

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzylammonium heptanoate

Mary H. Wood and Stuart M. Clarke*

BP Institute and Department of Chemistry, University of Cambridge, Cambridge, England Correspondence e-mail: stuart@bpi.cam.ac.uk

Received 20 February 2013; accepted 8 April 2013

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.141; data-to-parameter ratio = 19.8.

The title 1:1 stoichiometric salt, $C_7H_{10}N^+ \cdot C_7H_{13}O_2^-$, is formed by proton transfer between heptanoic acid and benzylamine. This combination contrasts to the recently published 2:1 acidamine adduct of cation, anion and neutral acid molecule from the same components [Wood & Clarke (2013). *Acta Cryst*. E69, o346–o347]. There are N-H···O hydrogen bonds of moderate strength in the structure [the most important graphset motifs are $R_4^2(8)$ and $R_4^4(12)$], as well as weak C-H···O interactions.

Related literature

For spectroscopic studies of acid–amine complexes, see: Kohler *et al.* (1981); Karlsson *et al.* (2000); Paivarinta *et al.* (2000); Smith *et al.* (2001, 2002). For recent diffraction studies of acid–amine complexes, see: Jefferson *et al.* (2011); Sun *et al.* (2011); Wood & Clarke (2012*a,b*, 2013). For the categorization of hydrogen bonds, see Gilli & Gilli (2009). For graph-set motifs, see Etter *et al.* (1990).

Experimental

Crystal data

 $\begin{array}{l} C_{7}H_{10}N^{+}\cdot C_{7}H_{13}O_{2}^{-}\\ M_{r}=237.33\\ \text{Triclinic, }P\overline{1}\\ a=5.7379~(2)~\text{\AA}\\ b=7.7338~(3)~\text{\AA}\\ c=17.1670~(7)~\text{\AA}\\ \alpha=97.887~(2)^{\circ}\\ \beta=92.864~(2)^{\circ} \end{array}$

 $\gamma = 107.340 \ (2)^{\circ}$ $V = 716.96 \ (5)^{\circ} Å^{3}$ Z = 2Mo K α radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 180 K $0.46 \times 0.07 \times 0.05 \text{ mm}$

organic compounds

8415 measured reflections

 $R_{\rm int} = 0.043$

refinement

 $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

3253 independent reflections

2308 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.874, T_{max} = 0.999$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.141$ S = 1.03 3253 reflections 164 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···O2	0.99 (2)	1.80 (2)	2.7802 (17)	168.7 (19)
$N1 - H1B \cdot \cdot \cdot O1^{i}$	0.98(2)	1.73 (2)	2.6993 (17)	169 (2)
$N1 - H1C \cdot \cdot \cdot O2^{ii}$	1.00(2)	1.87 (2)	2.8590 (18)	167 (2)
$C1 - H1E \cdots O1^{iii}$	0.99	2.40	3.280 (2)	148
$C7 - H7 \cdot \cdot \cdot O2$	0.95	2.52	3.3528 (19)	146

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the Department of Chemistry, the BP Institute and the Oppenheimer Trust for financial and technical assistance, and Dr J. E. Davies and Dr A. D. Bond for assistance in collecting and analysing the X-ray data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2281).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Gilli, G. & Gilli, P. (2009). *The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory*. International Union of Crystallography. Oxford Science Publications. p. 61. New York, Oxford: Oxford University Press, Inc.
- Jefferson, A. E., Sun, C., Bond, A. D. & Clarke, S. M. (2011). Acta Cryst. E67, 0655.
- Karlsson, S., Backlund, S. & Friman, R. (2000). Colloid Polym. Sci. 278, 8-14.
- Kohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. & Salamon, T. (1981). J. Phys. Chem. 85, 2520–2524.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Paivarinta, J., Karlsson, S., Hotokka, M. & Poso, A. (2000). Chem. Phys. Lett. 327, 420–424.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356.

Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001). Aust. J. Chem. 54, 165–170. Sun, S., Bojdys, M. J., Clarke, S. M., Harper, L. D., Castro, M. A. & Medina, S. (2011). Langmuir, 27, 3626–3637.

Wood, M. H. & Clarke, S. M. (2012a). Acta Cryst. E68, 03004.

