

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,3-Dimethylphenyl)piperazine-1,4diium tetrachloridocuprate(II)

Safa Ben Mabrouk, Iness Ameur, Sonia Abid* and Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: sonia.abid@fsb.rnu.tn

Received 26 June 2013; accepted 1 August 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.129; data-to-parameter ratio = 47.0.

In the title salt, $(C_{12}H_{20}N_2)[CuCl_4]$, the Cu^{II} atom occupies a general position in a flattened tetrahedral environment by Cl ligands, characterized by Cl–Cu–Cl angles of 134.04 (3) and 137.18 (4)°. The six-membered piperazinediium ring adopts a chair conformation. The organic cation and inorganic anion interact through N–H···Cl and C–H···Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to the properties of tetrahalidocuprate(II) compounds, see: Solomon *et al.* (1992); Kim *et al.* (2001); Panja *et al.* (2005); Lee *et al.* (2004); Turnbull *et al.* (2005); Shapiro *et al.* (2007). For general background to the geometry of the tetrahalidocuprate(II) species, see: Halvorson *et al.* (1990). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$(C_{12}H_{20}N_2)[CuCl_4]$	$\gamma = 81.845 \ (14)^{\circ}$
$M_r = 397.64$	V = 831.9 (3) Å ³
Triclinic, P1	Z = 2
a = 7.1986 (15) Å	Ag Kα radiation
$b = 7.7611 (11) \text{\AA}$	$\lambda = 0.56087 \text{ Å}$
c = 15.635 (4) Å	$\mu = 1.01 \text{ mm}^{-1}$
$\alpha = 77.035 \ (16)^{\circ}$	T = 293 K
$\beta = 79.311 \ (19)^{\circ}$	$0.25 \times 0.20 \times 0.15 \ \mathrm{mm}$

 $R_{\rm int} = 0.020$

8079 independent reflections

intensity decay: 7%

4600 reflections with $I > 2\sigma(I)$

2 standard reflections every 120 min

Data collection

Nonius MACH-3 diffractometer Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) $T_{\min} = 0.786, T_{\max} = 0.863$ 9228 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 172 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.87$ e Å $^{-3}$ 8079 reflections $\Delta \rho_{min} = -0.68$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl3^i$	0.91	2.48	3.1610 (18)	132
$N2-H2A\cdots Cl2^{ii}$	0.90	2.35	3.144 (2)	147
$N2 - H2B \cdot \cdot \cdot Cl1^{iii}$	0.90	2.30	3.152 (2)	159
$N2 - H2B \cdot \cdot \cdot Cl2^{iii}$	0.90	2.80	3.271 (2)	114
$C2-H2D\cdots Cl1^{i}$	0.97	2.74	3.666 (3)	159
$C3-H3B\cdots Cl1^{iv}$	0.97	2.78	3.585 (2)	141
$C4 - H4B \cdots Cl4^{ii}$	0.97	2.66	3.616 (2)	168
C6−H6···Cl4 ⁱⁱ	0.93	2.71	3.572 (2)	154
$C12 - H12C \cdots Cl3^{i}$	0.96	2.71	3.568 (3)	149

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) x + 1, y + 1, z.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

This work was supported by the Tunisian Ministry of HEScR.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2053).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Kim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481– 4484.
- Lee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823–828.
- Panja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). *Polyhedron*, 24, 2921–2932.
- Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521– 542.
- Turnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567–2576.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

supporting information

Acta Cryst. (2013). E69, m485 [doi:10.1107/S1600536813021454]

1-(2,3-Dimethylphenyl)piperazine-1,4-diium tetrachloridocuprate(II)

