

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-hydroxyethyl)ammonium picrate

Perumal Nagapandiselvi and Rengasamy Gopalakrishnan*

Department of Physics, Anna University, Chennai 600 025, India Correspondence e-mail: krgkrishnan@annauniv.edu

Received 8 July 2013; accepted 3 August 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.126; data-to-parameter ratio = 16.5.

The asymmetric unit of the title salt, $C_4H_{12}NO_2^+C_6H_2N_3O_7^-$, contain two bis(2-hydroxyethyl)ammonium cations and two picrate anions. An intramolecular $N-H\cdots O$ hydrogen bond occurs in each cation. In the crystal, molecules are linked *via* $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, which generate two $R_2^1(6)$, an $R_2^2(10)$ and an $R_2^2(13)$ graph-set ring motifs. There are also a number of $C-H\cdots O$ hydrogen bonds present. The sum of these interactions leads to the formation a three-dimensional structure.

Related literature

For general background to picrate complexes, see: In *et al.* (1997); Zaderenko *et al.* 1997); Ashwell *et al.* (1995); Owen & White (1976); Shakir *et al.* (2009). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_4 H_{12} \text{NO}_2^{+} \cdot C_6 H_2 \text{N}_3 \text{O}_7^{-} \\ M_r = 334.25 \\ \text{Monoclinic, } P2_1/c \\ a = 24.9396 \ (6) \text{ Å} \\ b = 6.9158 \ (2) \text{ Å} \\ c = 16.2974 \ (5) \text{ Å} \\ \beta = 94.608 \ (1)^\circ \end{array}$

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *T*_{min} = 0.882, *T*_{max} = 0.966 $V = 2801.85 (14) Å^{3}$ Z = 8 Mo K\alpha radiation \mu = 0.14 mm^{-1} T = 293 K 0.35 \times 0.30 \times 0.25 mm

31581 measured reflections 7194 independent reflections 5200 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$

organic compounds

refinement $\Delta \rho_{\text{max}} = 0.52 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

H atoms treated by a mixture of

independent and constrained

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.126$ S = 1.037194 reflections 436 parameters 4 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N7-H7A···O15	0.91 (1)	2.48 (2)	2.8235 (19)	103 (1)
$N7 - H7A \cdots O17^{i}$	0.91(1)	2.43 (2)	2.9853 (18)	120(1)
$N7 - H7A \cdots O18^{ii}$	0.91 (1)	2.21 (1)	2.9272 (18)	136 (2)
$N7 - H7B \cdot \cdot \cdot O8^{i}$	0.91 (2)	1.97 (2)	2.8359 (18)	157 (2)
$N7 - H7B \cdot \cdot \cdot O14^{i}$	0.91 (2)	2.36 (2)	2.969 (2)	125 (1)
$N8-H8A\cdots O15^{iii}$	0.91 (2)	2.05 (2)	2.9076 (18)	157 (1)
N8−H8 <i>B</i> ···O18	0.91 (2)	2.56 (2)	2.898 (2)	103 (1)
$N8-H8B\cdots O16^{iv}$	0.91 (2)	1.96 (2)	2.8523 (18)	170 (2)
O15−H15…O1	0.82	2.12	2.7891 (16)	139
O15−H15…O2	0.82	2.41	3.138 (2)	149
$O16-H16\cdots O17^{i}$	0.82	2.24	2.9822 (18)	150
O17−H17···O8	0.82	2.00	2.7323 (14)	148
O17−H17···O9	0.82	2.27	2.9079 (19)	134
O18−H18···O1 ^{iv}	0.82	1.96	2.7453 (18)	161
C3-H3···O7 ^{iv}	0.93	2.59	3.502 (2)	167
C9−H9···O13 ⁱ	0.93	2.50	3.425 (2)	176
$C17 - H17A \cdots O12^{v}$	0.97	2.50	3.359 (2)	147
$C19-H19A\cdots O7^{iii}$	0.97	2.45	3.319 (3)	148
$C19-H19B\cdots O5^{vi}$	0.97	2.44	3.224 (2)	138
$C21 - H21B \cdots O1^{iii}$	0.97	2.33	3.195 (2)	148

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) -x, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection and acknowledge the Council of Scientific and Industrial research (CSIR) Government of India, for funding this project [No. 03 (115)/10/EMR-II].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2621).

References

- Ashwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). *Nature (London)*, 375, 385–388.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.
- Owen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165-2169.
- Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

supporting information

Acta Cryst. (2013). E69, o1455 [doi:10.1107/S1600536813021697]

Bis(2-hydroxyethyl)ammonium picrate

Perumal Nagapandiselvi and Rengasamy Gopalakrishnan

S1. Comment

It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons and amines, through electrostatic or hydrogen bonding interactions (In *et al.*, 1997; Zaderenko *et al.*, 1997). The bonding of donor-acceptor picric acid complexes strongly depends on the nature of partners. Some of the picric acid complexes crystallize in centrosymmetric space groups but have non-linear optical properties (NLO) [Shakir *et al.*, 2009]. This is due to the aggregation of the donor-acceptor molecules in a non-centrosymmetric manner which contributes to the bulk susceptibility from intermolecular charge transfer (Ashwell *et al.*, 1995; Owen & White, 1976). We report herein on the crystal structure of the title salt.

