Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Bis{[(–)-(S)-1-(4-methylphenyl)ethyl]iminomethyl}thiophene

Sylvain Bernès,^a* Guadalupe Hernández-Téllez,^b Manju Sharma,^c Oscar Portillo-Moreno^b and René Gutiérrez^b

^aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, ^bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, PO Box 156, 72001 Puebla, Pue., Mexico, and ^cIngeniería Bioquímica, Instituto Tecnológico Superior de Atlixco, 74218 Atlixco, Pue., Mexico

Correspondence e-mail: sylvain_bernes@Hotmail.com

Received 17 July 2013; accepted 2 August 2013

Key indicators: single-crystal X-ray study; T = 298 K, P = 0.0 kPa; mean σ (C–C) = 0.008 Å; R factor = 0.052; wR factor = 0.155; data-to-parameter ratio = 14.1.

The title chiral bis-aldimine, $C_{24}H_{26}N_2S$, was synthesized using a solvent-free Schiff condensation. The molecule displays crystallographic C_2 symmetry, with the S atom lying on the twofold axis parallel to [100]. As a consequence of the (*S*,*S*) stereochemistry, the tolyl groups are oriented towards opposite faces of the thiophene core, giving a twisted conformation for the whole molecule. Molecules are arranged in the crystal in a herringbone-like pattern, without any significant intermolecular contacts.

Related literature

For the solvent-free approach in organic synthesis, see: Tanaka & Toda (2000). For the structure of a chiral bis-aldimine compound, see: Espinosa Leija *et al.* (2009). For structures of thiophenes substituted in positions 2 and 5 by imine functionalities, see: Skene & Dufresne (2006); Fridman & Kaftory (2007); de Lima *et al.* (2010); Kudyakova *et al.* (2011, 2012).

Experimental

Crystal data

C₂₄H₂₆N₂S $M_r = 374.53$ Orthorhombic, P22₁2₁ a = 6.278 (3) Å b = 7.900 (3) Å c = 21.500 (7) Å

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{\min} = 0.754, T_{\max} = 0.985$ 3046 measured reflections 1767 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$
$wR(F^2) = 0.155$
S = 1.06
1767 reflections
125 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$

 $V = 1066.4 (7) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.16 \text{ mm}^{-1}$ T = 298 K $0.50 \times 0.32 \times 0.10 \text{ mm}$

1352 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ 3 standard reflections every 97 reflections intensity decay: 2.5%

 $\begin{array}{l} \Delta \rho_{min} = -0.26 \ e \ \AA^{-3} \\ \mbox{Absolute structure: Flack x determined using 412 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons \& Flack, 2004) \\ \mbox{Absolute structure parameter:} \\ -0.08 (18) \end{array}$

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013.

Support from VIEP-UAP (GUPJ-NAT12-G) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2315).

References

- Espinosa Leija, A., Bernès, S., Hernández, G., Sharma, P., Peña, U. & Gutiérrez, R. (2009). Acta Cryst. E65, 02317.
- Fridman, N. & Kaftory, M. (2007). Pol. J. Chem. 81, 825-832.
- Kudyakova, Yu. S., Burgart, Ya. V. & Saloutin, V. I. (2011). Chem. Heterocycl. Compd, 47, 558–563.
- Kudyakova, Y. S., Burgart, Y. V., Slepukhin, P. A. & Saloutin, V. I. (2012). Mendeleev Commun. 22, 284–286.
- Lima, G. M. de, Harrison, W. T. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o504–o505.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116-o1117.
- Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.

supporting information

Acta Cryst. (2013). E69, o1428 [doi:10.1107/S1600536813021685]

2,5-Bis{[(-)-(S)-1-(4-methylphenyl)ethyl]iminomethyl}thiophene

Sylvain Bernès, Guadalupe Hernández-Téllez, Manju Sharma, Oscar Portillo-Moreno and René Gutiérrez

S1. Comment

In the last few years, our attention has been focused on the synthesis and structure of chiral bis-imines (*e.g.* Espinosa Leija *et al.*, 2009), mostly due to their versatile coordination behavior and interesting properties as ligands for building of chiral metal complexes. Along this line, the title compound was synthesized through a Schiff condensation between a low-melting point dialdehyde and a liquid amine having a high boiling-point (above 200 °C), which also serves as a solvent for the reaction. No other solvents were used for the reaction (Tanaka & Toda, 2000).

