Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Fluorophenyl)-6-methylamino-5nitro-2-phenyl-4*H*-pyran-3-carbonitrile

R. Vishnupriya,^a J. Suresh,^a S. Sivakumar,^b R. Ranjith Kumar^b and P. L. Nilantha Lakshman^c*

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: plakshmannilantha@ymail.com

Received 28 February 2013; accepted 2 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.118; data-to-parameter ratio = 15.6.

In the title compound, $C_{19}H_{14}FN_3O_3$, the central pyran ring adopts a boat conformation with the O atom and the quaternary C atom diagonally opposite displaced by 0.068 (1) and 0.075 (1) Å, respectively, above the mean plane defined by the other four ring atoms. The co-planar atoms of the pyran ring and the fluorophenyl ring are nearly perpendicular, as evidenced by the dihedral angle of 87.11 (1)°. The amine group forms an intramolecular N– $H \cdots O(nitro)$ hydrogen bond. In the crystal, molecules are linked into parallel chains along [100] by weak N– $H \cdots N$ and C– $H \cdots N(nitro)$ hydrogen bonds, generating C(8) and C(9) graph-set motifs, respectively.

Related literature

For the biological activity of substituted pyran derivatives, see: Lokaj *et al.* (1990); Marco *et al.* (1993). Some 4*H*-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists, see: Suárez *et al.* (2002). For hydrogenbonding graph-set motifs, see: Bernstein *et al.* (1995). For ring conformation analysis, see: Cremer & Pople (1975). The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang *et al.*, 2009). For related structures, see: Nesterov *et al.* (2004); Nesterov & Viltchinskaia (2001). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen *et al.* (1987).

 $\gamma = 109.520 \ (1)^{\circ}$

Z = 2

V = 846.09 (4) Å³

Mo $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.19 \text{ mm}$

16948 measured reflections

3680 independent reflections

2993 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int}=0.026$

Experimental

Crystal data $C_{19}H_{14}FN_3O_3$ $M_r = 351.33$ Triclinic, $P\overline{1}$ a = 9.3898 (3) Å b = 9.9752 (3) Å c = 11.1324 (3) Å $\alpha = 98.765$ (1)°

Data collection

 $\beta = 113.991(1)^{\circ}$

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.967, T_{max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 236 parameters $wR(F^2) = 0.118$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 3680 reflections $\Delta \rho_{min} = -0.22$ e Å $^{-3}$

Table 1

		0	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O2$ $N2-H2\cdots N3^{i}$	0.86 0.86	1.99 2.30	2.6089 (16) 2.9811 (17)	128 136
$C6-H6A\cdots N3^{i}$	0.96	2.60	3.222 (2)	123

Symmetry code: (i) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

JS thanks the UGC for the FIST support. JS and RV thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2475).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3638.Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.
- Marco, J. L., Martín, G., Martín, N., Martínez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). *Tetrahedron*, **49**, 7133–7144.
- Nesterov, V. N. & Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616-618.
- Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, 0334–0337.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). *Tetrahedron*, **58**, 953–960.

supporting information

Acta Cryst. (2013). E69, o687–o688 [https://doi.org/10.1107/S1600536813009008]
4-(4-Fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile
R. Vishnupriya, J. Suresh, S. Sivakumar, R. Ranjith Kumar and P. L. Nilantha Lakshman

S1. Comment

The title compound and some related compounds are widely used as organic intermediates in organic chemistry (Liang *et al.*, 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj *et al.*, 1990; Marco *et al.*, 1993). Some 4*H*-pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suárez *et al.*, 2002). Thus, there has been a growing interest in the structures of 4*H*-pyran derivatives. The high biologically active value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray study of the title compound.

