Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4-Bis[1-(prop-2-ynyl)-1*H*-indol-3-yl]-1*H*-pyrrole-2,5-dione

Mu-Hua Huang,^a* Yong-Chen Gao,^b Feng-Ling Yang^b and Yun-Jun Luo^a

^aSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: mhhuang@bit.edu.cn

Received 30 April 2013; accepted 10 May 2013

Key indicators: single-crystal X-ray study; T = 102 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.114; data-to-parameter ratio = 14.0.

In the title molecule, $C_{26}H_{17}N_3O_2$, both indole ring systems are essentially planar, with maximum deviations of 0.019 (2) and 0.033 (1) Å for the N atoms, and form dihedral angles of 34.40 (9) and 45.06 (8)° with the essentially planar pyrrole ring [maximum deviation = 0.020 (2) Å]. The dihedral angle between the two indole ring systems is 58.78 (6)°. In the crystal, molecules are connected by pairs of N-H···O hydrogen bonds, forming inversion dimers and generating $R_2^2(8)$ rings. Weak π - π stacking interactions, with a centroidcentroid distance of 3.983 (2) Å, are also observed.

Related literature

For the importance of bisindolylmaleimides in medicinal chemistry, see: Bulbule *et al.* (2008); Wang *et al.* (2012) and in materials science, see: Chiu *et al.* (2003); Kaletas *et al.* (2005); Lin *et al.* (2010); Nakazono *et al.* (2007); Yeh *et al.* (2006). For the isolation of bisindolylmaleimides from natural products, see: Kamata *et al.* (2006). For the synthesis of bisindolylmaleimides, see: Prateeptongkum *et al.* (2010). For a related crystal structure, see: Huang *et al.* (2012). For hydrogen-bond graph-set motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{26}H_{17}N_3O_2$ $\gamma = 79.593 (12)^\circ$
 $M_r = 403.43$ $V = 999.9 (3) Å^3$

 Triclinic, $P\overline{1}$ Z = 2

 a = 8.8015 (14) Å Mo K α radiation

 b = 11.2619 (14) Å $\mu = 0.09 \text{ mm}^{-1}$

 c = 11.838 (3) Å T = 102 K

 $\alpha = 62.860 (17)^\circ$ $0.11 \times 0.10 \times 0.07 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) T_{min} = 0.991, T_{max} = 0.994

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	280 parameters
$vR(F^2) = 0.114$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
3920 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

6379 measured reflections 3920 independent reflections

 $R_{\rm int} = 0.024$

3113 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1\cdots O1^i$ 0.882.012.872 (2)165

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors wish to thank the Natural Science Foundation of China (No. 21202008) for generous support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5613).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bulbule, V. J., Rivas, K., Verlinde, C. L. M. J., Van Voorhis, W. C. & Gelb, M. H. (2008). J. Med. Chem. 51, 384–387.
- Chiu, C.-W., Chow, T.-J., Chuen, C.-H., Lin, H.-M. & Tao, Y.-T. (2003). Chem. Mater. 15, 4527–4532.
- Huang, L., Li, Y., Gao, D. & Du, Z. (2012). Acta Cryst. E68, 01328.
- Kaletas, B. K., Kozhevnikov, V. N., Zimine, M., Williams, R. M., Koenig, B. & De Cola, L. (2005). *Eur. J. Org. Chem.* pp. 3443–3449.
- Kamata, K., Suetsugu, T., Yamamoto, Y., Hayashi, M., Komiyama, K. & Ishibashi, M. (2006). J. Nat. Prod. 69, 1252–1254.
- Lin, Z., Lin, Y.-D., Wu, C.-Y., Chow, P.-T., Sun, C.-H. & Chow, T. J. (2010). *Macromolecules*, 43, 5925–5931.