Safa Ben Mabrouk, Iness Ameur, Sonia Abid and Mohamed Rzaigui

S1. Comment

Cuprates are chemical compounds in which copper forms complex anions where the overall charge is negative. In such complexes, the ligands are generally cyanides, hydroxides or halides. Due to their important properties, the cuprates still constitute a research axis in many laboratories (Solomon *et al.*, 1992; Kim *et al.*, 2001; Lee *et al.*, 2004; Panja *et al.*, 2005; Turnbull *et al.*, 2005; Shapiro *et al.*, 2007). We report here synthesis and crystal structure of a new cuprate, $(C_{12}H_{20}N_2)[CuCl_4]$ (I). Crystal structure of (I) gives another illustration of this type of material. The asymmetric unit within the unit cell is build of one tetrahedral $[CuCl_4]^{2^2}$ anion and one 1-(2,3-dimethylphenyl)piperazine-1,4-diium cation (Fig. 1). The copper(II) anion exhibits a coordination geometry intermediate between tetrahedral and square–planar. However we can tell that the configuration adopted by this anion is a flattened tetrahedral where the two *trans* bond angles, Cl(1)—Cu—Cl(4) = 137.18 (4)° and Cl(2)—Cu—Cl(3) = 134.04 (3)°, are very near to the minimum of the potential curve describing the angular deformation of isolated [$CuCl_4$]²⁻ anion ($\theta \min = 135.95^{\circ}$) (Halvorson *et al.*, 1990). The phenyl ring (C5—C10) of 1-(2,3-dimethylphenyl)piperazine-1,4-diium is planar with an r.m.s. deviation of 0.0111. The 6-membered piperazinium ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q_T = 0.581 (2) Å, $\theta = 5.3$ (2)° and $\varphi = 328$ (3)°. The dihedral angle between the piperazine (N1–N2/C1–C4) ring and the benzene (C5–C10) ring is 65.41 (7)°. In the crystal, neighboring molecules are linked by N—H…C1 and C—H…C1 hydrogen bonds, forming a three-dimensional network (Figure 2).

S2. Experimental

To an aqueous solution (10 ml) of HCl (0.2M) was added 1-(2,3-dimethylphenyl)piperazine (0.19 g, 1 mmol). To the obtained solution, a blue aqueous solution (10 ml) of CuCl₂.6H₂O (0.170 g, 1 mmol) was added slowly with stirring. The resulting solution was submitted to a slow evaporation at room temperature until the formation of yellow crystals of the title compound.

S3. Refinement

H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). U_{iso} were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times U_{eq} of the parent atom.

Figure 1

The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate C—H…Cl.

Figure 2

Perspective view of the three-dimensional network of (I), showing the intermolecular hydrogen bonds (dashed solid lines) interactions.

1-(2,3-Dimethylphenyl)piperazine-1,4-diium tetrachloridocuprate(II)

Crystal data

 $\begin{array}{l} (C_{12}H_{20}N_2)[CuCl_4]\\ M_r = 397.64\\ Triclinic, P\overline{1}\\ Hall symbol: -P 1\\ a = 7.1986 (15) Å\\ b = 7.7611 (11) Å\\ c = 15.635 (4) Å\\ a = 77.035 (16)^{\circ}\\ \beta = 79.311 (19)^{\circ}\\ \gamma = 81.845 (14)^{\circ}\\ V = 831.9 (3) Å^3 \end{array}$

Data collection

Nonius MACH-3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator non-profiled ω scans Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) $T_{\min} = 0.786, T_{\max} = 0.863$ 9228 measured reflections

Refinement

Refinement on F² Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.050$ Hydrogen site location: inferred from $wR(F^2) = 0.129$ neighbouring sites S = 1.00H-atom parameters constrained 8079 reflections $w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 0.0435P]$ 172 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ 0 constraints $\Delta \rho_{\rm max} = 0.87 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.28980 (4)	0.31174 (4)	0.166012 (19)	0.03259 (8)

Z = 2 F(000) = 406 $D_x = 1.588 \text{ Mg m}^{-3}$ Ag K α radiation, $\lambda = 0.56087 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9.0-10.7^{\circ}$ $\mu = 1.01 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.25 \times 0.20 \times 0.15 \text{ mm}$

8079 independent reflections 4600 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -26 \rightarrow 2$ 2 standard reflections every 120 min intensity decay: 7%