Wood, M. H. & Clarke, S. M. (2012b). Acta Cryst. E68, 03335.

Wood, M. H. & Clarke, S. M. (2013). Acta Cryst. E69, 0346-0347.

supporting information

Acta Cryst. (2013). E69, o755-o756 [https://doi.org/10.1107/S1600536813009574]

Benzylammonium heptanoate

Mary H. Wood and Stuart M. Clarke

S1. Comment

There exist in the literature a number of examples of complexes formed between alkyl amines and carboxylic acids. These have been identified by a number of experimental methods, such as NMR and IR spectroscopy (*e. g.* Karlsson *et al.*, 2000; Paivarinta *et al.* (2000); Smith *et al.* (2001, 2002)). Unfortunately, the atomic details of the materials and hence the nature of the bonding that can be obtained from single-crystal diffraction has only been determined in a few cases. This is partly due to the challenges in growing crystals large enough to be suitable for single-crystal diffraction. Some crystals of sufficient size have been grown (*e. g.* Jefferson *et al.* (2011); Wood & Clarke, 2012*a*, 2012*b*). Of the stoichiometic combinations reported to date, the majority have been 1:1 complexes, though some 2:1 and even 3:1 examples have been reported by calorimetry and NMR spectroscopy, generally when the environment is acid-rich (*e. g.* Kohler *et al.*, 1981; Sun *et al.*, 2011), and very recently using single-crystal diffraction (Wood & Clarke, 2013).

Here we report growth of a suitable crystal for single-crystal X-ray diffraction of a 1:1 complex formed between heptanoic acid and benzylamine (Figs. 1 and 2). This work follows a previous publication (Wood & Clarke, 2013) in which an acid-rich 2:1 complex formed between these two species is described. In the previous work, one acid molecule donates its proton to the amine group and one acid group retains its proton. The hydrogen bonding extends across both the ions and the neutral acid molecule.

As described below, the sample of the present study was grown by vapour phase condensation. Each preparation resulted in a batch of several crystals. The crystal used in this present study was taken from a different region of the same batch of samples as for the 2:1 combination (Wood & Clarke, 2013). We attribute the combination of compositions to the concentration gradients across the vapour streams in the preparation.

In the crystal structure of the 1:1 complex (Figs. 1 and 2), each acid anion is involved in N-H···O hydrogen bonds of moderate strength (Gilli & Gilli, 2009) with three surrounding amine molecules (Table 1; Fig. 2), and *vice versa* each benzylammonium group donates its hydrogen to three different heptanoate molecules. The most important graph set motifs are $R^2_4(8)$ (Etter *et al.*, 1990) - see Fig.3. (In this motif the donated atoms are H1a and H1c and the acceptors are the O2 atoms.) The other important motif is $R^4_4(12)$ with donated hydrogens H1b and H1c and accepting oxygens O1 and O2 (Fig. 3.). Moreover, there are also weak C-H···O interactions present in the structure (Table 1).

S2. Experimental

Benzylamine and heptanoic acid (purities 99.7% and 99.8% respectively, determined by titration and gas chromatography) were purchased from Sigma Aldrich and used without further purification. A small volume of amine (approximately 1 ml) was placed into a small vial that was itself placed within a larger vial containing a similar volume of the acid, and left in an inert atmosphere. Extensive crystal growth was observed after a few weeks, particularly on a polypropylene surface included in the vial to encourage nucleation.

S3. Refinement

All the hydrogens were discernible in the difference electron density map. Nevertheless, the hydrogens attached to the C atoms were situated in the idealized positions and refined under these constraints: $C_{aryl}-H_{aryl}=0.95$, $C_{methyl}-H_{methyl}=0.98$, $C_{methylene}-H_{methylene}=0.99$ Å. $U_{eq}(H_{aryl})=1.2U_{iso}(C_{aryl})$, $U_{eq}(H_{methylene})=1.2U_{iso}(C_{methylene})$, $U_{eq}(H_{methyl})=1.5U_{iso}(C_{methyl})$. The positional parameters of the hydrogens attached to N of the benzylammonium cation were freely refined while their $U_{eq}(H_N)=1.5U_{iso}(H_N)$.

Figure 1

Title molecules with atom labels. The displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary size.

