organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2,6-Difluoro-N-(prop-2-ynyl)benzamide

Zahid Hussain,^a Ejaz Hussain,^a Hina Siddiqui,^a M. Iqbal Choudhary^{a,b} and Sammer Yousuf^{a*}

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Biochemistry, Faculty of Science, King Abdulaziz University, Jaddhah, Saudi Arabia

Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 21 July 2013; accepted 29 July 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.040; wR factor = 0.099; data-to-parameter ratio = 12.4.

In the molecule of the title difluorobenzamide derivative, $C_{10}H_7F_2NO$, the angle formed by the least-squares mean line through the prop-2-ynyl group [maximum deviation = 0.011 (3) Å] and the normal to the benzene ring is 59.03 (7)°. In the crystal, molecules are linked $via\ N-H\cdots O$ and $C-H\cdots F$ hydrogen bonds into layers parallel to the ac plane.

Related literature

For the biological activity of difluorobenzamide derivatives, see: Chang *et al.* (2002); Kees *et al.* (1989); Ragavan *et al.* (2010); Carmellino *et al.* (1994); Rauko *et al.* (2001). For the crystal structure of a related compound, see: Fun *et al.* (2010).

Experimental

Crystal data C₁₀H₇F₂NO

 $M_r = 195.17$

Monoclinic, $P2_1/c$ Z=4 Mo $K\alpha$ radiation b=19.738 (3) Å $\mu=0.12~{\rm mm}^{-1}$ c=9.2428 (15) Å $T=273~{\rm K}$ $\beta=91.432$ (4)° V=920.6 (3) Å³

Data collection

Bruker SMART APEX CCD 1669 independent reflections diffractometer 1283 reflections with $I > 2\sigma(I)$ 5388 measured reflections $R_{\rm int} = 0.022$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.040 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.099 & \text{independent and constrained} \\ S=1.03 & \text{refinement} \\ 1669 \text{ reflections} & \Delta\rho_{\max}=0.13 \text{ e Å}^{-3} \\ 135 \text{ parameters} & \Delta\rho_{\min}=-0.15 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$N1-H1\cdots O1^{i}$	0.83 (2)	2.10 (2)	2.8387 (19)	147.4 (17)
$C2-H2A\cdots F2^{ii}$	0.93	2.49	3.394 (2)	164

Symmetry codes: (i) x - 1, y, z; (ii) x - 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5082).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Carmellino, M. L., Pagani, G., Pregnolato, M., Terreni, M. & Pastoni, F. (1994).
Eur. J. Med. Chem. 29, 743–751.

Chang, Y. Y., Chung, Y. H., Lee, C. W., Lee, H. D., Lee, J. S., Park, W. J. & Yang, W. Y. (2002). Patent AU2002345403.

Fun, H.-K., Goh, J. H., Gowda, J., Khader, A. M. & Kalluraya, B. (2010). Acta Cryst. E66, 03192.

Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem., 32, 11–13.

Ragavan, R. V., Vijayakumar, V. & Kumari, S. N. (2010). Eur. J. Med. Chem. 43 1173–1180

Rauko, P., Novotny, L., Dovinova, I., Hunakova, L., Szekeres, T. & Jayaram, H. N. (2001). Eur. J. Pharm. Sci. 12, 387–394.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1440 [doi:10.1107/S1600536813021120]

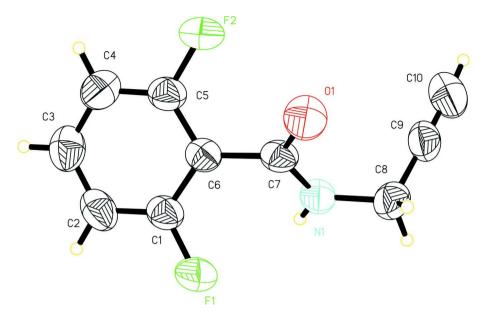
2,6-Difluoro-N-(prop-2-ynyl)benzamide

Zahid Hussain, Ejaz Hussain, Hina Siddiqui, M. Iqbal Choudhary and Sammer Yousuf

S1. Comment

Some difluorobenzamide derivatives are known to have excellent antiviral and antiproliferation activities (Chang *et al.*, 2002). They are also well known for their anti-diabetic (Kees *et al.*, 1989), anti-fungal (Carmellino *et al.*, 1994), anti-bacterial (Ragavan *et al.*, 2010) and anti-cancer (Rauko *et al.*, 2001) properties.

