Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,6-Difluoro- N-(prop-2-ynyl)benzamide

Zahid Hussain, ${ }^{\text {a }}$ Ejaz Hussain, ${ }^{\text {a }}$ Hina Siddiqui, ${ }^{a}$ M. Iqbal Choudhary ${ }^{\text {a,b }}$ and Sammer Yousuf ${ }^{\text {a } *}$

${ }^{\text {a }}$ H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and
${ }^{\mathbf{b}}$ Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jaddhah, Saudi Arabia
Correspondence e-mail: dr.sammer.yousuf@gmail.com
Received 21 July 2013; accepted 29 July 2013
Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.040 ; w R$ factor $=0.099$; data-to-parameter ratio $=12.4$.

In the molecule of the title difluorobenzamide derivative, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NO}$, the angle formed by the least-squares mean line through the prop-2-ynyl group [maximum deviation = $0.011(3) \AA$] and the normal to the benzene ring is 59.03 (7) ${ }^{\circ}$. In the crystal, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds into layers parallel to the $a c$ plane.

Related literature

For the biological activity of difluorobenzamide derivatives, see: Chang et al. (2002); Kees et al. (1989); Ragavan et al. (2010); Carmellino et al. (1994); Rauko et al. (2001). For the crystal structure of a related compound, see: Fun et al. (2010).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NO}$

$$
M_{r}=195.17
$$

Monoclinic, $P 2_{1} / c$
$a=5.0479$ (8) A
$Z=4$
$b=19.738$ (3) \AA
$c=9.2428$ (15) \AA
$\beta=91.432(4)^{\circ}$ 。
$V=920.6(3) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
$0.38 \times 0.17 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
5388 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.099$
$S=1.03$
1669 reflections
135 parameters

1669 independent reflections
1283 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.022$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$2.10(2)$	$2.8387(19)$	$147.4(17)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~F}^{\text {ii }}$	0.93	2.49	$3.394(2)$	164

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1,-y+\frac{3}{2}, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5082).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carmellino, M. L., Pagani, G., Pregnolato, M., Terreni, M. \& Pastoni, F. (1994). Eur. J. Med. Chem. 29, 743-751.
Chang, Y. Y., Chung, Y. H., Lee, C. W., Lee, H. D., Lee, J. S., Park, W. J. \& Yang, W. Y. (2002). Patent AU2002345403.

Fun, H.-K., Goh, J. H., Gowda, J., Khader, A. M. \& Kalluraya, B. (2010). Acta Cryst. E66, o3192.
Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. \& Steiner, K. E. (1989). J. Med. Chem., 32, 11-13.
Ragavan, R. V., Vijayakumar, V. \& Kumari, S. N. (2010). Eur. J. Med. Chem. 43, 1173-1180.
Rauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. \& Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387-394.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1440 [doi:10.1107/S1600536813021120]

2,6-Difluoro- N -(prop-2-ynyl)benzamide

Zahid Hussain, Ejaz Hussain, Hina Siddiqui, M. Iqbal Choudhary and Sammer Yousuf

S1. Comment

Some difluorobenzamide derivatives are known to have excellent antiviral and antiproliferation activities (Chang et al., 2002). They are also well known for their anti-diabetic (Kees et al., 1989), anti-fungal (Carmellino et al., 1994), antibacterial (Ragavan et al., 2010) and anti-cancer (Rauko et al., 2001) properties.
The structure of the title fluorinated benzamide derivative (Fig. 1) is distinctly similar to that of the previously reported compound N-(4-cyanophenyl)-2,6-difluorobenzamide (Fun et al., 2010), with the difference that the N-(4-cyanophenyl) moiety is replaced by a prop-2-ynyl chain (C8-C10). The observed distance for the C9—C10 acetylene bond is 1.162 (3) \AA. The angle between the least-squares mean line through the prop-2-ynyl group (maximum deviation 0.011 (3) \AA for atom C9) and the normal to the benzene ring is $59.03(7)^{\circ}$. The molecule has no prominent intramolecular non-covalent interactions. In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ (Fig. 2) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) to form layers parallel to the $a c$ plane. No $\pi \cdots \pi$ stacking interactions are observed.

S2. Experimental

Prop-2-yn-1-amine ($36.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dichloromethane $(20 \mathrm{~mL})$ in a round bottom flask and kept at 0 ${ }^{\circ} \mathrm{C}$. Diisopropylethylamine (DIPEA) ($145 \mathrm{mmol}, 4.0 \mathrm{eq}$) and 2,6-diflurobenzoyl chloride ($54.4 \mathrm{mmol}, 1.5 \mathrm{eq}$) were then added and the mixture stirred for 1.5 h . Progress of the reaction was monitored by thin layer chromatography. On completion of the reaction the mixture was dissolved in water and extracted with diethyl ether ($2 \times 25 \mathrm{~mL}$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain a crude gummy product. The crude product was finally purified by flash column chromatography by using EtOAc/hexane ($3: 7 \mathrm{v} / \mathrm{v}$) as eluent to afford the title compound in 77% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

S3. Refinement

The amide and acetylenic H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

Figure 2
Packing diagram of the title compound showing intermolecular hydrogen bonding as dashed lines.