Cl3	0.56150 (8)	0.21183 (7)	0.22023 (4)	0.03825 (13)
Cl2	0.20878 (9)	0.53035 (8)	0.05406 (4)	0.04152 (14)
Cl1	0.27357 (11)	0.07141 (8)	0.10849 (5)	0.04717 (16)
Cl4	0.13588 (11)	0.43179 (10)	0.27862 (5)	0.05472 (19)
N1	0.6470 (2)	0.7932 (2)	0.25996 (11)	0.0256 (3)
H1	0.5611	0.8853	0.2411	0.031*
C5	0.6198 (3)	0.7639 (3)	0.35900 (14)	0.0287 (4)
C10	0.4411 (3)	0.8116 (3)	0.40409 (15)	0.0307 (4)
C4	0.8414 (3)	0.8412 (3)	0.21292 (15)	0.0298 (4)
H4A	0.8718	0.9435	0.2317	0.036*
H4B	0.9365	0.7426	0.2283	0.036*
N2	0.7973 (3)	0.7293 (3)	0.08360 (13)	0.0342 (4)
H2A	0.8894	0.6389	0.0928	0.041*
H2B	0.7938	0.7594	0.0248	0.041*
C9	0.4213 (3)	0.7840 (3)	0.49714 (16)	0.0342 (5)
C1	0.6039 (3)	0.6330 (3)	0.23052 (15)	0.0337 (4)
H1A	0.4785	0.6019	0.2598	0.040*
H1B	0.6956	0.5328	0.2479	0.040*
C2	0.6112 (3)	0.6693 (3)	0.13116 (16)	0.0359 (5)
H2C	0.5914	0.5621	0.1135	0.043*
H2D	0.5098	0.7603	0.1146	0.043*
C6	0.7721 (3)	0.6850 (3)	0.40122 (16)	0.0365 (5)
H6	0.8884	0.6514	0.3688	0.044*
C3	0.8434 (3)	0.8834 (3)	0.11406 (15)	0.0337 (4)
H3A	0.7513	0.9847	0.0988	0.040*
H3B	0.9680	0.9148	0.0839	0.040*
C7	0.7467 (4)	0.6570 (4)	0.49343 (17)	0.0436 (6)
H7	0.8462	0.6033	0.5238	0.052*
C8	0.5736 (4)	0.7093 (3)	0.53963 (17)	0.0420 (5)
H8	0.5590	0.6937	0.6012	0.050*
C11	0.2342 (4)	0.8368 (4)	0.55160 (19)	0.0506 (7)
H70	0.2526	0.8319	0.6114	0.076*
H72	0.1441	0.7564	0.5520	0.076*
H71	0.1871	0.9556	0.5260	0.076*
C12	0.2729 (3)	0.8866 (4)	0.35844 (18)	0.0450 (6)
H12A	0.1645	0.9099	0.4019	0.067*
H12B	0.2459	0.8026	0.3269	0.067*
H12C	0.3005	0.9953	0.3173	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03341 (14)	0.03084 (14)	0.03585 (16)	0.00481 (10)	-0.01015 (11)	-0.01292 (11)
C13	0.0377 (3)	0.0295 (2)	0.0513 (3)	0.0060 (2)	-0.0183 (2)	-0.0128 (2)
C12	0.0450 (3)	0.0395 (3)	0.0405 (3)	0.0100 (2)	-0.0159 (3)	-0.0105 (2)
Cl1	0.0676 (4)	0.0333 (3)	0.0480 (4)	-0.0068 (3)	-0.0224 (3)	-0.0121 (3)
Cl4	0.0545 (4)	0.0622 (4)	0.0416 (3)	0.0228 (3)	-0.0035 (3)	-0.0199 (3)
N1	0.0264 (8)	0.0238 (7)	0.0260 (8)	0.0000 (6)	-0.0036 (6)	-0.0058 (6)