The asymmetric unit of the title salt, Fig. 1, contains two picrate anions and two bis(2-hydroxyethyl)ammonium cations. The amine molecule exists as ammonium ion due to protonation. The picric acid exists as a picrate anion since the proton is transferred to the amine.

The picrate benzene rings (C1-C6 and C7-C12) are inclined to one another by 39.47 (7) °.

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds, which generate two $R_2^{1}(6)$, an $R_2^{2}(10)$ and an $R_2^{2}(13)$ graph-set ring motifs (Bernstein *et al.*, 1995), forming a three-dimensional structure (Table 1 and Fig. 2). There are also C-H···O hydrogen bonds present (Table 1).

S2. Experimental

An equimolar mixture of 2,2'-azanediylbis(ethan-1-ol) (1.05 mmol) and picric acid (2.29 mmol) in an ethanol solution was stirred over 4 h to attain a saturated homogeneous mixture. The light yellow coloured solution turned a dark yellow and product formation was confirmed using TLC. The saturated solution was filtered into a clean beaker and kept in a constant temperature bath at 303 K. Yellow coloured prism-like crystals suitable for X-ray diffraction analysis were harvested in 2 days.

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.91 (1) Å. C-bound H atoms were positioned geometrically (C–H = 0.93 - 0.97 Å) and allowed to ride on their parent atom, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). H-atoms not involved in hydrogen bonding have been omitted for clarity.

Bis(2-hydroxyethyl)ammonium picrate

Crystal data	
$C_4H_{12}NO_2^+ C_6H_2N_3O_7^-$	F(000) = 1392
$M_r = 334.25$	$D_{\rm x} = 1.585 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 8443 reflections
a = 24.9396 (6) Å	$\theta = 2.5 - 28.2^{\circ}$
b = 6.9158 (2) Å	$\mu=0.14~\mathrm{mm^{-1}}$
c = 16.2974 (5) Å	T = 293 K
$\beta = 94.608 \ (1)^{\circ}$	Block, yellow
$V = 2801.85 (14) \text{ Å}^3$	$0.35 \times 0.30 \times 0.25 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.882, T_{\max} = 0.966$ <i>Refinement</i>	31581 measured reflections 7194 independent reflections 5200 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -33 \rightarrow 33$ $k = -8 \rightarrow 9$ $l = -21 \rightarrow 20$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent
$wR(F^2) = 0.126$	and constrained refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.8326P]$
7194 reflections	where $P = (F_o^2 + 2F_c^2)/3$
436 parameters	$(\Delta/\sigma)_{max} < 0.001$
4 restraints	$\Delta\rho_{max} = 0.52$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.33$ e Å ⁻³
direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.0026 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.36588 (4)	0.55080 (17)	0.35068 (7)	0.0376 (4)	
O2	0.31475 (5)	0.6612 (3)	0.48109 (9)	0.0732 (6)	
03	0.36173 (6)	0.6189 (3)	0.59420 (9)	0.0770 (7)	
O4	0.54463 (5)	0.8458 (2)	0.60986 (8)	0.0524 (5)	
05	0.58962 (5)	0.8254 (2)	0.50363 (8)	0.0539 (5)	
06	0.50603 (8)	0.4989 (3)	0.26298 (10)	0.0854 (7)	
07	0.42846 (7)	0.6218 (3)	0.22486 (8)	0.0879 (8)	
N1	0.35824 (6)	0.6443 (2)	0.52065 (9)	0.0414 (5)	
N2	0.54771 (5)	0.81045 (19)	0.53708 (8)	0.0343 (4)	
N3	0.46430 (7)	0.5815 (3)	0.27694 (9)	0.0492 (5)	
C1	0.40616 (6)	0.6139 (2)	0.39305 (9)	0.0286 (4)	
C2	0.40723 (6)	0.6641 (2)	0.47915 (9)	0.0301 (4)	
C3	0.45221 (6)	0.7261 (2)	0.52603 (9)	0.0298 (4)	
C4	0.49989 (6)	0.7465 (2)	0.48898 (9)	0.0287 (4)	
C5	0.50313 (6)	0.6991 (2)	0.40681 (9)	0.0314 (4)	