The structure of the title fluorinated benzamide derivative (Fig. 1) is distinctly similar to that of the previously reported compound N-(4-cyanophenyl)-2,6-difluorobenzamide (Fun et~al., 2010), with the difference that the N-(4-cyanophenyl) moiety is replaced by a prop-2-ynyl chain (C8–C10). The observed distance for the C9—C10 acetylene bond is 1.162 (3) Å. The angle between the least-squares mean line through the prop-2-ynyl group (maximum deviation 0.011 (3) Å for atom C9) and the normal to the benzene ring is 59.03 (7)°. The molecule has no prominent intramolecular non-covalent interactions. In the crystal, molecules are linked via C—H···F (Fig. 2) and N—H···O hydrogen bonds (Table 1) to form layers parallel to the ac plane. No π ··· π stacking interactions are observed.


S2. Experimental

Prop-2-yn-1-amine (36.3 mmol, 1.0 eq) was dissolved in dichloromethane (20 mL) in a round bottom flask and kept at 0 °C. Diisopropylethylamine (DIPEA) (145 mmol, 4.0 eq) and 2,6-diflurobenzoyl chloride (54.4 mmol, 1.5 eq) were then added and the mixture stirred for 1.5 h. Progress of the reaction was monitored by thin layer chromatography. On completion of the reaction the mixture was dissolved in water and extracted with diethyl ether (2 × 25 mL). The organic layer was dried with anhydrous Na_2SO_4 and concentrated to obtain a crude gummy product. The crude product was finally purified by flash column chromatography by using EtOAc/hexane (3:7 ν/ν) as eluent to afford the title compound in 77% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

S3. Refinement

The amide and acetylenic H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Acta Cryst. (2013). E69, o1440 Sup-1

Figure 1The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

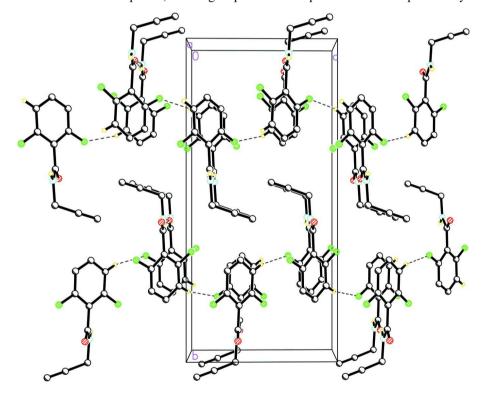


Figure 2
Packing diagram of the title compound showing intermolecular hydrogen bonding as dashed lines.

Acta Cryst. (2013). E69, o1440 sup-2

2,6-Difluoro-N-(prop-2-ynyl)benzamide

Crystal data

F(000) = 400C₁₀H₇F₂NO $M_r = 195.17$ $D_{\rm x} = 1.408 \; {\rm Mg \; m^{-3}}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 1280 reflections a = 5.0479 (8) Å $\theta = 2.4-22.9^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ b = 19.738 (3) Å c = 9.2428 (15) ÅT = 273 K $\beta = 91.432 (4)^{\circ}$ Block, colourless V = 920.6 (3) Å³ $0.38 \times 0.17 \times 0.10 \text{ mm}$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer $R_{\rm int} = 0.022$ Radiation source: fine-focus sealed tube $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ Graphite monochromator $h = -6 \rightarrow 6$ phi and ω scans $k = -23 \rightarrow 22$ 5388 measured reflections $l = -10 \rightarrow 11$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from $wR(F^2) = 0.099$ neighbouring sites S = 1.03H atoms treated by a mixture of independent 1669 reflections and constrained refinement 135 parameters $w = 1/[\sigma^2(F_0^2) + (0.0397P)^2 + 0.172P]$ 0 restraints where $P = (F_0^2 + 2F_0^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\text{max}} < 0.001$ direct methods $\Delta \rho_{\text{max}} = 0.13 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.15 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.4706 (2)	0.66642 (6)	0.01184 (13)	0.0784 (4)
F2	1.1590(2)	0.68247 (6)	-0.31627 (13)	0.0808 (4)
O1	1.0617 (2)	0.56728 (6)	-0.15774(16)	0.0689 (4)
N1	0.6219(3)	0.55850 (7)	-0.17077 (17)	0.0520 (4)

