Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one

Dong-mei Ren

Security and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China Correspondence e-mail: nanoren@126.com

Received 21 March 2013; accepted 11 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.063; wR factor = 0.152; data-to-parameter ratio = 15.5.

In the title compound, $C_{14}H_{19}NO$, the dihedral angle between the benzene ring and the plane of the amide group is $80.6 (1)^{\circ}$. In the crystal, molecules are connected via weak $C-H \cdots O$ hydrogen bonds, forming chains along the *c*-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.

Related literature

For background to the applications of the title compound as an intermediate in organic synthesis, an important organic synthesis intermediate, see: Richard et al. (2001). For the synthetic procedure, see: Richard et al. (1995). For bondlength data, see: Allen et al. (1987).

a = 8.2330 (16) Å

b = 12.534 (3) Å

c = 12.192 (2) Å

Experimental

Crystal data C₁₄H₁₉NO $M_r = 217.30$ Monoclinic, $P2_1/c$

Z = 4Mo $K\alpha$ radiation

Data collection Enrof Nonius CAD 4

 $\beta = 97.96 \ (3)^{\circ}$

V = 1246.0 (4) Å³

Elital–Nollius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.979, \ T_{\max} = 0.993$
2283 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	147 parameters
$wR(F^2) = 0.152$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
2283 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdotsO1^{i}$	0.97	2.58	3.510 (4)	160
Symmetry code: (i) x.	$-v + \frac{1}{2}, z + \frac{1}{2}$			

(i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This study was financially supported by Scientific Research Project of Beijing Education Commission and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Beijing University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2384).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Krauss, R. C., Strom, R. M., Scortichini, C. L., Kruper, W. J. & Wolf, R. A. (1995). WO Patent No. 9500480.
- Krauss, R. C., Strom, R. M., Scortichini, C. L., Kruper, W. J. & Wolf, R. A. (2001). US Patent No. 6242606.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $\mu = 0.07 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

2283 independent reflections

1316 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

T = 293 K

 $R_{\rm int} = 0.000$

reflections intensity decay: 1%

supporting information

Acta Cryst. (2013). E69, o773 [https://doi.org/10.1107/S1600536813009975]

2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one

Dong-mei Ren

S1. Comment

The title compound is an important intermediate in the synthesis of [(piperidinoalkanoyl)phenyl]propionates, which can be utilized to synthesize antihistaminics. And we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. There is a intermolecular contact C—H···O in the title compound, forming molecular chains along c axis direction (Table 1, Fig. 2). The dihedral angles between the benzene ring and the plane of amide is 80.6 (1)°.

S2. Experimental

The title compound, (I) was prepared by a method reported in literature (Richard *et al.*, 1995). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

S3. Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H's, respectively. The $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram of (I) showing C-H…O bonds with dashed lines.

2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one

Crystal data

C₁₄H₁₉NO $M_r = 217.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2330 (16) Å b = 12.534 (3) Å c = 12.192 (2) Å $\beta = 97.96$ (3)° V = 1246.0 (4) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) F(000) = 472 $D_x = 1.158 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $T_{\min} = 0.979, T_{\max} = 0.993$ 2283 measured reflections 2283 independent reflections 1316 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{\max} = 25.4^{\circ}, \theta_{\min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$

$k = 0 \rightarrow 15$ $l = 0 \rightarrow 14$	3 standard reflections every 200 reflections intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.152$	neighbouring sites
S = 1.00	H-atom parameters constrained
2283 reflections	$w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 0.270P]$
147 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1927 (2)	0.24083 (17)	0.16560 (15)	0.0730 (7)
N1	0.2387 (2)	0.34793 (18)	0.31203 (16)	0.0491 (6)
C1	0.2993 (4)	0.3817 (2)	0.4267 (2)	0.0633 (8)
H1A	0.2614	0.3334	0.4799	0.076*
H1B	0.4182	0.3838	0.4391	0.076*
C2	0.2319 (4)	0.4866 (3)	0.4358 (3)	0.0842 (10)
H2A	0.1506	0.4843	0.4863	0.101*
H2B	0.3185	0.5349	0.4665	0.101*
C3	0.1581 (4)	0.5259 (3)	0.3317 (3)	0.0819 (10)
H3A	0.2195	0.5864	0.3098	0.098*
H3B	0.0468	0.5490	0.3363	0.098*
C4	0.1570 (3)	0.4378 (2)	0.2480 (2)	0.0620 (8)
H4A	0.0457	0.4192	0.2170	0.074*
H4B	0.2171	0.4585	0.1883	0.074*
C5	0.2512 (3)	0.2526 (2)	0.2639 (2)	0.0457 (6)
C6	0.3330 (3)	0.1583 (2)	0.33080 (19)	0.0429 (6)
C7	0.2188 (3)	0.1215 (2)	0.4117 (2)	0.0551 (7)
H7A	0.2114	0.1762	0.4660	0.083*
H7B	0.2613	0.0574	0.4480	0.083*
H7C	0.1118	0.1078	0.3720	0.083*
C8	0.3515 (3)	0.0672 (2)	0.2504 (2)	0.0614 (8)
H8A	0.4202	0.0898	0.1972	0.092*

