

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ethylenediammonium chloride thiocyanate

# Sahel Karoui,<sup>a</sup> Slaheddine Kamoun<sup>a</sup>\* and François Michaud<sup>b</sup>

<sup>a</sup>Laboratoire de Génie des Matériaux et Environnement, École Nationale d'Ingénieurs de Sfax, BP 1173, Sfax, Tunisia, and <sup>b</sup>Service commun d'analyse par diffraction des rayons X, Université de Brest, 6, Avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France

Correspondence e-mail: slah.kamoun@gmail.com

Received 23 March 2013; accepted 1 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.072; data-to-parameter ratio = 29.6.

In the ethylenediammonium dication of the title salt,  $C_2H_{10}N_2^{2+} \cdot CI^- \cdot SCN^-$ , the N-C-C-N torsion angle is 72.09 (12)°. In the crystal, an extensive three-dimensional hydrogen-bonding network, formed by N-H···Cl and N-H···N hydrogen bonds, holds all the ions together.

#### **Related literature**

For the crystal structures of related compounds, see: Kamoun *et al.* (1989); Chen (2009). For details of the synthesis of thiocyanic acid, see: Bartlett *et al.* (1969). For protonic conductivity and dielectric relaxation in ethylendiammonium salts, see: Karoui *et al.* (2013).



6396 measured reflections

 $R_{\rm int} = 0.018$ 

2189 independent reflections

1947 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Agilent Xcalibur (Sapphire2) diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Agilent, 2012)  $T_{\min} = 0.737, T_{\max} = 0.887$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.025$ | 74 parameters                                             |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.072$               | H-atom parameters constrained                             |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ |
| 2189 reflections                | $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$  |

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $N2-H2A\cdots Cl1^{i}$                | 0.89 | 2.36                    | 3.1982 (9)              | 158                                  |
| $N2 - H2B \cdot \cdot \cdot Cl1^{ii}$ | 0.89 | 2.35                    | 3.2246 (10)             | 169                                  |
| N2−H2C···Cl1 <sup>iii</sup>           | 0.89 | 2.64                    | 3.3237 (10)             | 134                                  |
| N3−H3C···Cl1 <sup>iii</sup>           | 0.89 | 2.46                    | 3.2953 (11)             | 158                                  |
| $N3-H3A\cdots N1^{iv}$                | 0.89 | 2.03                    | 2.8533 (14)             | 153                                  |
| $N2 - H2C \cdot \cdot \cdot Cl1$      | 0.89 | 2.64                    | 3.3543 (10)             | 138                                  |
| $N3-H3B\cdots N1$                     | 0.89 | 2.27                    | 3.1106 (17)             | 157                                  |
|                                       |      |                         |                         |                                      |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1; (iv) -x, -y + 1, -z.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg *et al.*, 1999) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *publCIF* (Westrip, 2010).

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5396).

#### References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Bartlett, H. E., Jurriaanse, A. & De Haas, K. (1969). Can. J. Chem. 47, 16, 2981–2986.
- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Chen, L.-Z. (2009). Acta Cryst. E65, 02625.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kamoun, S., Jouini, A., Kamoun, M. & Daoud, A. (1989). Acta Cryst. C45, 481–482.
- Karoui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60-68.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2013). E69, o669 [https://doi.org/10.1107/S1600536813008830]

# Ethylenediammonium chloride thiocyanate

## Sahel Karoui, Slaheddine Kamoun and François Michaud

### S1. Comment

As an extension of our earlier study on protonic conductivity and dielectric relaxation in ethylenediammonium salts (Karoui *et al.*, 2013), we report herein the molecular structure of the title compound, (I), which is a new organic halide-pseudohalide compound.

In (I) (Fig. 1), the asymmetric unit consists of one diprotonated ethylenediammonium cation, one Cl<sup>-</sup> and one SCN<sup>-</sup> anions. In this atomic arrangement, the organic group has no internal symmetry. In fact, the mean length of the C—N bonds: 1.4816 (14) Å is lower than that of the C—C bonds:1.5054 (15) Å. The  $[C_2H_{10}N_2]^{2+}$  dication shows an eclipsed conformation with a N–C–C–N torsion angle of 72.09 (12)°. The main geometrical features of this group are similar to that reported for others ethylenediammonium halides (Chen, 2009) and phosphates (Kamoun *et al.*,1989). The thiocyanate ion, present as a monodentate ligand, is almost linear with an angle of 178.48 (11)° and an average C–S and C–N bond lengths of 1.6358 (12) Å and 1.1573 (16) Å, respectively.

In the crystal structure, the ethylenediammonium cations are linked to the chloride and thiocyanate anions by means of five medium N—H…Cl and two weak N—H…N(CS) intermolecular hydrogen bonds (Table 1) to form a threedimensional network (Fig. 2). The N…Cl and N…N(CS) distances range from 3.1982 (9) to 3.3543 (10) Å and 2.8533 (14) Å to 3.1106 (17) Å, respectively. The sum of Van der Waal's radii of N and Cl, and N and O are 3.3 Å and 2.9 Å, respectively.