- Nakazono, M., Nanbu, S., Uesaki, A., Kuwano, R., Kashiwabara, M. & Zaitsu, K. (2007). Org. Lett. 9, 3583–3586.
- Prateeptongkum, S., Driller, K. M., Jackstell, R., Spannenberg, A. & Beller, M. (2010). Chem. Eur. J. 16, 9606–9615.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Wang, K., Yan, Z., Wang, N. & Liu, Z. Z. (2012). Chin. Chem. Lett. 23, 462–465.
 Yeh, T.-S., Chow, T. J., Tsai, S.-H., Chiu, C.-W. & Zhao, C.-X. (2006). Chem. Mater. 18, 832-839.

supporting information

Acta Cryst. (2013). E69, o924-o925 [doi:10.1107/S1600536813012889]

3,4-Bis[1-(prop-2-ynyl)-1*H*-indol-3-yl]-1*H*-pyrrole-2,5-dione

Mu-Hua Huang, Yong-Chen Gao, Feng-Ling Yang and Yun-Jun Luo

S1. Comment

Bisindolylmaleimides are important in medicinal chemistry (Bulbule *et al.*, 2008; Wang *et al.*, 2012) and in the field of materials science (Chiu *et al.*, 2003; Kaletas *et al.*, 2005; Lin *et al.*, 2010; Nakazono *et al.*, 2007; Yeh *et al.*, 2006). Bisindolylmaleimides have been isolated from natural products (Kamata *et al.*, 2006). The synthesis of bisindolylmaleimides (Prateeptongkum *et al.*, 2010) and an example of a related crystal structure (Huang *et al.*, 2012) have been reported.

The molecular structure of the title compound is shown in Fig. 1. Both indole ring systems are essentially planar with maximum deviations of 0.019 (2)Å for N3 and 0.033 (1)Å for N2 and these ring systems form dihedral angles of 34.40 (9)Å [N3/C16-C23] and 45.06 (8)Å [N2/C5-C12] with the essentially planar pyrrole ring [N1/C1-C4] (maximum deviation 0.020 (2)Å for C1). The dihedral angle between the two indole ring systems is 58.78 (6)°. In the crystal, molecules are connected by pairs of N—H···O hydrogen bonds to form inversion dimers (Fig. 2) generating $R^2_2(8)$ rings (Bernstein *et al.*, 1995). Weak π - π stacking interactions, with a Cg···Cg(2-x, 1-y, -z) distance of 3.983 (2)Å, are also observed [Cg is the centroid of the C18-C23 ring].

S2. Experimental

The title compound was prepared by *N*-alkylation of 3, 4-di(1*H*-indol-3-yl)-1*H*-pyrrole-2,5-dione by propargyl bromide with the aid of NaH freshly distilled THF under N₂ atmosphere. The reaction was initiated at 273K for 5 h. The reaction was quenched with sat. NH₄Cl at 273K, extracted with EtOAc, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by f.c.c.(silica gel, eluted with 14% EtOAc in Petroleum Ether) to give the title compound in a yield of 83%, which provided the sample suitable for X-ray analysis after natural evaporation of solvents.

S3. Refinement

All H atoms were palced in calculated positions with C—H = 0.95Å (aromatic and acetylene hydrogens), 0.99Å (methylene) and N—H = 0.88 Å. They were refined in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A portion of the crystal packing viewed approximately along the *a* axis. The dashed lines indicate N—H···O hydrogen bonds.

3,4-Bis[1-(prop-2-ynyl)-1H-indol-3-yl]-1H-pyrrole-2,5-dione

Crystal data

 $\begin{array}{l} C_{26}H_{17}N_{3}O_{2} \\ M_{r} = 403.43 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 8.8015 \ (14) \text{ Å} \\ b = 11.2619 \ (14) \text{ Å} \\ c = 11.838 \ (3) \text{ Å} \\ a = 62.860 \ (17)^{\circ} \\ \beta = 73.625 \ (16)^{\circ} \\ \gamma = 79.593 \ (12)^{\circ} \end{array}$

Data collection

Bruker SMART CCD	6379 measured reflections
diffractometer	3920 independent reflections
Radiation source: fine-focus sealed tube	3113 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 9$
(SADABS; Bruker, 2002)	$k = -13 \rightarrow 13$
$T_{\min} = 0.991, T_{\max} = 0.994$	$l = -11 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.03	H-atom parameters constrained
3920 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0438P)^2 + 0.3377P]$
280 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