H8B	0.2455	0.0477	0.2127	0.092*	
H8C	0.4004	0.0069	0.2907	0.092*	
C9	0.5076 (3)	0.1884 (2)	0.38690 (19)	0.0414 (6)	
C10	0.5641 (3)	0.1624 (2)	0.4966 (2)	0.0530 (7)	
H10A	0.4940	0.1289	0.5394	0.064*	
C11	0.7227 (3)	0.1857 (2)	0.5426 (2)	0.0624 (8)	
H11A	0.7586	0.1675	0.6159	0.075*	
C12	0.8267 (3)	0.2348 (3)	0.4818 (3)	0.0654 (9)	
H12A	0.9334	0.2507	0.5132	0.078*	
C13	0.7727 (3)	0.2613 (3)	0.3722 (2)	0.0658 (9)	
H13A	0.8433	0.2947	0.3298	0.079*	
C14	0.6134 (3)	0.2378 (2)	0.3264 (2)	0.0561 (8)	
H14A	0.5778	0.2559	0.2530	0.067*	

Atomic displacement parameters $(Å^2)$

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0851 (15)	0.0855 (15)	0.0406 (11)	0.0132 (12)	-0.0194 (10)	-0.0072 (11)
N1	0.0442 (13)	0.0590 (15)	0.0403 (12)	0.0075 (11)	-0.0073 (9)	0.0037 (11)
C1	0.079 (2)	0.0611 (19)	0.0433 (16)	0.0133 (17)	-0.0134 (14)	-0.0069 (14)
C2	0.104 (3)	0.076 (2)	0.070 (2)	0.027 (2)	0.0001 (19)	-0.0062 (18)
C3	0.095 (3)	0.062 (2)	0.082 (2)	0.0266 (19)	-0.0103 (19)	-0.0001 (19)
C4	0.0570 (18)	0.070 (2)	0.0553 (17)	0.0153 (15)	-0.0052 (14)	0.0161 (16)
C5	0.0368 (14)	0.0610 (18)	0.0364 (14)	0.0011 (13)	-0.0049 (11)	-0.0054 (14)
C6	0.0370 (14)	0.0497 (16)	0.0403 (14)	0.0045 (12)	-0.0009 (11)	-0.0053 (12)
C7	0.0466 (15)	0.0592 (18)	0.0589 (17)	-0.0028 (14)	0.0051 (13)	-0.0004 (14)
C8	0.0596 (18)	0.0657 (19)	0.0565 (17)	0.0064 (15)	-0.0005 (14)	-0.0222 (15)
C9	0.0386 (14)	0.0446 (15)	0.0386 (13)	0.0083 (12)	-0.0028 (11)	-0.0041 (12)
C10	0.0465 (15)	0.0663 (19)	0.0438 (15)	0.0067 (14)	-0.0016 (12)	0.0058 (14)
C11	0.0492 (17)	0.080(2)	0.0519 (17)	0.0116 (16)	-0.0151 (14)	-0.0049 (16)
C12	0.0390 (16)	0.082 (2)	0.071 (2)	0.0110 (15)	-0.0092 (15)	-0.0231 (18)
C13	0.0397 (16)	0.087 (2)	0.071 (2)	-0.0079 (15)	0.0058 (14)	-0.0049 (18)
C14	0.0466 (16)	0.075 (2)	0.0453 (15)	-0.0055 (14)	0.0011 (12)	0.0074 (15)

Geometric parameters (Å, °)

O1—C5	1.237 (3)	С6—С9	1.550 (3)
N1C5	1.342 (3)	С7—Н7А	0.9600
N1-C4	1.479 (3)	С7—Н7В	0.9600
N1-C1	1.480 (3)	С7—Н7С	0.9600
C1—C2	1.437 (4)	C8—H8A	0.9600
C1—H1A	0.9700	C8—H8B	0.9600
C1—H1B	0.9700	C8—H8C	0.9600
C2—C3	1.418 (4)	C9—C14	1.366 (3)
C2—H2A	0.9700	C9—C10	1.392 (3)
C2—H2B	0.9700	C10—C11	1.380 (4)
C3—C4	1.502 (4)	C10—H10A	0.9300
С3—НЗА	0.9700	C11—C12	1.356 (4)