Hydrogen bonding around the ammonium cation. The symmetry codes: i: 1+x, y, z; ii: 1-x, -y, -z.

Figure 3

A section from the hydrogen bond pattern in the title structure. The symmetry codes: i: 1+x, y, z; ii: 1-x, -y, -z; iii: -x, -x; iii: -x, *z*; iv: 2-*x*, -*y*, -*z*; v: -1+*x*, *y*, *z*.

Benzylammonium heptanoate

Crystal data

 $C_7H_{10}N^+ \cdot C_7H_{13}O_2^ M_r = 237.33$ Triclinic, P1 Hall symbol: -P 1 a = 5.7379 (2) Å *b* = 7.7338 (3) Å *c* = 17.1670 (7) Å $\alpha = 97.887 \ (2)^{\circ}$ $\beta = 92.864 \ (2)^{\circ}$ $\gamma = 107.340 \ (2)^{\circ}$ $V = 716.96 (5) \text{ Å}^3$

Data collection

Nonius KappaCCD 8415 measured reflections diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.043$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$ ω and φ scans $h = -7 \rightarrow 7$ Absorption correction: multi-scan (SORTAV; Blessing, 1995) $k = -10 \rightarrow 9$ $l = -22 \rightarrow 22$ $T_{\rm min} = 0.874, T_{\rm max} = 0.999$

Z = 2F(000) = 260 $D_{\rm x} = 1.099 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9084 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 180 KNeedle, colourless $0.46 \times 0.07 \times 0.05 \text{ mm}$

3253 independent reflections 2308 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.141$	H atoms treated by a mixture of independent
S = 1.03	and constrained refinement
3253 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.2301P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
82 constraints	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
N1	0.7763 (2)	0.1651 (2)	-0.04200 (8)	0.0352 (3)
H1A	0.630 (4)	0.195 (3)	-0.0239 (11)	0.053*
H1B	0.919 (4)	0.247 (3)	-0.0072 (12)	0.053*
H1C	0.752 (4)	0.033 (3)	-0.0380 (11)	0.053*
C1	0.8129 (3)	0.1865 (2)	-0.12452 (9)	0.0363 (4)
H1D	0.9629	0.1556	-0.1381	0.044*
H1E	0.8402	0.3168	-0.1298	0.044*
C2	0.6010 (3)	0.06878 (19)	-0.18296 (9)	0.0300 (3)
C3	0.6366 (3)	0.0514 (2)	-0.26288 (10)	0.0407 (4)
Н3	0.7927	0.1102	-0.2790	0.049*
C4	0.4468 (4)	-0.0507 (3)	-0.31918 (10)	0.0478 (5)
H4	0.4734	-0.0608	-0.3736	0.057*
C5	0.2196 (3)	-0.1378 (2)	-0.29682 (10)	0.0448 (4)
Н5	0.0898	-0.2079	-0.3356	0.054*
C6	0.1819 (3)	-0.1225 (2)	-0.21798 (10)	0.0379 (4)
H6	0.0259	-0.1830	-0.2022	0.045*
C7	0.3712 (3)	-0.0191 (2)	-0.16130 (9)	0.0327 (4)
H7	0.3430	-0.0084	-0.1070	0.039*
01	0.1339 (2)	0.37947 (17)	0.06866 (7)	0.0499 (4)
O2	0.35258 (19)	0.20902 (14)	0.01788 (6)	0.0345 (3)
C8	0.3307 (3)	0.34204 (19)	0.06561 (8)	0.0274 (3)
C9	0.5477 (3)	0.4606 (2)	0.12239 (8)	0.0297 (3)
H9A	0.5971	0.5868	0.1097	0.036*
H9B	0.6878	0.4119	0.1154	0.036*