In the title compound ($C_{19}H_{14}FN_3O_3$, Fig. 1) the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters $q_2 = 0.0826$ (12) Å, $\theta = 88.18$ (4)°, $\varphi = 127.06$ (4)° (Cremer & Pople, 1975). The dihedral angle between the pseudo-axial aryl substituent and the flat part of the pyran ring is 87.11 (1)°. There is conjugation between the donor (NH) and the acceptor (CN) groups *via* the C4=C5 double bond, as found in other related compounds (Nesterov *et al.*, 2001, 2004). Thus, the C5—N2 distance is 1.3130 (17) Å, which is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Allen, 2002). In contrast, the C4=C5 bond is elongated in comparison with the C1=C2 bond and the standard value (Allen *et al.*, 1987). The C4—N1 distance, 1.3855 (17) Å, is considerably shorter than usual C—NO₂ distance (1.468 Å, Allen *et al.*, 1987) and the N1—O2 distance, 1.2558 (16) Å, is longer than the standard value (Allen *et al.*, 1987). The dihedral angle between the flat part of the pyran ring and the phneyl ring at C1 is 49.22 (2)°. The phenyl and the fluorophenyl rings are substituting the pyran ring in a (–)-*syn*-clinal conformation, with torsion angles C2—C1—C11—C12 and C4—C3—C31—C32 of -51.4 (2)° and -60.76 (17)° respectively. The nitro group is bonded to the pyran ring at C4 with the torsion angle C5—C4—N1—O2 of -7.09 (3)°, indicating a (–)-*syn*-periplanar conformation for this group.

In the crystal structure, the molecules are linked together, to form an infinite one dimensional chain along [100], through intermolecular N2—H2…N3 and C6—H6A…N3 hydrogen bonds, generating graph set motifs *C*(8) and *C*(9) respectively (Fig. 2; Bernstein *et al.*, 1995). In addition, there is a N—H…O intramolecular interaction which stabilizes the molecular conformation.

S2. Experimental

A mixture of benzoylacetonitrile (1.0 mmol), 4-fluoroaldehyde (1.0 mmol), Et₃N (1.0 mmol) and 10 ml EtOH were taken in 50 ml round bottom flask. The reaction mixture was stirred at room temperature for 5–10 min. Then *N*methyl-1-(methylthio)-2-nitroethenamine was added into the reaction mixture and the system refluxed at 80°C. The consumption of starting material was monitored by TLC. After 90 min., the solid product was filtered and washed with diethyl ether (5 ml) and dried under vacuum condition to afford the pure product. Melting point: 210°C; Yield: 94%

S3. Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, N—H = 0.86 Å. $U_{iso} = 1.2U_{eq}(C,N)$ for NH and CH groups and $U_{iso} = 1.5U_{eq}(C6)$ for the methyl group.

Figure 1

The molecular structure of the title molecule, showing 40% probability displacement ellipsoids for non-H atoms.

Figure 2

Packing diagram showing the chain motifs C(8) and C(9) along the [100] direction.

4-(4-Fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile

Crystal data

2	
$C_{19}H_{14}FN_{3}O_{3}$	b = 9.9752 (3) Å
$M_r = 351.33$	c = 11.1324 (3) Å
Triclinic, P1	$\alpha = 98.765 \ (1)^{\circ}$
Hall symbol: -P 1	$\beta = 113.991 \ (1)^{\circ}$
a = 9.3898 (3) Å	$\gamma = 109.520 \ (1)^{\circ}$

 $V = 846.09 (4) \text{ Å}^3$ Z = 2 F(000) = 364 $D_x = 1.379 \text{ Mg m}^{-3}$ Melting point: 483 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.967, T_{\max} = 0.974$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.118$ S = 1.063680 reflections 236 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Cell parameters from 2000 reflections $\theta = 2-27^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.23 \times 0.20 \times 0.19 \text{ mm}$

16948 measured reflections 3680 independent reflections 2993 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 12$ $l = -14 \rightarrow 14$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.2234P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.047 (4)