V = 999.9 (3) Å³

 $D_{\rm x} = 1.340 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

F(000) = 420

 $\theta = 1.5 - 51.8^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.11 \times 0.10 \times 0.07 \text{ mm}$

T = 102 K

Z = 2

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O2	0.33248 (15)	0.75325 (12)	0.29355 (12)	0.0242 (3)
01	0.11940 (15)	0.34749 (12)	0.48806 (13)	0.0248 (3)
C12	0.7380 (2)	0.27334 (17)	0.39074 (16)	0.0203 (4)
H12	0.7278	0.3531	0.4017	0.024*

C20	0.8983 (2)	0.62081 (19)	-0.09736 (18)	0.0259 (4)
H20	0.9790	0.6819	-0.1502	0.031*
C19	0.7956 (2)	0.62914 (17)	0.01340 (17)	0.0200 (4)
N2	0.48798 (18)	0.09433 (14)	0.33954 (14)	0.0202 (3)
C18	0.6728 (2)	0.54223 (17)	0.09277 (17)	0.0185 (4)
C23	0.6555 (2)	0.44154 (18)	0.05835 (18)	0.0239 (4)
H23	0.5741	0.3807	0.1093	0.029*
N3	0.79109 (19)	0.71857 (15)	0.06452 (15)	0.0253 (4)
C17	0.5904 (2)	0.58517 (17)	0.19368 (17)	0.0205 (4)
C7	0.6120 (2)	0.23464 (17)	0.36673 (16)	0.0180 (4)
C9	0.7717 (2)	0.03492 (18)	0.35768 (18)	0.0245 (4)
Н9	0.7834	-0.0443	0.3456	0.029*
C14	0.5187 (2)	0.04567 (18)	0.15627 (19)	0.0250 (4)
C16	0.6670 (2)	0.69296 (18)	0.17015 (19)	0.0260 (4)
H16	0.6375	0.7427	0.2206	0.031*
C13	0.4647 (2)	-0.00393 (18)	0.29867 (18)	0.0247 (4)
H13A	0.3508	-0.0218	0.3255	0.030*
H13B	0.5249	-0.0889	0.3418	0.030*
C8	0.6308 (2)	0.11411 (17)	0.35377 (16)	0.0194 (4)
C4	0.3246 (2)	0.63429 (17)	0.32913 (17)	0.0201 (4)
C22	0.7586 (2)	0.4323 (2)	-0.05068 (19)	0.0287 (5)
H22	0.7475	0.3643	-0.0737	0.034*
C11	0.8770 (2)	0.19342 (19)	0.39814 (17)	0.0250 (4)
H11	0.9624	0.2179	0.4158	0.030*
C5	0.3823 (2)	0.19972 (17)	0.34038 (17)	0.0201 (4)
Н5	0.2763	0.2098	0.3312	0.024*
N1	0.19290 (18)	0.56262 (14)	0.41135 (15)	0.0228 (4)
H1	0.1059	0.5957	0.4484	0.027*
C10	0.8942 (2)	0.07670 (19)	0.37999 (18)	0.0271 (4)
H10	0.9923	0.0251	0.3831	0.033*
C2	0.3827 (2)	0.41642 (17)	0.35429 (17)	0.0178 (4)
C15	0.5634 (3)	0.09309 (19)	0.0417 (2)	0.0320 (5)
H15	0.5993	0.1313	-0.0505	0.038*
C6	0.4527 (2)	0.28858 (17)	0.35655 (16)	0.0181 (4)
C3	0.4463 (2)	0.53771 (17)	0.29249 (17)	0.0189 (4)
C21	0.8777 (2)	0.5207 (2)	-0.12664 (18)	0.0291 (5)
H21	0.9466	0.5118	-0.2006	0.035*
C25	0.9581 (2)	0.83373 (18)	0.1088 (2)	0.0277 (5)
C1	0.2178 (2)	0.43211 (17)	0.42665 (17)	0.0198 (4)
C24	0.8937 (3)	0.8296 (2)	0.0096 (2)	0.0328 (5)
H24A	0.8322	0.9148	-0.0306	0.039*
H24B	0.9822	0.8204	-0.0598	0.039*
C26	1.0093 (3)	0.83789 (19)	0.1887 (2)	0.0344 (5)
H26	1.0506	0.8413	0.2531	0.041*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
02	0.0229 (8)	0.0190 (7)	0.0286 (7)	-0.0038 (5)	-0.0003 (6)	-0.0108 (6)