C6	0.45820 (6)	0.6370(2)	0.36189 (9)	0.0311 (4)
08	0.14146 (4)	0.04467 (19)	0.63223 (7)	0.0408 (4)
09	0.17482 (5)	0.1133 (3)	0.48253 (9)	0.0708 (6)
O10	0.11402 (5)	0.0955 (2)	0.38420 (8)	0.0597 (5)
011	-0.05810 (5)	0.3536 (2)	0.41733 (7)	0.0477 (4)
012	-0.09095 (5)	0.3430 (2)	0.53515 (8)	0.0551 (5)
013	0.02107 (7)	0.1656 (3)	0.77418 (9)	0.0919 (8)
014	0.08393 (6)	-0.0338(3)	0.76020 (9)	0.0722 (6)
N4	0.12787(5)	0.1159 (2)	0.45685(8)	0.0371(4)
N5	-0.05404(5)	0.3196(2)	0 49110 (8)	0.0335(4)
N6	0.05101(5) 0.05233(6)	0.0868(3)	0.73232(8)	0.0355(1)
C7	0.09233(0) 0.09722(6)	0.0000(3) 0.1020(2)	0.59992 (9)	0.0467(3)
C8	0.09722(0)	0.1020(2) 0.1477(2)	0.57772(7)	0.0280(4)
C0	0.03840(6)	0.1477(2) 0.2168(2)	0.31330(9) 0.47875(0)	0.0280(4)
C10	-0.00312(6)	0.2108(2) 0.2474(2)	0.47875(9)	0.0280(4)
C10	-0.00312(0)	0.2474(2)	0.32799(9)	0.0282(4)
	0.00243(6)	0.2070(2)	0.01143(9)	0.0321(4)
015	0.05015 (6)	0.1339 (2)	0.64497 (9)	0.0316 (4)
015	0.25842 (5)	0.43596 (19)	0.33076 (8)	0.0432 (4)
016	0.23692 (4)	0.95252 (18)	0.11889 (8)	0.0398 (4)
N7	0.19095 (5)	0.7158 (2)	0.24951 (8)	0.0332 (4)
C15	0.17130 (7)	0.9075 (3)	0.21928 (11)	0.0423 (6)
C16	0.18137 (6)	0.9372 (3)	0.13031 (11)	0.0394 (5)
C17	0.19148 (7)	0.6884 (3)	0.34013 (10)	0.0407 (5)
C18	0.20910 (7)	0.4870 (3)	0.36335 (11)	0.0456 (6)
O17	0.24822 (4)	-0.02326 (19)	0.61782 (8)	0.0424 (4)
O18	0.30269 (5)	0.6577 (2)	0.78140 (10)	0.0560 (5)
N8	0.30854 (5)	0.2811 (2)	0.70463 (8)	0.0318 (4)
C19	0.32980 (6)	0.1541 (3)	0.64123 (11)	0.0396 (5)
C20	0.28589 (7)	0.0922 (3)	0.57860 (10)	0.0396 (5)
C21	0.35099 (7)	0.3627 (3)	0.76446 (11)	0.0409 (5)
C22	0.32629 (8)	0.4956 (3)	0.82332 (12)	0.0505 (6)
Н3	0.45060	0.75380	0.58160	0.0360*
Н5	0.53560	0.70980	0.38280	0.0380*
Н9	0.03390	0.24270	0.42260	0.0340*
H11	-0.02580	0.22930	0.64410	0.0390*
H7A	0.2259 (4)	0.703 (3)	0.2383 (12)	0.048 (5)*
H7B	0.1700 (6)	0.623 (2)	0.2236 (11)	0.045 (5)*
H15	0.28350	0.48610	0.35860	0.0650*
H15A	0.18940	1.00830	0.25240	0.0510*
H15B	0 13300	0.91760	0 22540	0.0510*
H16	0.24850	0.84640	0.10650	0.0600*
H16A	0.16630	0.82940	0.09810	0.0470*
H16R	0.16320	1.05400	0.11020	0.0470*
H17A	0.15580	0 71130	0 35760	0.0490*
H17R	0.15500	0.78100	0.36800	0.0400*
	0.21330	0.76100	0.30000	0.0490*
	0.18140	0.30650	0.72290	0.0550*
	0.10140	0.37030	0.34320	0.0330°
поА	0.2849 (0)	0.214 (2)	0.7332 (10)	0.041 (3)*