2,6-Difluoro- N-(prop-2-ynyl)benzamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NO}$
$M_{r}=195.17$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=5.0479$ (8) \AA
$b=19.738$ (3) \AA
$c=9.2428(15) \AA$
$\beta=91.432(4)^{\circ}$
$V=920.6(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=400 \\
& D_{\mathrm{x}}=1.408 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1280 \text { reflections } \\
& \theta=2.4-22.9^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.38 \times 0.17 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
5388 measured reflections
1669 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.099$
$S=1.03$
1669 reflections
135 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.4706(2)$	$0.66642(6)$	$0.01184(13)$	$0.0784(4)$
F2	$1.1590(2)$	$0.68247(6)$	$-0.31627(13)$	$0.0808(4)$
O1	$1.0617(2)$	$0.56728(6)$	$-0.15774(16)$	$0.0689(4)$
N1	$0.6219(3)$	$0.55850(7)$	$-0.17077(17)$	$0.0520(4)$

C1	$0.6337(3)$	$0.70378(9)$	$-0.06950(19)$	$0.0533(5)$
C2	$0.6133(4)$	$0.77291(10)$	$-0.0635(2)$	$0.0670(6)$
H2A	0.4884	0.7934	-0.0055	0.080^{*}
C3	$0.7807(4)$	$0.81150(10)$	$-0.1445(2)$	$0.0690(6)$
H3A	0.7685	$0.8585(10)$	-0.1419	0.083^{*}
C4	$0.9655(4)$	$0.78117(10)$	$-0.2290(2)$	$0.0664(5)$
H4A	1.0802	0.8071	-0.2835	0.080^{*}
C5	$0.9778(3)$	$0.71209(9)$	$-0.2314(2)$	$0.0546(5)$
C6	$0.8147(3)$	$0.66992(8)$	$-0.15372(17)$	$0.0453(4)$
C7	$0.8430(3)$	$0.59431(9)$	$-0.16021(17)$	$0.0475(4)$
C8	$0.6276(4)$	$0.48497(9)$	$-0.1809(2)$	$0.0607(5)$
H8A	0.4535	0.4673	-0.1599	0.073^{*}
H8B	0.7519	0.4674	-0.1085	0.073^{*}
C9	$0.7041(4)$	$0.46128(9)$	$-0.3233(2)$	$0.0621(5)$
C10	$0.7642(5)$	$0.44382(12)$	$-0.4380(3)$	$0.0880(7)$
H1	$0.475(4)$	$0.5775(9)$	$-0.1715(19)$	$0.061(6)^{*}$
H2	$0.817(5)$	$0.4327(13)$	$-0.524(3)$	$0.120(10)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0691(7)$	$0.0792(8)$	$0.0889(9)$	$-0.0091(6)$	$0.0395(6)$	$-0.0161(6)$
F2	$0.0727(7)$	$0.0810(8)$	$0.0907(9)$	$-0.0041(6)$	$0.0418(7)$	$-0.0052(6)$
O1	$0.0315(6)$	$0.0655(8)$	$0.1096(11)$	$0.0057(5)$	$0.0013(6)$	$-0.0028(7)$
N1	$0.0316(7)$	$0.0521(9)$	$0.0726(11)$	$0.0022(6)$	$0.0071(7)$	$-0.0047(7)$
C1	$0.0412(9)$	$0.0628(11)$	$0.0559(11)$	$-0.0019(8)$	$0.0054(8)$	$-0.0104(9)$
C2	$0.0543(10)$	$0.0674(13)$	$0.0794(14)$	$0.0088(9)$	$0.0033(10)$	$-0.0230(10)$
C3	$0.0648(12)$	$0.0532(11)$	$0.0885(16)$	$0.0037(9)$	$-0.0073(11)$	$-0.0048(10)$
C4	$0.0604(11)$	$0.0634(12)$	$0.0753(14)$	$-0.0065(9)$	$0.0039(10)$	$0.0069(10)$
C5	$0.0432(9)$	$0.0629(11)$	$0.0579(11)$	$-0.0003(8)$	$0.0070(8)$	$-0.0048(9)$
C6	$0.0320(8)$	$0.0553(10)$	$0.0484(10)$	$0.0000(7)$	$-0.0021(7)$	$-0.0053(8)$
C7	$0.0328(8)$	$0.0571(10)$	$0.0527(10)$	$0.0014(7)$	$0.0052(7)$	$-0.0023(8)$
C8	$0.0503(10)$	$0.0529(11)$	$0.0794(14)$	$-0.0025(8)$	$0.0094(9)$	$0.0042(9)$
C9	$0.0579(11)$	$0.0451(10)$	$0.0835(16)$	$0.0055(8)$	$0.0048(11)$	$-0.0031(10)$
C10	$0.1032(19)$	$0.0689(15)$	$0.092(2)$	$0.0121(12)$	$0.0132(16)$	$-0.0128(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

F1-C1	$1.3482(19)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
F2—C5	$1.3530(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.365(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.2256(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.323(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.384(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.455(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.501(2)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.830(19)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.458(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.370(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 6$	$1.387(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.374(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.162(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	$\mathrm{C} 10-\mathrm{H} 2$	$0.87(3)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.369(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$121.31(15)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	$120.7(13)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{H} 1$	$118.0(13)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.34(15)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 6$	$118.01(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$123.65(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.85(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.37(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.53(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.7
$\mathrm{~F} 2-\mathrm{C} 5-\mathrm{C} 4$	$118.19(16)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.19(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 2$	$0.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.33(17)$
$\mathrm{F} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-179.83(15)$
$\mathrm{F} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$1.7(2)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.07(18)$

F2-C5-C6	$117.42(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$124.38(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$114.22(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.27(14)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$124.49(15)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$121.78(16)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$121.24(14)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$116.97(13)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$112.60(15)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.1
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.1
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.1
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.8
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	$178.5(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$176.4(19)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 2$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.6(3)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-0.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$179.05(18)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-0.4(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$178.68(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$41.8(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$-136.53(18)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-137.26(17)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$44.4(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-75.0(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$2.10(2)$	$2.8387(19)$	$147.4(17)$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{~F}^{\mathrm{ii}}$	0.93	2.49	$3.394(2)$	164

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1,-y+3 / 2, z+1 / 2$.