01	0.0188 (7)	0.0217 (7)	0.0301 (7)	-0.0056 (5)	0.0049 (6)	-0.0124 (6)
C12	0.0228 (10)	0.0222 (9)	0.0144 (8)	-0.0046 (7)	-0.0031 (7)	-0.0062 (8)
C20	0.0177 (10)	0.0301 (11)	0.0183 (9)	-0.0005 (8)	-0.0007 (8)	-0.0027 (9)
C19	0.0159 (10)	0.0201 (9)	0.0194 (9)	0.0026 (7)	-0.0061 (7)	-0.0046 (8)
N2	0.0214 (9)	0.0190 (8)	0.0198 (8)	-0.0028 (6)	-0.0025 (6)	-0.0088 (7)
C18	0.0136 (9)	0.0201 (9)	0.0162 (9)	0.0001 (7)	-0.0044 (7)	-0.0029 (8)
C23	0.0204 (10)	0.0291 (10)	0.0203 (9)	-0.0001 (8)	-0.0058 (8)	-0.0088 (8)
N3	0.0210 (9)	0.0246 (9)	0.0238 (8)	-0.0074 (6)	0.0013 (7)	-0.0065 (7)
C17	0.0157 (10)	0.0184 (9)	0.0221 (9)	-0.0007 (7)	-0.0010 (7)	-0.0064 (8)
C7	0.0184 (10)	0.0197 (9)	0.0114 (8)	-0.0020 (7)	-0.0003 (7)	-0.0043 (7)
С9	0.0269 (11)	0.0213 (10)	0.0193 (9)	0.0018 (8)	-0.0027 (8)	-0.0063 (8)
C14	0.0304 (11)	0.0198 (10)	0.0279 (11)	-0.0038 (8)	-0.0065 (9)	-0.0120 (9)
C16	0.0244 (11)	0.0236 (10)	0.0263 (10)	-0.0048 (8)	0.0023 (8)	-0.0110 (9)
C13	0.0310 (12)	0.0204 (10)	0.0247 (10)	-0.0053 (8)	-0.0044 (9)	-0.0110 (8)
C8	0.0213 (10)	0.0196 (9)	0.0138 (8)	-0.0031 (7)	-0.0021 (7)	-0.0045 (7)
C4	0.0183 (10)	0.0212 (10)	0.0195 (9)	-0.0049 (7)	-0.0012 (7)	-0.0082 (8)
C22	0.0279 (12)	0.0329 (11)	0.0241 (10)	0.0027 (8)	-0.0087 (9)	-0.0112 (9)
C11	0.0198 (10)	0.0327 (11)	0.0170 (9)	-0.0050 (8)	-0.0048 (8)	-0.0043 (8)
C5	0.0166 (10)	0.0211 (9)	0.0187 (9)	-0.0035 (7)	0.0005 (7)	-0.0070 (8)
N1	0.0174 (8)	0.0203 (8)	0.0274 (8)	-0.0028 (6)	0.0058 (7)	-0.0133 (7)
C10	0.0211 (11)	0.0293 (11)	0.0211 (10)	0.0048 (8)	-0.0042 (8)	-0.0052 (9)
C2	0.0149 (9)	0.0219 (9)	0.0171 (9)	-0.0024 (7)	-0.0017 (7)	-0.0093 (8)
C15	0.0466 (14)	0.0262 (11)	0.0252 (11)	-0.0083 (9)	-0.0066 (10)	-0.0114 (9)
C6	0.0178 (10)	0.0188 (9)	0.0147 (8)	-0.0031 (7)	0.0013 (7)	-0.0069 (7)
C3	0.0172 (10)	0.0205 (9)	0.0185 (9)	-0.0009 (7)	-0.0015 (7)	-0.0094 (8)
C21	0.0249 (11)	0.0393 (12)	0.0197 (10)	0.0076 (9)	-0.0048 (8)	-0.0135 (9)
C25	0.0206 (11)	0.0220 (10)	0.0340 (11)	-0.0060 (8)	0.0004 (9)	-0.0088 (9)
C1	0.0190 (10)	0.0199 (9)	0.0201 (9)	-0.0036 (7)	-0.0004 (8)	-0.0099 (8)
C24	0.0291 (12)	0.0299 (11)	0.0305 (11)	-0.0137 (9)	0.0008 (9)	-0.0055 (9)
C26	0.0323 (13)	0.0262 (11)	0.0406 (13)	-0.0017 (9)	-0.0068 (10)	-0.0118 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O2—C4	1.216 (2)	C14—C15	1.180 (3)	
01—C1	1.224 (2)	C14—C13	1.471 (3)	
C12—C11	1.380 (3)	C16—H16	0.9500	
С12—С7	1.402 (2)	C13—H13A	0.9900	
С12—Н12	0.9500	C13—H13B	0.9900	
C20-C21	1.375 (3)	C4—N1	1.388 (2)	
C20—C19	1.399 (3)	C4—C3	1.506 (2)	
С20—Н20	0.9500	C22—C21	1.388 (3)	
C19—N3	1.382 (2)	C22—H22	0.9500	
C19—C18	1.407 (2)	C11—C10	1.402 (3)	
N2—C5	1.371 (2)	C11—H11	0.9500	