Acta Cryst. (2013). E69, o1440 Sup-3

supporting information

C1	0.6337 (3)	0.70378 (9)	-0.06950(19)	0.0533 (5)
C2	0.6133 (4)	0.77291 (10)	-0.0635 (2)	0.0670(6)
H2A	0.4884	0.7934	-0.0055	0.080*
C3	0.7807 (4)	0.81150 (10)	-0.1445(2)	0.0690(6)
H3A	0.7685	0.8585	-0.1419	0.083*
C4	0.9655 (4)	0.78117 (10)	-0.2290(2)	0.0664 (5)
H4A	1.0802	0.8071	-0.2835	0.080*
C5	0.9778 (3)	0.71209 (9)	-0.2314 (2)	0.0546 (5)
C6	0.8147 (3)	0.66992 (8)	-0.15372 (17)	0.0453 (4)
C7	0.8430(3)	0.59431 (9)	-0.16021 (17)	0.0475 (4)
C8	0.6276 (4)	0.48497 (9)	-0.1809(2)	0.0607 (5)
H8A	0.4535	0.4673	-0.1599	0.073*
H8B	0.7519	0.4674	-0.1085	0.073*
C9	0.7041 (4)	0.46128 (9)	-0.3233 (2)	0.0621 (5)
C10	0.7642 (5)	0.44382 (12)	-0.4380(3)	0.0880(7)
H1	0.475 (4)	0.5775 (9)	-0.1715 (19)	0.061 (6)*
H2	0.817 (5)	0.4327 (13)	-0.524 (3)	0.120 (10)*

Atomic displacement parameters (\mathring{A}^2)

0.0691 (7)	0.0502 (0)				
	0.0792(8)	0.0889(9)	-0.0091 (6)	0.0395 (6)	-0.0161 (6)
0.0727 (7)	0.0810(8)	0.0907 (9)	-0.0041(6)	0.0418 (7)	-0.0052(6)
0.0315 (6)	0.0655 (8)	0.1096 (11)	0.0057 (5)	0.0013 (6)	-0.0028 (7)
0.0316 (7)	0.0521 (9)	0.0726 (11)	0.0022(6)	0.0071 (7)	-0.0047(7)
0.0412 (9)	0.0628 (11)	0.0559 (11)	-0.0019(8)	0.0054(8)	-0.0104(9)
0.0543 (10)	0.0674 (13)	0.0794 (14)	0.0088 (9)	0.0033 (10)	-0.0230 (10)
0.0648 (12)	0.0532 (11)	0.0885 (16)	0.0037 (9)	-0.0073(11)	-0.0048(10)
0.0604 (11)	0.0634 (12)	0.0753 (14)	-0.0065(9)	0.0039 (10)	0.0069 (10)
0.0432 (9)	0.0629(11)	0.0579 (11)	-0.0003(8)	0.0070(8)	-0.0048(9)
0.0320(8)	0.0553 (10)	0.0484 (10)	0.0000(7)	-0.0021 (7)	-0.0053(8)
0.0328 (8)	0.0571 (10)	0.0527 (10)	0.0014(7)	0.0052 (7)	-0.0023(8)
0.0503 (10)	0.0529(11)	0.0794 (14)	-0.0025(8)	0.0094 (9)	0.0042 (9)
0.0579 (11)	0.0451 (10)	0.0835 (16)	0.0055 (8)	0.0048 (11)	-0.0031 (10)
0.1032 (19)	0.0689 (15)	0.092(2)	0.0121 (12)	0.0132 (16)	-0.0128 (14)
	0.0315 (6) 0.0316 (7) 0.0412 (9) 0.0543 (10) 0.0648 (12) 0.0604 (11) 0.0432 (9) 0.0320 (8) 0.0328 (8) 0.0503 (10) 0.0579 (11)	0.0315 (6) 0.0655 (8) 0.0316 (7) 0.0521 (9) 0.0412 (9) 0.0628 (11) 0.0543 (10) 0.0674 (13) 0.0648 (12) 0.0532 (11) 0.0604 (11) 0.0634 (12) 0.0432 (9) 0.0629 (11) 0.0320 (8) 0.0553 (10) 0.0503 (10) 0.0529 (11) 0.0579 (11) 0.0451 (10)	0.0315 (6) 0.0655 (8) 0.1096 (11) 0.0316 (7) 0.0521 (9) 0.0726 (11) 0.0412 (9) 0.0628 (11) 0.0559 (11) 0.0543 (10) 0.0674 (13) 0.0794 (14) 0.0648 (12) 0.0532 (11) 0.0885 (16) 0.0604 (11) 0.0634 (12) 0.0753 (14) 0.0432 (9) 0.0629 (11) 0.0579 (11) 0.0320 (8) 0.0553 (10) 0.0484 (10) 0.0503 (10) 0.0529 (11) 0.0794 (14) 0.0579 (11) 0.0451 (10) 0.0835 (16)	0.0315 (6) 0.0655 (8) 0.1096 (11) 0.0057 (5) 0.0316 (7) 0.0521 (9) 0.0726 (11) 0.0022 (6) 0.0412 (9) 0.0628 (11) 0.0559 (11) -0.0019 (8) 0.0543 (10) 0.0674 (13) 0.0794 (14) 0.0088 (9) 0.0648 (12) 0.0532 (11) 0.0885 (16) 0.0037 (9) 0.0604 (11) 0.0634 (12) 0.0753 (14) -0.0065 (9) 0.0432 (9) 0.0629 (11) 0.0579 (11) -0.0003 (8) 0.0320 (8) 0.0553 (10) 0.0484 (10) 0.0000 (7) 0.0328 (8) 0.0571 (10) 0.0527 (10) 0.0014 (7) 0.0503 (10) 0.0529 (11) 0.0794 (14) -0.0025 (8) 0.0579 (11) 0.0451 (10) 0.0835 (16) 0.0055 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