C5	0.0346 (10)	0.0263 (9)	0.0254 (9)	-0.0014 (7)	-0.0033 (8)	-0.0081 (7)
C10	0.0313 (10)	0.0303 (10)	0.0301 (10)	-0.0023 (8)	-0.0025 (8)	-0.0078 (8)
C4	0.0278 (9)	0.0309 (10)	0.0312 (10)	-0.0033 (7)	-0.0045 (8)	-0.0072 (8)
N2	0.0353 (9)	0.0381 (10)	0.0304 (9)	0.0012 (7)	-0.0043 (8)	-0.0129 (8)
C9	0.0373 (11)	0.0330 (10)	0.0309 (11)	-0.0076 (9)	0.0033 (9)	-0.0082 (9)
C1	0.0394 (11)	0.0300 (10)	0.0345 (11)	-0.0097 (8)	-0.0031 (9)	-0.0109 (9)
C2	0.0376 (11)	0.0412 (12)	0.0325 (11)	-0.0069 (9)	-0.0060 (9)	-0.0130 (9)
C6	0.0361 (11)	0.0398 (12)	0.0335 (11)	0.0076 (9)	-0.0078 (9)	-0.0123 (9)
C3	0.0345 (11)	0.0351 (11)	0.0314 (11)	-0.0086 (9)	-0.0004 (9)	-0.0072 (9)
C7	0.0475 (14)	0.0492 (14)	0.0334 (12)	0.0070 (11)	-0.0133 (11)	-0.0090 (11)
C8	0.0550 (15)	0.0419 (13)	0.0290 (11)	-0.0022 (11)	-0.0065 (10)	-0.0092 (10)
C11	0.0481 (15)	0.0613 (17)	0.0385 (14)	-0.0070 (13)	0.0094 (12)	-0.0145 (13)
C12	0.0295 (11)	0.0605 (16)	0.0396 (13)	-0.0013 (11)	-0.0021 (10)	-0.0040 (12)

Geometric parameters (Å, °)

Cu1—Cl4	2.2170 (9)	C9—C11	1.510 (3)
Cu1—Cl3	2.2439 (8)	C1—C2	1.508 (3)
Cu1—Cl2	2.2467 (8)	C1—H1A	0.9700
Cu1—Cl1	2.2704 (7)	C1—H1B	0.9700
N1C5	1.493 (3)	C2—H2C	0.9700
N1—C1	1.507 (3)	C2—H2D	0.9700
N1—C4	1.511 (3)	C6—C7	1.390 (3)
N1—H1	0.9100	С6—Н6	0.9300
С5—С6	1.382 (3)	С3—НЗА	0.9700
C5—C10	1.391 (3)	С3—Н3В	0.9700
С10—С9	1.405 (3)	С7—С8	1.376 (4)
C10-C12	1.499 (3)	С7—Н7	0.9300
C4—C3	1.504 (3)	C8—H8	0.9300
C4—H4A	0.9700	C11—H70	0.9600
C4—H4B	0.9700	C11—H72	0.9600
N2—C3	1.481 (3)	C11—H71	0.9600
N2—C2	1.488 (3)	C12—H12A	0.9600
N2—H2A	0.9000	C12—H12B	0.9600
N2—H2B	0.9000	C12—H12C	0.9600
С9—С8	1.377 (4)		
Cl4—Cu1—Cl3	97.87 (3)	N1—C1—H1B	109.4
Cl4—Cu1—Cl2	98.37 (3)	C2—C1—H1B	109.4
Cl3—Cu1—Cl2	134.04 (3)	H1A—C1—H1B	108.0
Cl4—Cu1—Cl1	137.18 (4)	N2-C2-C1	111.22 (19)
Cl3—Cu1—Cl1	96.67 (3)	N2—C2—H2C	109.4
Cl2—Cu1—Cl1	99.83 (3)	C1—C2—H2C	109.4
C5—N1—C1	111.00 (16)	N2—C2—H2D	109.4
C5—N1—C4	115.08 (16)	C1—C2—H2D	109.4
C1—N1—C4	108.77 (16)	H2C—C2—H2D	108.0
C5—N1—H1	107.2	C5—C6—C7	118.2 (2)
C1—N1—H1	107.2	С5—С6—Н6	120.9