N2—C8	1.383 (2)	C5—C6	1.374 (2)
N2—C13	1.459 (2)	С5—Н5	0.9500
C18—C23	1.412 (3)	N1—C1	1.380 (2)
C18—C17	1.449 (3)	N1—H1	0.8800
C23—C22	1.389 (3)	C10—H10	0.9500
С23—Н23	0.9500	C2—C3	1.359 (2)
N3—C16	1.362 (2)	C2—C6	1.451 (2)
N3—C24	1.462 (2)	C2—C1	1.489 (2)
C17—C16	1.374 (2)	C15—H15	0.9500
C17—C3	1.671(2) 1 449 (2)	C21—H21	0.9500
C7—C8	1410(2)	C25—C26	1.178(3)
C7-C6	1.110(2) 1 439(2)	C_{25} C_{26}	1.176(3) 1 463(3)
C_{1}^{0}	1.439(2) 1 382(3)	$C_{23} = C_{24}$	0.9900
C_{2}	1.302(3)	C24 H24B	0.9900
	0.9500	$C_{24} = 1124D$	0.9500
С9—П9	0.9300	C20—H20	0.9300
C11—C12—C7	118 76 (17)	02—C4—N1	124 49 (17)
$C_{11} - C_{12} - H_{12}$	120.6	O2-C4-C3	128.73 (16)
C7-C12-H12	120.6	N1 - C4 - C3	106 75 (14)
C_{21} C_{20} C_{19}	117 34 (18)	C_{21} C_{22} C_{23}	121 13 (19)
$C_{21} = C_{20} = H_{20}$	121.3	$C_{21} = C_{22} = C_{23}$	119.4
C19-C20-H20	121.3	C_{23} C_{22} H_{22}	119.4
N_{3} C_{19} C_{20} C_{20}	121.5	C_{12} C_{11} C_{10}	121 12 (18)
N_{3} C19 C18	129.00(17) 107.88(16)	C_{12} C_{11} H_{11}	119.4
C_{20} C_{19} C_{18}	107.88 (10)	C10-C11-H11	119.4
$C_{20} = 0.00$	129.00(17) 109.07(14)	N2_C5_C6	109.78 (16)
$C_{5} = N_{2} = C_{6}$	107.07 (14)	N2 C5 H5	109.78 (10)
$C_{3} = 12 = C_{13}$	124.20(10) 125.14(15)	C_{6} C_{5} H_{5}	125.1
$C_{10} C_{18} C_{23}$	125.14(15) 117.57(16)	C1 N1 C4	123.1 110 35 (15)
$C_{19} = C_{18} = C_{23}$	106 66 (15)	C1 N1 H1	124.8
$C_{13} = C_{13} = C_{17}$	100.00(13) 135.75(17)	C1 $N1$ $H1$	124.8
$C_{23} = C_{13} = C_{17}$	133.73(17) 110.34(18)	C_{4}	124.0
$C_{22} = C_{23} = C_{18}$	119.34 (10)	$C_{2} = C_{10} = C_{11}$	121.30 (18)
$C_{22} = C_{23} = H_{23}$	120.3	C_{11} C_{10} H_{10}	119.2
$C_{16} = C_{23} = C_{10}$	120.3	C11 = C10 = H10	119.2
C16 N2 C24	106.64(13) 124.81(16)	$C_{3} = C_{2} = C_{0}$	129.71(17)
C10 N2 C24	124.01(10) 126.10(16)	C_{2}	100.11(13)
C19 - N3 - C24	120.19(10) 10(.02(10))	C_{0}	122.18 (13)
C16 - C17 - C18	100.03(10) 124.76(17)	C14—C15—H15	180.0
C16 - C17 - C3	124.76(17)	$C_{-}C_{-}C_{-}C_{-}$	106.70 (15)
C18 - C1 / - C3	128.89 (16)	C5-C6-C2	126.26 (17)
C12 - C7 - C8	118.80 (17)	C/-Cb-C2	126.90 (15)
$C_{12} - C_{7} - C_{6}$	154.27 (16)	12-03-01/	131.66 (16)
C_{∞}	106.86 (15)	$C_2 - C_3 - C_4$	107.35 (15)
C10 - C9 - C8	116.94 (17)	C1/-C3-C4	120.44 (15)
С10—С9—Н9	121.5	C20—C21—C22	121.54 (19)
C8—C9—H9	121.5	C20—C21—H21	119.2
C15—C14—C13	175.8 (2)	C22—C21—H21	119.2
N3—C16—C17	110.56 (17)	C26—C25—C24	179.5 (2)