H8B	0.2887 (7)	0.377 (2)	0.6794 (11)	0.045 (5)*	
H17	0.21760	0.01330	0.60360	0.0640*	
H18	0.32190	0.75280	0.79060	0.0840*	
H19A	0.34630	0.04070	0.66760	0.0480*	
H19B	0.35720	0.22300	0.61400	0.0480*	
H20A	0.26800	0.20500	0.55390	0.0470*	
H20B	0.30100	0.01840	0.53540	0.0470*	
H21A	0.37710	0.43310	0.73500	0.0490*	
H21B	0.36960	0.25850	0.79470	0.0490*	
H22A	0.29900	0.42650	0.85090	0.0610*	
H22B	0.35370	0.53900	0.86480	0.0610*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0327 (6)	0.0383 (7)	0.0405 (6)	-0.0014 (5)	-0.0049 (5)	-0.0058 (5)
O2	0.0330 (7)	0.1269 (15)	0.0599 (9)	0.0037 (8)	0.0055 (6)	-0.0091 (9)
O3	0.0550 (9)	0.1382 (16)	0.0394 (8)	-0.0213 (10)	0.0137 (6)	0.0033 (9)
O4	0.0448 (7)	0.0731 (10)	0.0374 (7)	-0.0020 (7)	-0.0075 (5)	-0.0136 (6)
O5	0.0322 (6)	0.0742 (10)	0.0553 (8)	-0.0116 (6)	0.0039 (5)	-0.0109 (7)
O6	0.1145 (14)	0.0906 (13)	0.0560 (10)	0.0195 (12)	0.0371 (10)	-0.0135 (9)
O7	0.0681 (10)	0.1635 (19)	0.0303 (7)	-0.0470 (11)	-0.0073 (7)	0.0040 (9)
N1	0.0341 (7)	0.0495 (9)	0.0412 (8)	-0.0036 (6)	0.0071 (6)	-0.0049 (7)
N2	0.0324 (7)	0.0306 (7)	0.0388 (7)	0.0015 (5)	-0.0041 (5)	-0.0019 (6)
N3	0.0614 (10)	0.0577 (10)	0.0291 (7)	-0.0219 (8)	0.0074 (7)	-0.0032 (7)
C1	0.0299 (7)	0.0227 (7)	0.0322 (7)	0.0029 (6)	-0.0031 (6)	0.0021 (6)
C2	0.0301 (7)	0.0285 (8)	0.0319(7)	0.0031 (6)	0.0032 (6)	0.0016 (6)
C3	0.0351 (8)	0.0270 (8)	0.0269 (7)	0.0037 (6)	0.0005 (6)	0.0002 (6)
C4	0.0305 (7)	0.0251 (8)	0.0298 (7)	0.0018 (6)	-0.0026 (6)	0.0016 (6)
C5	0.0303 (7)	0.0315 (8)	0.0326 (8)	-0.0014 (6)	0.0041 (6)	0.0011 (6)
C6	0.0370 (8)	0.0310 (8)	0.0251 (7)	-0.0019 (6)	0.0015 (6)	0.0014 (6)
08	0.0284 (5)	0.0552 (8)	0.0391 (6)	0.0067 (5)	0.0040 (4)	0.0128 (5)
09	0.0300 (7)	0.1358 (16)	0.0478 (8)	0.0092 (8)	0.0099 (6)	0.0189 (9)
O10	0.0523 (8)	0.0944 (12)	0.0335 (7)	0.0120 (8)	0.0109 (6)	-0.0077 (7)
O11	0.0392 (6)	0.0665 (9)	0.0364 (7)	0.0055 (6)	-0.0039 (5)	0.0083 (6)
O12	0.0319 (6)	0.0845 (11)	0.0499 (8)	0.0147 (7)	0.0087 (5)	0.0086 (7)
O13	0.0803 (11)	0.164 (2)	0.0331 (7)	0.0529 (12)	0.0147 (7)	0.0004 (10)
O14	0.0509 (8)	0.1207 (15)	0.0461 (8)	0.0241 (9)	0.0109 (6)	0.0377 (9)
N4	0.0325 (7)	0.0452 (8)	0.0347 (7)	0.0036 (6)	0.0090 (5)	0.0046 (6)
N5	0.0285 (6)	0.0351 (8)	0.0362 (7)	-0.0009(5)	-0.0008(5)	0.0006 (6)
N6	0.0336 (7)	0.0782 (12)	0.0285 (7)	0.0044 (8)	0.0030 (6)	0.0045 (7)
C7	0.0268 (7)	0.0283 (8)	0.0306 (7)	-0.0015 (6)	0.0019 (5)	0.0008 (6)
C8	0.0274 (7)	0.0281 (8)	0.0292 (7)	-0.0020 (6)	0.0063 (5)	-0.0004 (6)
C9	0.0311 (7)	0.0284 (8)	0.0261 (7)	-0.0036 (6)	0.0014 (5)	-0.0004 (6)
C10	0.0252 (7)	0.0285 (8)	0.0304 (7)	-0.0011 (6)	-0.0003 (5)	-0.0015 (6)
C11	0.0272 (7)	0.0384 (9)	0.0309 (7)	-0.0013 (6)	0.0037 (6)	-0.0041 (6)
C12	0.0310 (7)	0.0390 (9)	0.0249 (7)	-0.0014 (6)	0.0025 (6)	-0.0009 (6)
O15	0.0363 (6)	0.0448 (7)	0.0475 (7)	-0.0010 (5)	-0.0023 (5)	-0.0025 (6)