F1—C1	1.3482 (19)	С3—Н3А	0.9300
F2—C5	1.3530 (18)	C4—C5	1.365 (3)
O1—C7	1.2256 (17)	C4—H4A	0.9300
N1—C7	1.323 (2)	C5—C6	1.384 (2)
N1—C8	1.455 (2)	C6—C7	1.501 (2)
N1—H1	0.830 (19)	C8—C9	1.458 (3)
C1—C2	1.370(3)	C8—H8A	0.9700
C1—C6	1.387 (2)	C8—H8B	0.9700
C2—C3	1.374 (3)	C9—C10	1.162 (3)
C2—H2A	0.9300	C10—H2	0.87(3)

Acta Cryst. (2013). E69, o1440 sup-4

supporting information

C3—C4	1.369 (3)		
C7—N1—C8 C7—N1—H1 C8—N1—H1 F1—C1—C2 F1—C1—C6 C2—C1—C6 C1—C2—C3 C1—C2—H2A C3—C2—H2A C4—C3—C2 C4—C3—H3A C2—C3—H3A C5—C4—C3	121.31 (15) 120.7 (13) 118.0 (13) 118.34 (15) 118.01 (16) 123.65 (17) 118.85 (17) 120.6 120.6 120.37 (18) 119.8 119.8 118.53 (18)	F2—C5—C6 C4—C5—C6 C5—C6—C1 C5—C6—C7 C1—C6—C7 O1—C7—N1 O1—C7—C6 N1—C7—C6 N1—C8—C9 N1—C8—H8A C9—C8—H8B C9—C8—H8B	117.42 (16) 124.38 (16) 114.22 (16) 121.27 (14) 124.49 (15) 121.78 (16) 121.24 (14) 116.97 (13) 112.60 (15) 109.1 109.1 109.1
C5—C4—H4A C3—C4—H4A F2—C5—C4	120.7 120.7 118.19 (16)	H8A—C8—H8B C10—C9—C8 C9—C10—H2	107.8 178.5 (2) 176.4 (19)
F1—C1—C2—C3 C6—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—F2 C3—C4—C5—C6 F2—C5—C6—C1 C4—C5—C6—C1 F2—C5—C6—C7 C4—C5—C6—C7 F1—C1—C6—C5	179.19 (17) -0.2 (3) -0.4 (3) 0.4 (3) 179.33 (17) 0.1 (3) -179.83 (15) -0.6 (3) 1.7 (2) -179.07 (18) -178.74 (15)	C2—C1—C6—C5 F1—C1—C6—C7 C2—C1—C6—C7 C8—N1—C7—O1 C8—N1—C7—C6 C5—C6—C7—O1 C1—C6—C7—O1 C5—C6—C7—N1 C1—C6—C7—N1 C7—N1—C8—C9	0.6 (3) -0.3 (2) 179.05 (18) -0.4 (3) 178.68 (15) 41.8 (2) -136.53 (18) -137.26 (17) 44.4 (2) -75.0 (2)

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H <i>A</i>	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.83(2)	2.10(2)	2.8387 (19)	147.4 (17)
C2—H2 <i>A</i> ···F2 ⁱⁱ	0.93	2.49	3.394(2)	164

Symmetry codes: (i) x-1, y, z; (ii) x-1, -y+3/2, z+1/2.

Acta Cryst. (2013). E**69**, o1440