### **S2.** Experimental

The title compound has been obtained as crystalline solid in the reaction of ethylenediamine with an aqueous acidic mixture of hydrochloric acid and thiocyanic acid (1/1 ratio). Thiocyanic acid was prepared using the published procedure (Bartlett *et al.*, 1969). After a slow solvent evaporation yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over  $P_2O_5$ .

### **S3. Refinement**

The H atoms were positioned geometrically (the C—H and N—H bonds were respectively fixed at 0.96 and 0.89), and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2 U_{eq}(C, N)$ .



### Figure 1

A content of asymmetric unit of (I) showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms represented by small spheres of arbitrary radii.



#### Figure 2

A portion of the crystal packing viewed approximately down the *b* axis and showing hydrogen bonds as dashed lines.

Ethylendiammonium chloride thiocyanate

Crystal data

 $C_{2}H_{10}N_{2}^{2+}.CI^{-}.SCN^{-}$   $M_{r} = 155.65$ Triclinic, *P*I Hall symbol: -P 1 a = 6.2726 (2) Å b = 6.3462 (2) Å c = 9.1745 (3) Å  $a = 92.436 (3)^{\circ}$   $\beta = 92.193 (3)^{\circ}$   $\gamma = 94.341 (3)^{\circ}$   $V = 363.52 (2) \text{ Å}^{3}$  Z = 2F(000) = 164

#### Data collection

Agilent Xcalibur (Sapphire2) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.3622 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*CrysAlis RED*; Agilent, 2012)  $T_{\min} = 0.737, T_{\max} = 0.887$  Cell parameters from 3445 reflections  $D_x = 1.422 \text{ Mg m}^{-3}$   $D_m = 1.398 \text{ Mg m}^{-3}$   $D_m$  measured by flotation Melting point: 443 K Mo K $\alpha$  radiation,  $\lambda = 0.7107 \text{ Å}$ Cell parameters from 5534 reflections  $\theta = 3.2-44.7^{\circ}$   $\mu = 0.72 \text{ mm}^{-1}$  T = 293 KParallelipipedic, light yellow  $0.50 \times 0.42 \times 0.17 \text{ mm}$ 

6396 measured reflections 2189 independent reflections 1947 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.018$  $\theta_{max} = 30.5^{\circ}, \theta_{min} = 3.2^{\circ}$  $h = -5 \rightarrow 8$  $k = -9 \rightarrow 9$  $l = -13 \rightarrow 13$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier               |
|-------------------------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.025$                 | Hydrogen site location: inferred from                          |
| $wR(F^2) = 0.072$                               | neighbouring sites                                             |
| S = 1.08                                        | H-atom parameters constrained                                  |
| 2189 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 0.0716P]$              |
| 74 parameters                                   | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                         |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                            |
| 0 constraints                                   | $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$      |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$       |
| direct methods                                  | Extinction correction: SHELXL97 (Sheldrick,                    |
|                                                 | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
|                                                 | Extinction coefficient: 0.294 (15)                             |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|            | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|---------------|--------------|--------------|-----------------------------|--|
| Cl1        | 0.19093 (4)   | 0.72470 (4)  | 0.47679 (3)  | 0.02934 (10)                |  |
| <b>S</b> 1 | 0.68519 (5)   | 0.78130 (5)  | 0.20850 (3)  | 0.03649 (10)                |  |
| C1         | 0.45634 (19)  | 0.73609 (17) | 0.11677 (11) | 0.0294 (2)                  |  |
| N1         | 0.2924 (2)    | 0.7024 (2)   | 0.05464 (13) | 0.0458 (3)                  |  |
| N2         | 0.31015 (15)  | 0.22026 (15) | 0.43178 (10) | 0.0305 (2)                  |  |
| H2A        | 0.4348        | 0.2481       | 0.4811       | 0.046*                      |  |
| H2B        | 0.2590        | 0.0888       | 0.4473       | 0.046*                      |  |
| H2C        | 0.2178        | 0.3109       | 0.4619       | 0.046*                      |  |
| C2         | 0.34163 (16)  | 0.24184 (17) | 0.27393 (12) | 0.0288 (2)                  |  |
| H2D        | 0.4449        | 0.1449       | 0.2424       | 0.035*                      |  |
| H2E        | 0.4007        | 0.3844       | 0.2582       | 0.035*                      |  |
| C3         | 0.13799 (19)  | 0.19753 (19) | 0.18191 (12) | 0.0322 (2)                  |  |
| H3E        | 0.1733        | 0.1811       | 0.0803       | 0.039*                      |  |
| H3D        | 0.0665        | 0.0651       | 0.2095       | 0.039*                      |  |
| N3         | -0.01089 (16) | 0.36715 (17) | 0.19736 (11) | 0.0345 (2)                  |  |
| H3A        | -0.1283       | 0.3334       | 0.1412       | 0.052*                      |  |
| H3B        | 0.0525        | 0.4885       | 0.1701       | 0.052*                      |  |
| H3C        | -0.0462       | 0.3812       | 0.2901       | 0.052*                      |  |

#### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | <i>U</i> <sup>23</sup> |
|-----|--------------|--------------|-----------------|--------------|-------------|------------------------|
| C11 | 0.02482 (13) | 0.02877 (14) | 0.03390 (15)    | -0.00093 (8) | 0.00252 (9) | -0.00075 (9)           |

# supporting information

| S1 | 0.02975 (16) | 0.04342 (18) | 0.03524 (17) | -0.00037 (11) | -0.00273 (11) | -0.00101 (12) |
|----|--------------|--------------|--------------|---------------|---------------|---------------|
| C1 | 0.0356 (5)   | 0.0265 (5)   | 0.0262 (5)   | 0.0033 (4)    | -0.0003 (4)   | 0.0020 (3)    |
| N1 | 0.0446 (6)   | 0.0482 (6)   | 0.0434 (6)   | 0.0040 (5)    | -0.0144 (5)   | 0.0008 (5)    |
| N2 | 0.0269 (4)   | 0.0339 (5)   | 0.0312 (4)   | 0.0058 (3)    | -0.0035 (3)   | 0.0048 (3)    |
| C2 | 0.0229 (4)   | 0.0312 (5)   | 0.0329 (5)   | 0.0040 (4)    | 0.0042 (4)    | 0.0030 (4)    |
| C3 | 0.0337 (5)   | 0.0347 (5)   | 0.0275 (5)   | 0.0027 (4)    | -0.0009 (4)   | -0.0066 (4)   |
| N3 | 0.0291 (4)   | 0.0447 (5)   | 0.0296 (5)   | 0.0075 (4)    | -0.0064 (3)   | 0.0002 (4)    |

Geometric parameters (Å, °)

| S1—C1        | 1.6358 (12) | C2—H2E                | 0.9700      |
|--------------|-------------|-----------------------|-------------|
| C1—N1        | 1.1573 (16) | C3—N3                 | 1.4834 (15) |
| N2—C2        | 1.4798 (14) | С3—Н3Е                | 0.9700      |
| N2—H2A       | 0.8900      | C3—H3D                | 0.9700      |
| N2—H2B       | 0.8900      | N3—H3A                | 0.8900      |
| N2—H2C       | 0.8900      | N3—H3B                | 0.8900      |
| C2—C3        | 1.5054 (15) | N3—H3C                | 0.8900      |
| C2—H2D       | 0.9700      |                       |             |
| N1 C1 C1     | 179 49 (11) | $N_{2} C_{2} C_{2}$   | 112.09 (0)  |
| NI = CI = SI | 1/0.40 (11) | $N_2 = C_2 = U_2 E_1$ | 112.98 (9)  |
| C2—N2—H2A    | 109.5       | N3—C3—H3E             | 109.0       |
| C2—N2—H2B    | 109.5       | С2—С3—Н3Е             | 109.0       |
| H2A—N2—H2B   | 109.5       | N3—C3—H3D             | 109.0       |
| C2—N2—H2C    | 109.5       | C2—C3—H3D             | 109.0       |
| H2A—N2—H2C   | 109.5       | H3E—C3—H3D            | 107.8       |
| H2B—N2—H2C   | 109.5       | C3—N3—H3A             | 109.5       |
| N2—C2—C3     | 113.06 (9)  | C3—N3—H3B             | 109.5       |
| N2—C2—H2D    | 109.0       | H3A—N3—H3B            | 109.5       |
| C3—C2—H2D    | 109.0       | C3—N3—H3C             | 109.5       |
| N2—C2—H2E    | 109.0       | H3A—N3—H3C            | 109.5       |
| C3—C2—H2E    | 109.0       | H3B—N3—H3C            | 109.5       |
| H2D—C2—H2E   | 107.8       |                       |             |
| N2—C2—C3—N3  | 72.09 (12)  |                       |             |

# Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | H···A | D···A       | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|------|-------|-------------|-------------------------|
| N2—H2A····Cl1 <sup>i</sup>           | 0.89 | 2.36  | 3.1982 (9)  | 158                     |
| N2—H2 <i>B</i> ···Cl1 <sup>ii</sup>  | 0.89 | 2.35  | 3.2246 (10) | 169                     |
| N2—H2 <i>C</i> ···Cl1 <sup>iii</sup> | 0.89 | 2.64  | 3.3237 (10) | 134                     |
| N3—H3 <i>C</i> ···Cl1 <sup>iii</sup> | 0.89 | 2.46  | 3.2953 (11) | 158                     |
| N3—H3A····N1 <sup>iv</sup>           | 0.89 | 2.03  | 2.8533 (14) | 153                     |
| N2—H2 <i>C</i> ···Cl1                | 0.89 | 2.64  | 3.3543 (10) | 138                     |
| N3—H3 <i>B</i> ···N1                 | 0.89 | 2.27  | 3.1106 (17) | 157                     |
|                                      |      |       | · · · ·     |                         |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z.