The crude compound crystallized from CH_2Cl_2 , allowing to determine its chiral purity and crystal structure. The obtained bis-aldimine is the expected (*S*,*S*) diastereoisomer, with imine bonds in the common *E* configuration (Fig. 1). The molecule is placed on the 2-fold axis of space group $P22_12_1$, with the S atom lying on the symmetry axis. The resulting molecular conformation displays the C_2 symmetry, with imine arms oriented towards opposite sides of the central thiophene core ring. Other thiophenes substituted in positions 2 and 5 by imine groups have been characterized (*e.g.* Skene & Dufresne, 2006; Fridman & Kaftory, 2007; de Lima *et al.*, 2010; Kudyakova *et al.*, 2011, 2012). However, all were achiral compounds, and only one actually presented a crystallographic C_2 symmetry (space group C2/c, Kudyakova *et al.*, 2011), as in the title compound.

The molecules are arranged in the crystal in such a way they form a herringbone-like structure (Fig. 2). However, no actual supramolecular pattern is formed in the solid-state, since no intermolecular contacts of significant strength are present.

S2. Experimental

Under solvent-free conditions, a mixture of 2,5-thiophenedicarboxaldehyde (100 mg, 0.71 mmol) and (*S*)-(–)-1-(4methylphenyl)ethylamine (192 mg, 1.42 mmol) in a 1:2 molar ratio were mixed at room temperature, giving a brownish solid. The crude was recrystallized from CH₂Cl₂, affording colorless crystals of the title compound, in 91% yield. *M*.p. 150–152 °C. Spectroscopic data: $[\alpha]^{25}_{D}$ = +59.9 (c 1, CHCl₃). IR (KBr): 1624 cm⁻¹ (C=N). ¹H-NMR (400 MHz, CDCl₃/TMS, p.p.m.): δ = 1.54–1.55 (d, 6H, CHC*H*₃), 2.33 (s, 6H, PhC*H*₃), 4.46, 4.51 (q, 2H, C*H*), 7.13–7.29 (m, 10H, Ar), 8.34 (s, 2H, *H*C=N). ¹³C-NMR (100 MHz, CDCl₃/TMS, p.p.m.): δ = 21.0 (CCH₃), 30.9 (PhCH₃), 69.0 (CHCH₃), 126.5 (Ar), 129.0 (Ar), 129.7 (Ar), 136.4 (Ar), 141.9 (Ar), 145.1 (Ar), 152.2 (HC=N). MS—EI: *m/z* = 374 (*M*⁺).

S3. Refinement

All C-bonded H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH₃), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as $U_{iso}(H) = 1.5U_{eq}(C7, C14)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(carrier C)$ for other H atoms. The absolute configuration was assigned from the known configuration of the chiral amine used as starting material. The absolute

structure was confirmed through the Parsons-Flack test (Parsons & Flack, 2004).

Figure 1

The title molecule with displacement ellipsoids for non-H atoms shown at the 50% probability level. The asymmetric unit consists of half of the molecule, and symmetry code to generate equivalent atoms is i = x, 1 - y, 2 - z.

Figure 2

Part of the crystal structure, viewed along the *a*-axis.

2,5-Bis{[(-)-(S)-1-(4-methylphenyl)ethyl]iminomethyl}thiophene

Crystal data $C_{24}H_{26}N_2S$ $M_r = 374.53$ Orthorhombic, $P22_12_1$ Hall symbol: P 2bc 2 a = 6.278 (3) Å b = 7.900 (3) Å c = 21.500 (7) Å V = 1066.4 (7) Å³ Z = 2F(000) = 400

 $D_x = 1.166 \text{ Mg m}^{-3}$ Melting point: 423 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 71 reflections $\theta = 4.2-12.3^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 298 KPlate, colourless $0.50 \times 0.32 \times 0.10 \text{ mm}$ Data collection