С3—Н3В	0.9700	C11—H11A	0.9300
C4—H4A	0.9700	C12—C13	1.388 (4)
C4—H4B	0.9700	C12—H12A	0.9300
C5—C6	1.537 (3)	C13—C14	1.384 (3)
С6—С7	1.526 (3)	С13—Н13А	0.9300
C6—C8	1.526 (3)	C14—H14A	0.9300
C5—N1—C4	120.3 (2)	С7—С6—С9	113.9 (2)
C5—N1—C1	129.2 (2)	C8—C6—C9	107.25 (19)
C4—N1—C1	110.5 (2)	C5—C6—C9	111.0 (2)
C2—C1—N1	104.6 (2)	С6—С7—Н7А	109.5
C2—C1—H1A	110.8	С6—С7—Н7В	109.5
N1—C1—H1A	110.8	H7A—C7—H7B	109.5
C2—C1—H1B	110.8	С6—С7—Н7С	109.5
N1—C1—H1B	110.8	H7A—C7—H7C	109.5
H1A—C1—H1B	108.9	H7B—C7—H7C	109.5
C3—C2—C1	111.7 (3)	C6—C8—H8A	109.5
C3—C2—H2A	109.3	C6—C8—H8B	109.5
C1—C2—H2A	109.3	H8A—C8—H8B	109.5
C3—C2—H2B	109.3	C6—C8—H8C	109.5
C1—C2—H2B	109.3	H8A—C8—H8C	109.5
H2A—C2—H2B	107.9	H8B—C8—H8C	109.5
C2—C3—C4	108.4 (3)	C14—C9—C10	118.1 (2)
С2—С3—НЗА	110.0	C14—C9—C6	119.6 (2)
С4—С3—НЗА	110.0	С10—С9—С6	122.2 (2)
С2—С3—Н3В	110.0	C11—C10—C9	120.9 (3)
C4—C3—H3B	110.0	C11—C10—H10A	119.6
НЗА—СЗ—НЗВ	108.4	C9—C10—H10A	119.6
N1—C4—C3	104.0 (2)	C12—C11—C10	120.5 (3)
N1—C4—H4A	111.0	C12—C11—H11A	119.8
C3—C4—H4A	111.0	C10—C11—H11A	119.8
N1—C4—H4B	111.0	C11—C12—C13	119.5 (3)
C3—C4—H4B	111.0	C11—C12—H12A	120.2
H4A—C4—H4B	109.0	C13—C12—H12A	120.2
O1—C5—N1	119.1 (2)	C14—C13—C12	119.8 (3)
O1—C5—C6	120.4 (2)	C14—C13—H13A	120.1
N1—C5—C6	120.4 (2)	C12—C13—H13A	120.1
C7—C6—C8	108.3 (2)	C9—C14—C13	121.2 (3)
C7—C6—C5	108.2 (2)	C9—C14—H14A	119.4
C8—C6—C5	108.0 (2)	C13—C14—H14A	119.4
C5—N1—C1—C2	-172.4 (3)	N1-C5-C6-C9	-54.4 (3)
C4—N1—C1—C2	8.5 (3)	C7—C6—C9—C14	-170.0(2)
N1—C1—C2—C3	-9.5 (4)	C8—C6—C9—C14	70.1 (3)
C1—C2—C3—C4	7.0 (4)	C5—C6—C9—C14	-47.7 (3)
C5—N1—C4—C3	176.3 (2)	C7—C6—C9—C10	13.0 (3)
C1—N1—C4—C3	-4.6 (3)	C8—C6—C9—C10	-106.8 (3)
C2—C3—C4—N1	-1.3 (4)	C5—C6—C9—C10	135.4 (2)

supporting information

C4—N1—C5—O1	-0.5 (4)	C14—C9—C10—C11	-0.2 (4)	
C1—N1—C5—O1	-179.4 (3)	C6—C9—C10—C11	176.8 (2)	
C4—N1—C5—C6	-178.8 (2)	C9—C10—C11—C12	0.3 (4)	
C1—N1—C5—C6	2.2 (4)	C10-C11-C12-C13	-0.3 (5)	
O1—C5—C6—C7	-107.0 (3)	C11—C12—C13—C14	0.3 (5)	
N1—C5—C6—C7	71.3 (3)	C10-C9-C14-C13	0.2 (4)	
O1—C5—C6—C8	10.0 (3)	C6—C9—C14—C13	-176.9 (3)	
N1—C5—C6—C8	-171.7 (2)	C12—C13—C14—C9	-0.2 (4)	
O1—C5—C6—C9	127.3 (2)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···O1 ⁱ	0.97	2.58	3.510 (4)	160

Symmetry code: (i) x, -y+1/2, z+1/2.