016	0.0305 (6)	0.0399 (7)	0.0488 (7)	-0.0030 (5)	0.0021 (5)	-0.0031 (6)
N7	0.0286 (6)	0.0364 (8)	0.0349 (7)	0.0015 (6)	0.0044 (5)	-0.0043 (6)
C15	0.0371 (9)	0.0378 (10)	0.0528 (10)	0.0087 (7)	0.0083 (7)	-0.0007 (8)
C16	0.0281 (8)	0.0405 (10)	0.0484 (10)	0.0033 (7)	-0.0036 (7)	0.0052 (8)
C17	0.0384 (9)	0.0521 (11)	0.0324 (8)	-0.0010 (8)	0.0077 (7)	-0.0044 (7)
C18	0.0436 (10)	0.0525 (11)	0.0413 (9)	-0.0077 (8)	0.0078 (7)	0.0075 (8)
017	0.0297 (6)	0.0469 (7)	0.0504 (7)	-0.0026 (5)	0.0015 (5)	0.0081 (6)
018	0.0441 (7)	0.0416 (8)	0.0780 (10)	0.0070 (6)	-0.0221 (7)	-0.0157 (7)
N8	0.0267 (6)	0.0302 (7)	0.0381 (7)	0.0011 (5)	-0.0001 (5)	0.0000 (6)
C19	0.0273 (7)	0.0413 (10)	0.0512 (10)	0.0021 (7)	0.0092 (7)	-0.0068 (8)
C20	0.0393 (9)	0.0429 (10)	0.0374 (9)	-0.0037 (7)	0.0086 (7)	-0.0053 (7)
C21	0.0363 (8)	0.0320 (9)	0.0515 (10)	0.0001 (7)	-0.0134 (7)	0.0015 (7)
C22	0.0609 (12)	0.0408 (11)	0.0476 (10)	-0.0075 (9)	-0.0098 (9)	-0.0069 (8)

Geometric parameters (Å, °)

01—C1	1.2510 (18)	C1—C2	1.444 (2)
O2—N1	1.222 (2)	C1—C6	1.440 (2)
O3—N1	1.208 (2)	C2—C3	1.374 (2)
O4—N2	1.2195 (18)	C3—C4	1.383 (2)
O5—N2	1.2214 (18)	C4—C5	1.387 (2)
O6—N3	1.224 (3)	C5—C6	1.358 (2)
O7—N3	1.215 (2)	С3—Н3	0.9300
O8—C7	1.2484 (18)	С5—Н5	0.9300
O9—N4	1.2115 (18)	C7—C8	1.447 (2)
O10—N4	1.2147 (18)	C7—C12	1.451 (2)
O11—N5	1.2212 (17)	C8—C9	1.371 (2)
O12—N5	1.2228 (18)	C9—C10	1.376 (2)
O13—N6	1.207 (2)	C10—C11	1.384 (2)
O14—N6	1.211 (3)	C11—C12	1.366 (2)
O15—C18	1.423 (2)	С9—Н9	0.9300
O16—C16	1.4166 (18)	C11—H11	0.9300
O15—H15	0.8200	C15—C16	1.505 (3)
O16—H16	0.8200	C17—C18	1.500 (3)
O17—C20	1.423 (2)	C15—H15A	0.9700
O18—C22	1.416 (2)	C15—H15B	0.9700
O17—H17	0.8200	C16—H16A	0.9700
O18—H18	0.8200	C16—H16B	0.9700
N1—C2	1.450 (2)	C17—H17B	0.9700
N2—C4	1.443 (2)	C17—H17A	0.9700
N3—C6	1.456 (2)	C18—H18A	0.9700
N4—C8	1.455 (2)	C18—H18B	0.9700
N5—C10	1.449 (2)	C19—C20	1.498 (2)
N6-C12	1.457 (2)	C21—C22	1.497 (3)
N7—C15	1.484 (2)	C19—H19A	0.9700
N7—C17	1.488 (2)	C19—H19B	0.9700
N7—H7A	0.909 (11)	C20—H20A	0.9700
N7—H7B	0.910 (15)	C20—H20B	0.9700