Fractional	atomic	coordinates	and isotr	onic or e	auivalent	isotropic	displaceme	nt parameters	$(Å^2$	2]
1 1 0 0 1 0 1 0 1 0 1	aronne	coordinates	000000000000000000000000000000000000000		9000000000000	150110010	anspiacemie	ni parameters	1.1.1	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.90505 (16)	0.73779 (15)	0.01317 (13)	0.0338 (3)
C2	0.99879 (16)	0.69360 (14)	0.11020 (13)	0.0332 (3)
C3	0.96024 (16)	0.65343 (14)	0.22245 (13)	0.0331 (3)
Н3	0.9429	0.5490	0.2121	0.040*
C4	0.79214 (17)	0.65768 (15)	0.19639 (13)	0.0350 (3)
C5	0.70197 (17)	0.70668 (15)	0.09468 (13)	0.0345 (3)
C6	0.4686 (2)	0.7677 (2)	-0.04503 (17)	0.0510 (4)
H6A	0.3650	0.7650	-0.0459	0.076*
H6B	0.4388	0.7028	-0.1331	0.076*
H6C	0.5440	0.8691	-0.0293	0.076*
C11	0.92473 (17)	0.76501 (15)	-0.10669 (14)	0.0359 (3)
C12	1.0837 (2)	0.85749 (18)	-0.08937 (16)	0.0461 (4)
H12	1.1788	0.9101	-0.0002	0.055*
C13	1.1012 (2)	0.8717 (2)	-0.20466 (17)	0.0538 (4)
H13	1.2085	0.9336	-0.1929	0.065*
C14	0.9618 (2)	0.79536 (19)	-0.33610 (17)	0.0535 (4)
H14	0.9749	0.8041	-0.4134	0.064*

C15	0.8026 (2)	0.7059 (2)	-0.35402 (16)	0.0561 (4)
H15	0.7076	0.6555	-0.4434	0.067*
C16	0.7828 (2)	0.69049 (19)	-0.23976 (15)	0.0479 (4)
H16	0.6746	0.6303	-0.2521	0.057*
C21	1.13736 (18)	0.66852 (16)	0.10462 (14)	0.0384 (3)
C31	1.11327 (17)	0.75233 (15)	0.36706 (13)	0.0352 (3)
C32	1.1702 (2)	0.90599 (18)	0.41307 (17)	0.0535 (4)
H32	1.1129	0.9507	0.3556	0.064*
C33	1.3112 (3)	0.9951 (2)	0.54360 (19)	0.0682 (5)
H33	1.3490	1.0989	0.5750	0.082*
C34	1.3930 (2)	0.9269 (2)	0.62448 (17)	0.0636 (5)
C35	1.3422 (2)	0.7764 (2)	0.58302 (18)	0.0657 (5)
H35	1.4015	0.7332	0.6409	0.079*
C36	1.2002 (2)	0.68821 (19)	0.45290 (16)	0.0515 (4)
H36	1.1630	0.5843	0.4230	0.062*
N1	0.72180 (15)	0.59726 (14)	0.27462 (12)	0.0421 (3)
N2	0.55637 (15)	0.71659 (15)	0.06560 (12)	0.0433 (3)
H2	0.5096	0.6909	0.1159	0.052*
N3	1.24589 (17)	0.64228 (17)	0.10373 (16)	0.0549 (4)
01	0.76236 (12)	0.75260 (11)	0.00900 (10)	0.0393 (2)
O2	0.58447 (15)	0.60002 (16)	0.26385 (13)	0.0625 (3)
O3	0.79677 (15)	0.53945 (13)	0.35412 (11)	0.0523 (3)
F	1.53011 (18)	1.01296 (16)	0.75406 (12)	0.1082 (5)

Atomic displacement parameters $(Å^2)$

	U ²³ 0.0115 (5) 0.0104 (5)
	0.0115 (5) 0.0104 (5)
	0.0104 (5)
	0.0137 (5)
	0.0140 (5)
	0.0112 (5)
	0.0255 (8)
l	0.0163 (6)
2	0.0173 (7)
3	0.0275 (8)
1	0.0265 (8)
5	0.0167 (7)
6	0.0186 (7)
l	0.0139 (6)
l	0.0148 (5)
2	0.0168 (7)
3	0.0062 (8)
1	0.0117 (8)
5	0.0284 (9)
5	0.0198 (7)
	0.0170 (5)
	0.0237 (6)
4 5 6	

supporting information

N3	0.0446 (8)	0.0647 (9)	0.0710 (9)	0.0295 (7)	0.0370 (7)	0.0240 (7)
01	0.0381 (5)	0.0574 (6)	0.0411 (5)	0.0273 (5)	0.0273 (4)	0.0259 (5)
O2	0.0495 (7)	0.0981 (9)	0.0680 (8)	0.0353 (7)	0.0449 (6)	0.0453 (7)
O3	0.0570 (7)	0.0622 (7)	0.0492 (6)	0.0258 (6)	0.0314 (5)	0.0328 (5)
F	0.0874 (9)	0.0959 (10)	0.0492 (7)	-0.0025 (7)	-0.0066 (6)	0.0070 (6)