Bruker P4	1767 independent reflections
diffractometer	1352 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.066$
Graphite monochromator	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
$2\theta/\omega$ scans	$h = -7 \rightarrow 5$
Absorption correction: ψ scan	$k = -9 \rightarrow 9$
(XSCANS; Siemens, 1996)	$l = -25 \rightarrow 25$
$T_{\min} = 0.754, \ T_{\max} = 0.985$	3 standard reflections every 97 reflections
3046 measured reflections	intensity decay: 2.5%
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^2(F_o^2) + (0.0559P)^2 + 0.760P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
1767 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
125 parameters	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
0 constraints	Absolute structure: Flack x determined using
Primary atom site location: structure-invariant	412 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons &
direct methods	Flack, 2004)
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.08 (18)
map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.6440 (3)	0.5000	1.0000	0.0580 (5)	
C2	0.8347 (8)	0.3700 (6)	0.9686 (2)	0.0536 (12)	
C3	1.0327 (8)	0.4251 (7)	0.9825 (2)	0.0645 (15)	
H3B	1.1562	0.3696	0.9701	0.077*	
C4	0.7765 (9)	0.2268 (7)	0.9303 (2)	0.0579 (13)	
H4A	0.8834	0.1535	0.9172	0.069*	
N5	0.5897 (7)	0.1971 (6)	0.91410 (19)	0.0578 (11)	
C6	0.5569 (9)	0.0468 (7)	0.8745 (2)	0.0651 (15)	
H6B	0.6951	0.0064	0.8594	0.078*	
C7	0.4544 (14)	-0.0898 (8)	0.9141 (3)	0.099 (2)	
H7B	0.5485	-0.1196	0.9476	0.148*	
H7C	0.4271	-0.1879	0.8890	0.148*	
H7D	0.3226	-0.0483	0.9309	0.148*	
C8	0.4176 (8)	0.0904 (6)	0.8199 (2)	0.0540 (12)	
C9	0.2393 (8)	0.1892 (7)	0.8261 (2)	0.0605 (14)	
H9B	0.2074	0.2369	0.8645	0.073*	
C10	0.1074 (9)	0.2188 (8)	0.7765 (3)	0.0665 (14)	
H10A	-0.0132	0.2855	0.7822	0.080*	
C11	0.1489 (9)	0.1524 (7)	0.7186 (3)	0.0627 (13)	
C12	0.3281 (10)	0.0573 (7)	0.7125 (2)	0.0697 (15)	
H12D	0.3618	0.0133	0.6736	0.084*	
C13	0.4616 (9)	0.0235 (8)	0.7617 (2)	0.0657 (14)	

supporting information

0.5812	-0.0441	0.7559	0.079*
0.0019 (11)	0.1849 (9)	0.6647 (3)	0.091 (2)
0.0789	0.1720	0.6265	0.136*
-0.0533	0.2980	0.6675	0.136*
-0.1138	0.1055	0.6659	0.136*
	0.5812 0.0019 (11) 0.0789 -0.0533 -0.1138	0.5812-0.04410.0019 (11)0.1849 (9)0.07890.1720-0.05330.2980-0.11380.1055	0.5812-0.04410.75590.0019 (11)0.1849 (9)0.6647 (3)0.07890.17200.6265-0.05330.29800.6675-0.11380.10550.6659

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0456 (10)	0.0627 (11)	0.0658 (10)	0.000	0.000	-0.0035 (10)
C2	0.051 (3)	0.062 (3)	0.048 (2)	0.001 (3)	0.001 (2)	-0.004 (2)
C3	0.046 (3)	0.085 (4)	0.062 (3)	0.005 (3)	0.002 (2)	-0.018 (3)
C4	0.056 (3)	0.063 (3)	0.055 (3)	0.005 (3)	0.002 (2)	-0.004 (3)
N5	0.059 (3)	0.057 (3)	0.057 (2)	0.002 (2)	-0.007 (2)	-0.006 (2)
C6	0.068 (3)	0.064 (4)	0.064 (3)	0.006 (3)	-0.017 (3)	-0.011 (3)
C7	0.151 (7)	0.063 (4)	0.082 (4)	-0.013 (4)	-0.040(5)	0.012 (3)
C8	0.055 (3)	0.048 (3)	0.059 (3)	0.000(2)	0.001 (2)	-0.005 (2)
C9	0.056 (3)	0.068 (3)	0.057 (3)	0.004 (3)	0.006 (2)	-0.009 (3)
C10	0.056 (3)	0.063 (3)	0.080 (3)	0.007 (3)	0.000 (3)	-0.005 (3)
C11	0.064 (3)	0.055 (3)	0.068 (3)	-0.009 (3)	-0.010 (3)	0.000 (3)
C12	0.080 (4)	0.069 (4)	0.059 (3)	0.000 (3)	-0.002 (3)	-0.009 (3)
C13	0.064 (3)	0.066 (3)	0.067 (3)	0.015 (3)	-0.003 (2)	-0.018 (3)
C14	0.098 (5)	0.087 (5)	0.088 (4)	-0.005 (4)	-0.032 (4)	0.008 (4)

Geometric parameters (Å, °)