supporting information

C10	0.4899 (3)	0.4671 (2)	0.20864 (8)	0.0305 (3)	
H10A	0.3462	0.5117	0.2151	0.037*	
H10B	0.4458	0.3413	0.2217	0.037*	
C11	0.7043 (3)	0.5911 (2)	0.26616 (9)	0.0346 (4)	
H11A	0.8487	0.5476	0.2590	0.042*	
H11B	0.7467	0.7172	0.2535	0.042*	
C12	0.6502 (4)	0.5962 (2)	0.35193 (10)	0.0472 (5)	
H12A	0.6043	0.4697	0.3643	0.057*	
H12B	0.5081	0.6423	0.3594	0.057*	
C13	0.8663 (5)	0.7167 (3)	0.40931 (11)	0.0747 (7)	
H13A	1.0069	0.6686	0.4025	0.090*	
H13B	0.9147	0.8422	0.3958	0.090*	
C14	0.8143 (8)	0.7273 (5)	0.49474 (15)	0.1389 (17)	
H14A	0.9597	0.8085	0.5281	0.208*	
H14B	0.7732	0.6044	0.5094	0.208*	
H14C	0.6761	0.7758	0.5023	0.208*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0267 (7)	0.0391 (8)	0.0357 (7)	0.0102 (6)	-0.0036 (6)	-0.0059 (6)
C1	0.0289 (8)	0.0376 (8)	0.0371 (8)	0.0054 (7)	0.0018 (7)	-0.0003 (7)
C2	0.0310 (8)	0.0260 (7)	0.0320 (8)	0.0096 (6)	0.0007 (6)	-0.0001 (6)
C3	0.0426 (9)	0.0408 (9)	0.0362 (9)	0.0095 (8)	0.0054 (7)	0.0040 (7)
C4	0.0623 (12)	0.0500 (10)	0.0280 (8)	0.0155 (9)	-0.0009 (8)	0.0016 (7)
C5	0.0487 (10)	0.0405 (9)	0.0379 (9)	0.0101 (8)	-0.0157 (8)	-0.0032 (7)
C6	0.0330 (8)	0.0344 (8)	0.0428 (9)	0.0075 (7)	-0.0044 (7)	0.0033 (7)
C7	0.0307 (8)	0.0337 (8)	0.0314 (8)	0.0087 (6)	-0.0008 (6)	0.0014 (6)
01	0.0302 (6)	0.0555 (8)	0.0574 (8)	0.0210 (6)	-0.0126 (5)	-0.0247 (6)
O2	0.0326 (6)	0.0328 (6)	0.0359 (6)	0.0119 (5)	0.0001 (5)	-0.0052(5)
C8	0.0275 (7)	0.0272 (7)	0.0264 (7)	0.0079 (6)	0.0011 (6)	0.0022 (6)
C9	0.0250 (7)	0.0309 (8)	0.0305 (8)	0.0066 (6)	0.0003 (6)	0.0012 (6)
C10	0.0293 (7)	0.0282 (7)	0.0309 (8)	0.0060 (6)	-0.0010 (6)	0.0020 (6)
C11	0.0363 (8)	0.0321 (8)	0.0306 (8)	0.0059 (7)	-0.0044 (7)	0.0015 (6)
C12	0.0616 (11)	0.0419 (10)	0.0307 (9)	0.0070 (9)	-0.0012 (8)	0.0036 (7)
C13	0.0991 (19)	0.0672 (14)	0.0341 (10)	-0.0026 (13)	-0.0178 (11)	0.0004 (10)
C14	0.196 (4)	0.128 (3)	0.0330 (13)	-0.031 (3)	-0.0145 (17)	-0.0003 (15)

Geometric parameters (Å, °)

N1—C1	1.467 (2)	C8—C9	1.5148 (19)	
N1—H1A	0.99 (2)	C9—C10	1.531 (2)	
N1—H1B	0.98 (2)	С9—Н9А	0.9900	
N1—H1C	1.00 (2)	C9—H9B	0.9900	
C1—C2	1.510(2)	C10-C11	1.524 (2)	
C1—H1D	0.9900	C10—H10A	0.9900	
C1—H1E	0.9900	C10—H10B	0.9900	
С2—С7	1.386 (2)	C11—C12	1.518 (2)	