Geometric parameters (Å, °)

C1—C2	1.3293 (18)	С13—Н13	0.9300
C101	1.3795 (15)	C14—C15	1.372 (2)
C1—C11	1.4717 (17)	C14—H14	0.9300
C2—C21	1.4276 (18)	C15—C16	1.382 (2)
C2—C3	1.5089 (17)	C15—H15	0.9300
C3—C4	1.5012 (18)	C16—H16	0.9300
C3—C31	1.5222 (18)	C21—N3	1.1369 (18)
С3—Н3	0.9800	C31—C32	1.374 (2)
C4—C5	1.3796 (19)	C31—C36	1.374 (2)
C4—N1	1.3855 (17)	C32—C33	1.382 (2)
C5—N2	1.3130 (17)	С32—Н32	0.9300
C5—O1	1.3566 (15)	C33—C34	1.354 (3)
C6—N2	1.4498 (19)	С33—Н33	0.9300
C6—H6A	0.9600	C34—C35	1.351 (3)
С6—Н6В	0.9600	C34—F	1.3599 (19)
С6—Н6С	0.9600	C35—C36	1.381 (2)
C11—C12	1.382 (2)	С35—Н35	0.9300
C11—C16	1.386 (2)	С36—Н36	0.9300
C12—C13	1.380 (2)	N1—O3	1.2375 (16)
C12—H12	0.9300	N1—O2	1.2558 (16)
C13—C14	1.368 (2)	N2—H2	0.8600
C2-C1-O1	121.49 (11)	C13—C14—H14	120.0
C2-C1-C11	127.43 (12)	C15—C14—H14	120.0
O1—C1—C11	110.91 (11)	C14—C15—C16	120.27 (15)
C1—C2—C21	119.74 (12)	C14—C15—H15	119.9
C1—C2—C3	124.43 (11)	C16—C15—H15	119.9
C21—C2—C3	115.60 (11)	C15—C16—C11	119.75 (14)
C4—C3—C2	108.51 (10)	C15—C16—H16	120.1
C4—C3—C31	114.77 (10)	C11—C16—H16	120.1
C2—C3—C31	111.06 (10)	N3—C21—C2	175.98 (15)
С4—С3—Н3	107.4	C32—C31—C36	118.79 (14)
С2—С3—Н3	107.4	C32—C31—C3	121.42 (12)
С31—С3—Н3	107.4	C36—C31—C3	119.77 (12)
C5—C4—N1	120.05 (12)	C31—C32—C33	120.93 (15)
C5—C4—C3	123.99 (11)	C31—C32—H32	119.5
N1—C4—C3	115.78 (11)	С33—С32—Н32	119.5
N2C5O1	111.37 (11)	C34—C33—C32	118.19 (16)
N2—C5—C4	128.35 (12)	С34—С33—Н33	120.9
O1—C5—C4	120.27 (11)	С32—С33—Н33	120.9