N3—C16—H16	124.7	O1—C1—N1	125.03 (17)
C17—C16—H16	124.7	O1—C1—C2	127.66 (16)
N2-C13-C14	110.29 (15)	N1—C1—C2	107.30 (14)
N2-C13-H13A	109.6	N3—C24—C25	111.76 (16)
C14—C13—H13A	109.6	N3—C24—H24A	109.3
N2-C13-H13B	109.6	C_{25} C_{24} H_{24A}	109.3
C14— $C13$ — $H13B$	109.6	N3_C24_H24B	109.3
$H_{13} = C_{13} = H_{13}B$	108.1	C_{25} C_{24} H_{24B}	109.3
N2 C8 C0	120.68 (17)	H_{24} C_{24} H_{24} H_{24}	107.0
N2 C8 C7	129.03(17) 107.57(16)	1124A - C24 - 1124D	107.9
$N_2 - C_0 - C_7$	107.37(10) 122.74(17)	025-020-1120	180.0
09-08-07	122.74 (17)		
C21—C20—C19—N3	179.63 (18)	C13 - N2 - C5 - C6	-167.15 (15)
C_{21} C_{20} C_{19} C_{18}	-1.3(3)	02-C4-N1-C1	176.33 (18)
N_{3} $-C_{19}$ $-C_{18}$ $-C_{23}$	-179.89(15)	$C_3 - C_4 - N_1 - C_1$	-1.9(2)
C_{20} C_{19} C_{18} C_{23}	0.8(3)	C8-C9-C10-C11	0.1(3)
$N_{3} = C_{10} = C_{10} = C_{20}$	1.25(10)	C_{12} C_{11} C_{10} C_{9}	-18(3)
$C_{20} = C_{10} = C_{10} = C_{17}$	-178.03(16)	$N_2 = C_5 = C_6 = C_7$	-0.17(10)
$C_{20} = C_{19} = C_{10} = C_{17}$	1/8.03(10)	$N_2 = C_5 = C_6 = C_7$	175.86(16)
C19 - C18 - C23 - C22	0.0(3)	$N_2 = C_3 = C_0 = C_2$	1/5.60(10)
C1/-C10-C23-C22	1/6.43(19) 177.25(19)	$C_{12} - C_{7} - C_{6} - C_{5}$	-1/5.92(18)
$C_{20} = C_{19} = N_3 = C_{16}$	1//.55 (18)	C_{3}	0.94 (19)
C18 - C19 - N3 - C16	-1.9(2)	C12 - C7 - C6 - C2	8.1 (3)
C20—C19—N3—C24	1.8 (3)	C8—C/—C6—C2	-175.05 (16)
C18—C19—N3—C24	-177.39 (17)	C3—C2—C6—C5	-134.3 (2)
C19—C18—C17—C16	-0.2(2)	C1—C2—C6—C5	46.1 (3)
C23—C18—C17—C16	-178.7 (2)	C3—C2—C6—C7	40.9 (3)
C19—C18—C17—C3	173.55 (18)	C1—C2—C6—C7	-138.68 (18)