supporting information

C2—C3	1.391 (2)	C11—H11A	0.9900
C3—C4	1.384 (2)	C11—H11B	0.9900
С3—Н3	0.9500	C12—C13	1.521 (3)
C4—C5	1.378 (3)	C12—H12A	0.9900
C4—H4	0.9500	C12—H12B	0.9900
C5—C6	1.376 (2)	C13—C14	1.507 (3)
С5—Н5	0.9500	C13—H13A	0.9900
C6—C7	1 389 (2)	C13—H13B	0.9900
С6—Н6	0.9500	C14—H14A	0.9800
С7—Н7	0.9500	C14—H14B	0.9800
01-C8	1 2486 (17)	C14—H14C	0.9800
$0^{2}-0^{8}$	1.2460 (17)		0.9000
02 00	1.2000 (17)		
C1—N1—H1A	113.5 (11)	С10—С9—Н9А	109.1
C1—N1—H1B	109.7 (11)	С8—С9—Н9В	109.1
H1A—N1—H1B	107.3 (15)	С10—С9—Н9В	109.1
C1—N1—H1C	107.3 (11)	H9A—C9—H9B	107.9
H1A—N1—H1C	107.5 (16)	C11—C10—C9	112.75 (12)
H1B—N1—H1C	111.6 (16)	C11—C10—H10A	109.0
N1-C1-C2	114.05 (13)	C9—C10—H10A	109.0
N1—C1—H1D	108.7	C11—C10—H10B	109.0
C2—C1—H1D	108.7	C9—C10—H10B	109.0
N1—C1—H1E	108.7	H10A—C10—H10B	107.8
C2-C1-H1E	108.7	C12—C11—C10	113.17 (14)
H1D—C1—H1E	107.6	C12—C11—H11A	108.9
C7 - C2 - C3	118 30 (14)	C10—C11—H11A	108.9
C7 - C2 - C1	123 43 (13)	C12—C11—H11B	108.9
$C_{3} - C_{2} - C_{1}$	118 25 (14)	C10-C11-H11B	108.9
$C_{4} - C_{3} - C_{2}$	120.71 (16)	H11A_C11_H11B	107.8
C4—C3—H3	119.6	C11-C12-C13	113.06 (16)
C2-C3-H3	119.6	$C_{11} - C_{12} - H_{12A}$	109.0
$C_{2} = C_{3} = M_{3}$	120.39(16)	C13 - C12 - H12A	109.0
C_{5} C_{4} H_{4}	110.8	C11-C12-H12R	109.0
$C_3 = C_4 = H_4$	119.8	C13 C12 H12B	109.0
$C_{5} - C_{4} - \Pi_{4}$	119.57 (15)	$H_{12}A - C_{12} - H_{12}B$	107.8
C6 C5 H5	119.37 (13)	$C_{14} C_{13} C_{12}$	107.0 113.0(2)
C_{0}	120.2	C14 - C13 - C12 C14 - C13 - H13A	113.9 (2)
$C_4 - C_5 - C_6 - C_7$	120.2 120.24(16)	C12 $C13$ $H13A$	108.8
$C_{5} = C_{6} = C_{7}$	120.24 (10)	C12— $C13$ — $H13R$	108.8
C_{3}	119.9	C12 $C12$ $H12P$	108.8
C^{-}	119.9	$\begin{array}{c} C12 \\ \hline \\ C12 \\ \hline \\ C12 \\ \hline \\ C12 \\ \hline \\ D12 \\ D2 \\ \hline \\ D12 $	108.8
$C_2 = C_7 = U_7$	120.78 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7
$C_2 - C_1 - \Pi_1$	119.0	C13 - C14 - H14A	109.5
$C_0 - C_1 - \pi_1$	119.0	U13 - U14 - H14B	109.5
01 - 00 - 02	122.39 (13)	$\Pi I4A - UI4 - \Pi I4B$	109.5
01 - 03 - 09	11/.80 (12)	U13 - U14 - H14U	109.5
02 - 03 - 09	119.80 (12)	H14A - U14 - H14U	109.5
	112.28 (12)	H14B—C14—H14C	109.5
US-US-HA	109.1		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A…O2	0.99 (2)	1.80 (2)	2.7802 (17)	168.7 (19)
N1—H1 <i>B</i> ···O1 ⁱ	0.98 (2)	1.73 (2)	2.6993 (17)	169 (2)
N1—H1C···O2 ⁱⁱ	1.00 (2)	1.87 (2)	2.8590 (18)	167 (2)
C1—H1 <i>E</i> ···O1 ⁱⁱⁱ	0.99	2.40	3.280 (2)	148
С7—Н7…О2	0.95	2.52	3.3528 (19)	146

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*, -*z*; (iii) -*x*+1, -*y*+1, -*z*.