N8—C19 $1.486 (2)$ $C21$ —H21B 0.97 N8—H8B $0.906 (16)$ $C22$ —H22A 0.97 N8—H8A $0.908 (15)$ $C22$ —H22B 0.97 C18—O15—H15 109.00 N5—C10—C9119C16—O16—H16 109.00 C9—C10—C11121C20—O17—H17 109.00 N5—C10—C11119C22—O18—H18 109.00 C10—C11—C12118O3—N1—C2 $118.72 (14)$ N6—C12—C7119O2—N1—C2 $119.37 (14)$ N6—C12—C11115O2—N1—O3 $121.85 (16)$ C7—C12—C11124O4—N2—C4 $118.42 (13)$ C10—C9—H9120O5—N2—C4 $118.88 (13)$ C8—C9—H9120O4—N2—O5 $122.69 (13)$ C12—C11—H11121O6—N3—O7 $124.47 (17)$ C10—C11—H11121O6—N3—C6 $117.06 (15)$ N7—C15—C16111O7—N3—C6 $118.47 (17)$ O16—C16—C15112O9—N4—C8 $119.85 (13)$ N7—C17—C18110	00 00 00 09 (13) 39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
N8—H8B 0.906 (16) $C22$ —H22A 0.97 N8—H8A 0.908 (15) $C22$ —H22B 0.97 C18—O15—H15 109.00 N5—C10—C9 119 C16—O16—H16 109.00 C9—C10—C11 121 C20—O17—H17 109.00 N5—C10—C11 119 C22—O18—H18 109.00 C10—C11—C12 118 O3—N1—C2 118.72 (14)N6—C12—C7 119 O2—N1—C2 119.37 (14)N6—C12—C11 115 O2—N1—O3 121.85 (16)C7—C12—C11 124 O4—N2—C4 118.42 (13)C10—C9—H9 120 O4—N2—O5 122.69 (13)C12—C11—H11 121 O6—N3—O7 124.47 (17)C10—C11—H11 121 O6—N3—C6 117.06 (15)N7—C15—C16 111 O7—N3—C6 119.85 (13)N7—C17—C18 110	00 00 09 (13) 39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
N8—H8A $0.908(15)$ $C22$ —H22B 0.97 C18—O15—H15109.00N5—C10—C9119.C16—O16—H16109.00C9—C10—C11121.C20—O17—H17109.00N5—C10—C11119.C22—O18—H18109.00C10—C11—C12118.O3—N1—C2118.72 (14)N6—C12—C7119.O2—N1—C2119.37 (14)N6—C12—C11115.O2—N1—O3121.85 (16)C7—C12—C11124.O4—N2—C4118.42 (13)C10—C9—H9120.O5—N2—C4118.88 (13)C8—C9—H9120.O4—N2—O5122.69 (13)C12—C11—H11121.O6—N3—O7124.47 (17)C10—C11—H11121.O6—N3—C6117.06 (15)N7—C15—C16111.O7—N3—C6118.47 (17)O16—C16—C15112.O9—N4—C8119.85 (13)N7—C17—C18110.	00 09 (13) 39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 (13) 39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 (13) 39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 (14) 50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 (13) 90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 (14) 49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49 (13) 90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 (13) 61 (13) 00 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 (13) 00 00 00
O4-N2-C4 118.42 (13) C10-C9-H9 120. O5-N2-C4 118.88 (13) C8-C9-H9 120. O4-N2-O5 122.69 (13) C12-C11-H11 121. O6-N3-O7 124.47 (17) C10-C11-H11 121. O6-N3-C6 117.06 (15) N7-C15-C16 111. O7-N3-C6 118.47 (17) O16-C16-C15 112. O9-N4-C8 119.85 (13) N7-C17-C18 110.	00 00 00
O5-N2-C4 118.88 (13) C8-C9-H9 120. O4-N2-O5 122.69 (13) C12-C11-H11 121. O6-N3-O7 124.47 (17) C10-C11-H11 121. O6-N3-C6 117.06 (15) N7-C15-C16 111. O7-N3-C6 118.47 (17) O16-C16-C15 112. O9-N4-C8 119.85 (13) N7-C17-C18 110.	00 00
O4—N2—O5122.69 (13)C12—C11—H11121.O6—N3—O7124.47 (17)C10—C11—H11121.O6—N3—C6117.06 (15)N7—C15—C16111.O7—N3—C6118.47 (17)O16—C16—C15112.O9—N4—C8119.85 (13)N7—C17—C18110.	00
O6-N3-O7124.47 (17)C10-C11-H11121.O6-N3-C6117.06 (15)N7-C15-C16111.O7-N3-C6118.47 (17)O16-C16-C15112.O9-N4-C8119.85 (13)N7-C17-C18110.	
O6-N3-C6117.06 (15)N7-C15-C16111.O7-N3-C6118.47 (17)O16-C16-C15112.O9-N4-C8119.85 (13)N7-C17-C18110.	00
O7-N3-C6118.47 (17)O16-C16-C15112.O9-N4-C8119.85 (13)N7-C17-C18110.	44 (15)
O9—N4—C8 119.85 (13) N7—C17—C18 110.	17 (14)
	35 (15)
09—N4—O10 121.75 (14) 015—C18—C17 112.	38 (15)
O10—N4—C8 118.39 (12) C16—C15—H15A 109.	00
O11—N5—O12 123.07 (14) N7—C15—H15B 109.	00
O11—N5—C10 118.38 (13) C16—C15—H15B 109.	00
O12—N5—C10 118.55 (13) H15A—C15—H15B 108.	00
013—N6—O14 121.99 (15) N7—C15—H15A 109.	00
014—N6—C12 119.52 (15) 016—C16—H16B 109.	00
O13—N6—C12 118.45 (16) C15—C16—H16A 109.	00
C15—N7—C17 114.82 (14) C15—C16—H16B 109.	00
H7A—N7—H7B 111.2 (16) H16A—C16—H16B 108.	00
C17—N7—H7B 109.3 (11) O16—C16—H16A 109.	00
C15—N7—H7B 108.3 (10) N7—C17—H17A 110.	00
C17—N7—H7A 104.8 (12) N7—C17—H17B 110.	00
C15—N7—H7A 108.5 (13) C18—C17—H17B 110.	00
C19—N8—C21 113.83 (12) H17A—C17—H17B 108.	00
H8A—N8—H8B 104.7 (14) C18—C17—H17A 110.	00
C21—N8—H8B 110.7 (10) C17—C18—H18A 109.	00
C19—N8—H8A 109.7 (9) O15—C18—H18A 109.	00
C19—N8—H8B 109.2 (11) C17—C18—H18B 109.	00
C21—N8—H8A 108.3 (10) H18A—C18—H18B 108.	00
O1—C1—C2 124.87 (14) O15—C18—H18B 109.	00
C2—C1—C6 111.67 (13) N8—C19—C20 111.	13 (13)
O1—C1—C6 123.41 (13) O17—C20—C19 109.	09 (14)
	14 (14)
C1—C2—C3 124.47 (14) N8—C21—C22 110.	70 (16)
C1—C2—C3 124.47 (14) N8—C21—C22 110. N1—C2—C1 118.70 (13) O18—C22—C21 110.	
C1—C2—C3 124.47 (14) N8—C21—C22 110. N1—C2—C1 118.70 (13) O18—C22—C21 110. N1—C2—C3 116.81 (13) N8—C19—H19A 109.	00
C1—C2—C3 124.47 (14) N8—C21—C22 110. N1—C2—C1 118.70 (13) O18—C22—C21 110. N1—C2—C3 116.81 (13) N8—C19—H19A 109. C2—C3—C4 118.76 (14) N8—C19—H19B 109.	00 00
C1C2C3 124.47 (14) N8C21C22 110. N1C2C1 118.70 (13) O18C22C21 110. N1C2C3 116.81 (13) N8C19H19A 109. C2C3C4 118.76 (14) N8C19H19B 109. N2C4C3 119.74 (13) C20C19H19A 109.	00 00 00