C23—C18—C17—C3	-5.0 (3)	C6—C2—C3—C17	11.6 (3)
C11—C12—C7—C8	1.3 (2)	C1—C2—C3—C17	-168.76 (19)
C11—C12—C7—C6	177.89 (18)	C6—C2—C3—C4	-177.07 (17)
C19—N3—C16—C17	1.8 (2)	C1—C2—C3—C4	2.5 (2)
C24—N3—C16—C17	177.39 (17)	C16—C17—C3—C2	-157.5 (2)
C18—C17—C16—N3	-1.0 (2)	C18—C17—C3—C2	29.8 (3)
C3—C17—C16—N3	-175.05 (17)	C16—C17—C3—C4	32.1 (3)
C5—N2—C13—C14	84.9 (2)	C18—C17—C3—C4	-140.54 (18)
C8—N2—C13—C14	-79.4 (2)	O2—C4—C3—C2	-178.66 (18)
C5—N2—C8—C9	-179.60(18)	N1—C4—C3—C2	-0.5(2)
$C13 - N^2 - C8 - C9$	-133(3)	02-C4-C3-C17	-6.2(3)
$C_{5}-N_{2}-C_{8}-C_{7}$	1 29 (19)	N1 - C4 - C3 - C17	171.94 (16)
$C13 - N^2 - C^8 - C^7$	167 59 (15)	C19-C20-C21-C22	0.9(3)
C10 - C9 - C8 - N2	-17665(17)	C_{23} C_{22} C_{21} C_{22} C_{21} C_{20}	-0.1(3)
$C_{10} = C_{9} = C_{8} = C_{7}$	2 4 (3)	C_{4} N1 C1 O1	-175.96(18)
$C_{10} = C_{20} = C_{30} = C_{7}$	2.4 (5)	C4 N1 $C1$ $C2$	3 4 (2)
$C_{12} - C_{7} - C_{0} - N_{2}$	-1.36(10)	$C_{1} = C_{1} = C_{2}$ $C_{3} = C_{2} = C_{1} = C_{1}$	175 62 (18)
$C_{12} = C_{7} = C_{0} = C_{13}$	-21(2)	$C_{5} = C_{2} = C_{1} = C_{1}$	-4.7(2)
$C_{12} - C_{12} - C_{0} - C_{9}$	3.1(3) 170 45 (16)	C_{2} C_{2} C_{1} N_{1}	+.7(3)
$C_{10} = C_{10} = C$	1/9.43(10)	$C_{2} = C_{2} = C_{1} = N_{1}$	-3.0(2)
10 - 123 - 122 - 121	-0.3(3)	$C_{1} = C_{2} = C_{1} = C_{1}$	1/3.90 (16)
$U_{1} - U_{12} - U_{11} - U_{10}$	1.1 (3)	U10-N3-U24-U25	32.3 (3)

supporting information

<u>C8—N2—C5—C6</u>	-0.7 (2)	C19—N3-		-132.89 (19)
Hydrogen-bond geometry (Å, °,)			
D—H···A	D	—Н Н…А	1 D…A	D—H···A
N1—H1…O1 ⁱ	0.	88 2.01	2.872 (2)	165

Symmetry code: (i) -x, -y+1, -z+1.