.4
С4—С3—Н3	120.7	C13—C14—H14	120.4
C5—C4—C3	119.09 (16)	N3—C15—C14	122.11 (15)
C5—C4—H4	120.5	N3—C15—H15	118.9
C3—C4—H4	120.5	C14—C15—H15	118.9
N1—C5—C4	122.22 (15)	C16—N4—C20	118.68 (15)
N1—C5—H5	118.9	C16—N4—Cr2	120.86 (11)
C4—C5—H5	118.9	C20—N4—Cr2	120.25 (12)
C6—N2—C10	118.41 (14)	N4-C16-C17	122.13 (16)
C6-N2-Cr1	120.40 (10)	N4—C16—H16	118.9
$C10 - N^2 - Cr^1$	121.05 (11)	C17 - C16 - H16	118.9
N2C6C7	122.03 (11)	C18 - C17 - C16	110.5
	1 <u></u> , 1 / (1 -)		11/11/11/1

N2—C6—H6	118.9	C18—C17—H17	120.4
С7—С6—Н6	118.9	С16—С17—Н17	120.4
C8—C7—C6	119.12 (16)	C17—C18—C19	118.76 (17)
С8—С7—Н7	120.4	C17—C18—H18	120.6
С6—С7—Н7	120.4	C19—C18—H18	120.6
C7—C8—C9	118.91 (16)	C20-C19-C18	119.08 (17)
С7—С8—Н8	120.5	С20—С19—Н19	120.5
С9—С8—Н8	120.5	C18—C19—H19	120.5
С10—С9—С8	119.00 (15)	N4—C20—C19	122.20 (17)
С10—С9—Н9	120.5	N4—C20—H20	118.9
С8—С9—Н9	120.5	С19—С20—Н20	118.9
N2—C10—C9	122.39 (16)	O4P—Cl1P—O3P	110.13 (10)
N2-C10-H10	118.8	O4P—Cl1P—O2P	109.84 (11)
С9—С10—Н10	118.8	O3P—Cl1P—O2P	109.44 (9)
$F2^{ii}$ — $Cr2$ — $F2$	180.0	O4P—C11P—O1P	109.02 (9)
$F2^{ii}$ —Cr2—N4	89.64 (6)	O3P—C11P—O1P	108.90 (9)
F2—Cr2—N4	90.36 (6)	O2P—Cl1P—O1P	109.50 (10)
C5—N1—C1—C2	1.2 (2)	C15—N3—C11—C12	-0.1 (2)
Cr1—N1—C1—C2	179.81 (12)	Cr2—N3—C11—C12	-175.00 (12)
N1—C1—C2—C3	0.3 (2)	N3-C11-C12-C13	-0.4 (3)
C1—C2—C3—C4	-1.2 (2)	C11-C12-C13-C14	0.4 (3)
C2—C3—C4—C5	0.5 (3)	C12—C13—C14—C15	0.0 (2)
C1—N1—C5—C4	-1.9 (2)	C11—N3—C15—C14	0.5 (2)
Cr1—N1—C5—C4	179.55 (13)	Cr2—N3—C15—C14	175.44 (12)
C3—C4—C5—N1	1.0 (3)	C13—C14—C15—N3	-0.5 (2)
C10—N2—C6—C7	0.4 (2)	C20-N4-C16-C17	-0.9 (2)
Cr1—N2—C6—C7	-175.43 (12)	Cr2—N4—C16—C17	173.85 (12)
N2—C6—C7—C8	-0.6 (3)	N4-C16-C17-C18	0.9 (2)
C6—C7—C8—C9	0.4 (3)	C16—C17—C18—C19	0.1 (2)
C7—C8—C9—C10	0.0 (3)	C17—C18—C19—C20	-1.2 (3)
C6—N2—C10—C9	0.1 (2)	C16—N4—C20—C19	-0.3 (2)
Cr1—N2—C10—C9	175.84 (12)	Cr2—N4—C20—C19	-175.00 (14)
C8—C9—C10—N2	-0.2 (3)	C18—C19—C20—N4	1.3 (3)

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1…F1	0.95	2.36	2.892 (2)	115
C6—H6…F1	0.95	2.31	2.874 (2)	118
C11—H11…F2	0.95	2.32	2.879 (2)	117
C16—H16…F2	0.95	2.39	2.915 (2)	115
C14—H14…O1 <i>P</i>	0.95	2.61	3.154 (2)	117
С9—Н9…О2Р	0.95	2.63	3.320 (3)	130
C1—H1···O3 <i>P</i> ⁱⁱⁱ	0.95	2.41	3.107 (2)	130
C4—H4···O1 P^{iv}	0.95	2.51	3.368 (2)	150

supporting information

C5—H5···F1 ⁱ	0.95	2.38	2.900 (2)	114
C10— $H10$ ···F1 ⁱ	0.95	2.31	2.863 (2)	117
C15—H15…F2 ⁱⁱ	0.95	2.29	2.856 (2)	117
C20—H20…F2 ⁱⁱ	0.95	2.34	2.860 (2)	114
C15—H15····O3 <i>P</i> ^v	0.95	2.64	3.466 (2)	146
C19—H19····O2 <i>P</i> ^{vi}	0.95	2.58	3.227 (3)	125

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*-1, *y*+1, *z*; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*, *y*+1, *z*.