C3—C4—C5	121.06 (14)	H19A—C19—H19B	108.00
C4—C5—C6	119.05 (14)	O17—C20—H20A	110.00
N3—C6—C5	116.82 (14)	O17—C20—H20B	110.00
N3—C6—C1	118.16 (13)	С19—С20—Н20А	110.00
C1—C6—C5	124.96 (14)	C19—C20—H20B	110.00
С2—С3—Н3	121.00	H20A—C20—H20B	108.00
C4—C3—H3	121.00	N8—C21—H21A	110.00
C6—C5—H5	120.00	N8—C21—H21B	110.00
C4—C5—H5	120.00	C_{22} C_{21} H_{21A}	110.00
08-07-08	120.00	$C_{22} = C_{21} = H_{21R}$	110.00
C_{8} C_{7} C_{12}	111 45 (13)	$H_{21A} = C_{21} = H_{21B}$	108.00
$C_{0} = C_{1} = C_{12}$	111.45(13) 122.06(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00
$V_{0} = C_{1} = C_{1}$	125.90(13) 115.60(12)	018 - 022 - 1122A	109.00
114-6-69	113.00(13) 124.41(14)	C_{21} C_{22} H_{22}	109.00
$C/-C_{0}$	124.41(14)	C_{21} C_{22} H_{22} H_{22}	110.00
N4 - C8 - C7	119.97 (13)	C21—C22—H22B	109.00
C8-C9-C10	119.16 (14)	H22A—C22—H22B	108.00
	152 02 (15)		0.1.(2)
02—N1—C2—C3	152.93 (17)	C6-C1-C2-C3	-0.1 (2)
02—N1—C2—C1	-28.5 (2)	01	-17/.78 (14)
O3—N1—C2—C1	154.31 (17)	C2-C1-C6-C5	-0.3 (2)
O3—N1—C2—C3	-24.2 (2)	C6—C1—C2—N1	-178.52 (12)
O5—N2—C4—C3	179.11 (14)	C1—C2—C3—C4	1.4 (2)
O4—N2—C4—C3	-0.3(2)	N1—C2—C3—C4	179.82 (13)
O4—N2—C4—C5	-177.73 (14)	C2—C3—C4—C5	-2.3 (2)
O5—N2—C4—C5	1.6 (2)	C2—C3—C4—N2	-179.68 (13)
O6—N3—C6—C5	37.1 (2)	N2-C4-C5-C6	179.31 (13)
O7—N3—C6—C1	40.8 (3)	C3—C4—C5—C6	1.9 (2)
O7—N3—C6—C5	-141.99 (19)	C4—C5—C6—N3	-177.52 (14)
O6—N3—C6—C1	-140.14 (18)	C4—C5—C6—C1	-0.5 (2)
O9—N4—C8—C7	-24.1 (2)	C8—C7—C12—C11	-3.1(2)
O9—N4—C8—C9	157.43 (17)	C12—C7—C8—C9	1.4 (2)
O10—N4—C8—C9	-21.5 (2)	O8—C7—C8—N4	4.0 (2)
010—N4—C8—C7	157.01 (14)	C8-C7-C12-N6	177.03 (14)
011—N5—C10—C11	-179.74(14)	08—C7—C12—N6	-3.8(2)
012 - N5 - C10 - C9	178.72 (14)	C12-C7-C8-N4	-176.87(12)
012 - N5 - C10 - C11	0.0(2)	08-C7-C12-C11	176.07(15)
011 - N5 - C10 - C9	-10(2)	08-C7-C8-C9	-17771(15)
014 - N6 - C12 - C11	155.08(17)	N4-C8-C9-C10	178 84 (13)
014 N6 $C12$ $C7$	-250(2)	C7 C8 C9 C10	170.04(13)
014 - 10 - 012 - 07	-22.5(2)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	-170.71(12)
013 - 10 - 012 - 011	-22.3(2)	$C_{8} = C_{9} = C_{10} = N_{3}$	-1/9.71(13)
013 - 100 - 012 - 07	137.30(17)	$C_{0} = C_{10} = C_{11} = C_{12}$	-1.0(2)
C1/-N/-C15-C16	169.65 (14)	C9-C10-C11-C12	-0.5(2)
$C_{13} - N / - C_{1} / - C_{18}$	1/0.94 (14)	$N_{2} = C_{10} = C_{11} = C_{12} = C_{12}$	1/8.1/(13)
$C_{1} = N\delta - C_{1} = C_{2}$	-1/4.04(15)	C10-C11-C12-C/	2.8 (2)
C19—N8—C21—C22	1//.33(15)	C10—C11—C12—N6	-177.37(14)
C2—C1—C6—N3	176.61 (14)	N/	-67.6 (2)
O1—C1—C2—C3	177.31 (14)	N7—C17—C18—O15	52.13 (19)
O1-C1-C6-N3	-0.8(2)	N8-C19-C20-O17	-64.2(2)