S1—C2	1.716 (5)	С8—С9	1.371 (7)
$S1-C2^i$	1.716 (5)	C8—C13	1.387 (7)
С2—С3	1.350 (7)	C9—C10	1.370 (7)
C2—C4	1.446 (7)	С9—Н9В	0.9300
C3—C3 ⁱ	1.403 (10)	C10—C11	1.377 (8)
С3—Н3В	0.9300	C10—H10A	0.9300
C4—N5	1.246 (6)	C11—C12	1.359 (8)
C4—H4A	0.9300	C11—C14	1.502 (8)
N5—C6	1.475 (7)	C12—C13	1.374 (8)
C6—C8	1.504 (7)	C12—H12D	0.9300
С6—С7	1.518 (9)	C13—H13D	0.9300
С6—Н6В	0.9800	C14—H14A	0.9600
С7—Н7В	0.9600	C14—H14B	0.9600
С7—Н7С	0.9600	C14—H14C	0.9600
C7—H7D	0.9600		
C2-S1-C2 ⁱ	91.5 (3)	C9—C8—C6	122.0 (5)
C3—C2—C4	127.6 (5)	C13—C8—C6	120.1 (5)
C3—C2—S1	111.2 (4)	C10—C9—C8	121.1 (5)
C4—C2—S1	121.1 (4)	С10—С9—Н9В	119.5
C2-C3-C3 ⁱ	113.0 (3)	C8—C9—H9B	119.5
С2—С3—Н3В	123.5	C9—C10—C11	121.6 (5)

123.5	C9—C10—H10A	119.2
123.0 (5)	C11—C10—H10A	119.2
118.5	C12-C11-C10	117.0 (5)
118.5	C12—C11—C14	122.0 (6)
116.4 (4)	C10-C11-C14	121.0 (6)
110.3 (4)	C11—C12—C13	122.6 (5)
107.9 (4)	C11—C12—H12D	118.7
110.7 (5)	C13—C12—H12D	118.7
109.3	C12—C13—C8	119.9 (5)
109.3	C12—C13—H13D	120.0
109.3	C8—C13—H13D	120.0
109.5	C11—C14—H14A	109.5
109.5	C11—C14—H14B	109.5
109.5	H14A—C14—H14B	109.5
109.5	C11—C14—H14C	109.5
109.5	H14A—C14—H14C	109.5
109.5	H14B—C14—H14C	109.5
117.8 (5)		
0.5 (3)	C7—C6—C8—C13	-100.2 (6)
-177.0 (5)	C13—C8—C9—C10	0.9 (8)
176.0 (5)	C6—C8—C9—C10	-175.9 (5)
-1.3 (7)	C8—C9—C10—C11	-0.6 (9)
-171.3 (5)	C9—C10—C11—C12	-0.7 (9)
5.7 (7)	C9—C10—C11—C14	179.6 (6)
179.4 (4)	C10-C11-C12-C13	1.6 (9)
-132.6 (5)	C14—C11—C12—C13	-178.6 (6)
106.3 (6)	C11—C12—C13—C8	-1.4 (9)
-42.7 (7)	C9—C8—C13—C12	0.0 (8)
76.6 (7)	C6-C8-C13-C12	176.9 (5)
140.5 (5)		
	123.5 $123.0 (5)$ 118.5 118.5 $116.4 (4)$ $110.3 (4)$ $107.9 (4)$ $110.7 (5)$ 109.3 109.3 109.3 109.5 100.5 $100.3 (6)$ $-42.7 (7)$ $76.6 (7)$ $140.5 (5)$	123.5C9-C10-H10A123.0 (5)C11-C10-H10A118.5C12-C11-C10118.5C12-C11-C14116.4 (4)C10-C11-C14110.3 (4)C11-C12-H12D107.9 (4)C11-C12-H12D109.3C12-C13-C8109.3C12-C13-H13D109.3C12-C13-H13D109.5C11-C14-H14B109.5C11-C14-H14B109.5C11-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14A-C14-H14C109.5H14A-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C109.5H14B-C14-H14C117.8 (5)C9-C10-C11-17.0 (5)C13-C8-C9-C10-1.3 (7)C9-C10-C11-C125.7 (7)C9-C10-C11-C125.7 (7)C9-C10-C11-C12-132.6 (5)C14-C11-C12-C13-132.6 (5)C14-C11-C12-C13-42.7 (7)C9-C8-C13-C12140.5 (5)C4-C8-C13-C12

Symmetry code: (i) x, -y+1, -z+2.