N2—C6—H6A	109.5	C35—C34—C33	122.83 (16)
N2—C6—H6B	109.5	C35—C34—F	118.40 (17)
H6A—C6—H6B	109.5	C33—C34—F	118.76 (18)
N2—C6—H6C	109.5	C34—C35—C36	118.57 (16)
H6A—C6—H6C	109.5	С34—С35—Н35	120.7
H6B—C6—H6C	109.5	С36—С35—Н35	120.7
C12—C11—C16	119.61 (13)	C31—C36—C35	120.69 (15)
C12—C11—C1	121.15 (12)	С31—С36—Н36	119.7
C16—C11—C1	119.16 (12)	С35—С36—Н36	119.7
C13—C12—C11	119.86 (14)	O3—N1—O2	121.01 (11)
C13—C12—H12	120.1	O3—N1—C4	118.35 (12)
C11—C12—H12	120.1	O2—N1—C4	120.64 (12)
C14—C13—C12	120.41 (15)	C5—N2—C6	124.79 (12)
C14—C13—H13	119.8	C5—N2—H2	117.6
С12—С13—Н13	119.8	C6—N2—H2	117.6
C13—C14—C15	120.07 (14)	C5—O1—C1	120.68 (10)
Q1—C1—C2—C21	175.21 (12)	C1-C11-C16-C15	-175.02(14)
C11—C1—C2—C21	0.5 (2)	C1—C2—C21—N3	-149(2)
O1—C1—C2—C3	0.9 (2)	C3—C2—C21—N3	25 (2)
C11—C1—C2—C3	-173.81 (12)	C4—C3—C31—C32	-60.76 (17)
C1—C2—C3—C4	5.36 (18)	C2-C3-C31-C32	62.76 (17)
C21—C2—C3—C4	-169.14(11)	C4—C3—C31—C36	120.98 (14)
C1—C2—C3—C31	-121.67 (14)	C2-C3-C31-C36	-115.50(14)
$C_{21} - C_{2} - C_{3} - C_{31}$	63.83 (14)	$C_{36} - C_{31} - C_{32} - C_{33}$	-0.5(3)
C2—C3—C4—C5	-6.35 (18)	C3—C31—C32—C33	-178.80(15)
C31—C3—C4—C5	118.52 (14)	C31—C32—C33—C34	0.6 (3)
C2-C3-C4-N1	168.72 (11)	C32—C33—C34—C35	-0.2(3)
C31—C3—C4—N1	-66.41 (15)	C32—C33—C34—F	-178.89(18)
N1-C4-C5-N2	6.2 (2)	C33—C34—C35—C36	-0.4 (3)
C3-C4-C5-N2	-178.88(13)	F-C34-C35-C36	178.36 (17)
N1-C4-C5-01	-173.76(12)	C_{32} C_{31} C_{36} C_{35}	0.0 (2)
C3-C4-C5-O1	1.1 (2)	C3-C31-C36-C35	178.28 (15)
C_{2} C_{1} C_{11} C_{12}	-51.4(2)	C_{34} C_{35} C_{36} C_{31}	0.5 (3)
01-C1-C11-C12	133.39 (14)	C5-C4-N1-O3	172.24 (12)
C_{2} C_{1} C_{11} C_{16}	125.37 (16)	C3-C4-N1-O3	-3.05(18)
01-C1-C11-C16	-49.82(17)	C5-C4-N1-O2	-7.1(2)
C_{16} C_{11} C_{12} C_{13}	-1.8(2)	C_{3} C_{4} N_{1} O_{2}	177.62(12)
C1 - C11 - C12 - C13	174.97 (14)	01 - C5 - N2 - C6	0.9 (2)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.3(3)	C4-C5-N2-C6	-17911(14)
C12-C13-C14-C15	11(3)	N2-C5-01-C1	-173 84 (11)
C13 - C14 - C15 - C16	-1.1(3)	C4-C5-O1-C1	6.16 (19)
C14-C15-C16-C11	-0.4(3)	$C^2 - C^1 - O^1 - C^5$	-7.26(19)
C_{12} C_{11} C_{16} C_{15}	18(2)	$C_{11} - C_{1} - O_{1} - C_{5}$	168 27 (11)
012 011 010-013	1.0 (2)		100.27 (11)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.86	1.99	2.6089 (16)	128
0.86	2.30	2.9811 (17)	136
0.96	2.60	3.222 (2)	123
	<i>D</i> —H 0.86 0.86 0.96	D—H H···A 0.86 1.99 0.86 2.30 0.96 2.60	D—H H···A D···A 0.86 1.99 2.6089 (16) 0.86 2.30 2.9811 (17) 0.96 2.60 3.222 (2)

Symmetry code: (i) x-1, y, z.