01—C1—C2—N1	-1.1 (2)	N8—C21—C22—	018 -6	4.1 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N7—H7A…O15	0.91 (1)	2.48 (2)	2.8235 (19)	103 (1)
N7—H7 <i>A</i> ···O17 ⁱ	0.91 (1)	2.43 (2)	2.9853 (18)	120(1)
N7—H7A…O18 ⁱⁱ	0.91 (1)	2.21 (1)	2.9272 (18)	136 (2)
N7—H7 <i>B</i> ···O8 ⁱ	0.91 (2)	1.97 (2)	2.8359 (18)	157 (2)
N7—H7 <i>B</i> ···O14 ⁱ	0.91 (2)	2.36(2)	2.969 (2)	125 (1)
N8—H8A···O15 ⁱⁱⁱ	0.91 (2)	2.05 (2)	2.9076 (18)	157 (1)
N8—H8 <i>B</i> …O18	0.91 (2)	2.56 (2)	2.898 (2)	103 (1)
N8—H8 <i>B</i> ····O16 ^{iv}	0.91 (2)	1.96 (2)	2.8523 (18)	170 (2)
O15—H15…O1	0.82	2.12	2.7891 (16)	139
O15—H15…O2	0.82	2.41	3.138 (2)	149
O16—H16…O17 ⁱ	0.82	2.24	2.9822 (18)	150
O17—H17···O8	0.82	2.00	2.7323 (14)	148
O17—H17···O9	0.82	2.27	2.9079 (19)	134
O18—H18…O1 ^{iv}	0.82	1.96	2.7453 (18)	161
C3—H3…O7 ^{iv}	0.93	2.59	3.502 (2)	167
C9—H9…O13 ⁱ	0.93	2.50	3.425 (2)	176
C17—H17 <i>A</i> ···O12 ^v	0.97	2.50	3.359 (2)	147
C19—H19A…O7 ⁱⁱⁱ	0.97	2.45	3.319 (3)	148
C19—H19 <i>B</i> ····O5 ^{vi}	0.97	2.44	3.224 (2)	138
C21—H21 <i>B</i> …O1 ⁱⁱⁱ	0.97	2.33	3.195 (2)	148

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, -y+3/2, z-1/2; (iii) x, -y+1/2, z+1/2; (iv) x, -y+3/2, z+1/2; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.