C4—N1—H1	107.2	С7—С6—Н6	120.9
C6—C5—C10	123.4 (2)	N2C3C4	110.92 (18)
C6—C5—N1	118.13 (19)	N2—C3—H3A	109.5
C10—C5—N1	118.40 (19)	C4—C3—H3A	109.5
C5—C10—C9	116.8 (2)	N2—C3—H3B	109.5
C5-C10-C12	123.3 (2)	C4—C3—H3B	109.5
C9—C10—C12	119.9 (2)	НЗА—СЗ—НЗВ	108.0
C3—C4—N1	109.47 (17)	C8—C7—C6	119.7 (2)
C3—C4—H4A	109.8	С8—С7—Н7	120.1
N1—C4—H4A	109.8	С6—С7—Н7	120.1
C3—C4—H4B	109.8	C7—C8—C9	121.7 (2)
N1—C4—H4B	109.8	С7—С8—Н8	119.1
H4A—C4—H4B	108.2	С9—С8—Н8	119.1
C3—N2—C2	111.79 (17)	С9—С11—Н70	109.5
C3—N2—H2A	109.3	С9—С11—Н72	109.5
C2—N2—H2A	109.3	H70—C11—H72	109.5
C3—N2—H2B	109.3	С9—С11—Н71	109.5
C2—N2—H2B	109.3	H70—C11—H71	109.5
H2A—N2—H2B	107.9	H72—C11—H71	109.5
C8—C9—C10	120.1 (2)	C10-C12-H12A	109.5
C8—C9—C11	119.2 (2)	C10-C12-H12B	109.5
C10—C9—C11	120.6 (2)	H12A-C12-H12B	109.5
N1—C1—C2	111.01 (18)	C10-C12-H12C	109.5
N1—C1—H1A	109.4	H12A-C12-H12C	109.5
C2—C1—H1A	109.4	H12B—C12—H12C	109.5
C1—N1—C5—C6	88.3 (2)	C12—C10—C9—C11	-2.8 (4)
C4—N1—C5—C6	-35.8 (3)	C5—N1—C1—C2	174.05 (18)
C1-N1-C5-C10	-89.5 (2)	C4—N1—C1—C2	-58.4 (2)
C4—N1—C5—C10	146.48 (19)	C3—N2—C2—C1	-53.9 (3)
C6—C5—C10—C9	3.1 (3)	N1-C1-C2-N2	55.3 (3)
N1—C5—C10—C9	-179.34 (19)	C10—C5—C6—C7	-2.1 (4)
C6-C5-C10-C12	-176.0 (2)	N1C5C7	-179.7 (2)
N1-C5-C10-C12	1.6 (3)	C2—N2—C3—C4	56.3 (2)
C5—N1—C4—C3	-174.74 (17)	N1-C4-C3-N2	-59.4 (2)
C1—N1—C4—C3	60.0 (2)	C5—C6—C7—C8	-0.5 (4)
C5-C10-C9-C8	-1.4 (3)	C6—C7—C8—C9	2.1 (4)
C12—C10—C9—C8	177.7 (2)	C10—C9—C8—C7	-1.1 (4)
C5—C10—C9—C11	178.2 (2)	C11—C9—C8—C7	179.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1···Cl3 ⁱ	0.91	2.48	3.1610 (18)	132
N2—H2A····Cl2 ⁱⁱ	0.90	2.35	3.144 (2)	147
N2—H2B···Cl1 ⁱⁱⁱ	0.90	2.30	3.152 (2)	159
N2—H2B····Cl2 ⁱⁱⁱ	0.90	2.80	3.271 (2)	114
C2—H2D····Cl1 ⁱ	0.97	2.74	3.666 (3)	159

supporting information

C3—H3 <i>B</i> ···Cl1 ^{iv}	0.97	2.78	3.585 (2)	141	
C4—H4B····Cl4 ⁱⁱ	0.97	2.66	3.616 (2)	168	
C6—H6····Cl4 ⁱⁱ	0.93	2.71	3.572 (2)	154	
C12—H12C····Cl3 ⁱ	0.96	2.71	3.568 (3)	149	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*, *z*; (iii) –*x*+1, –*y*+1, –*z*; (iv) *x*+1, *y*+1, *z*.