Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# Bromido(1,4,7,10,13-pentaazacyclohexadecane)cobalt(III) dibromide dihydrate 

Tsutomu Kurisaki,* Makoto Hamano and Hisanobu Wakita

Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
Correspondence e-mail: kurisaki@fukuoka-u.ac.jp
Received 28 January 2013; accepted 20 February 2013
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.031 ; w R$ factor $=0.076$; data-to-parameter ratio $=21.7$.

The title salt, $\left[\mathrm{CoBr}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right] \mathrm{Br}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains a complex cation with mirror symmetry and two $\mathrm{Br}^{-}$counter-anions that are likewise located on the mirror plane. The central $\mathrm{Co}^{\text {III }}$ atom of the complex cation has one $\mathrm{Br}^{-}$ion in an axial position, one N atom of the pentadentate macrocyclic ligand in the other axial position and four N atoms of the ligand in equatorial positions, defining a distorted octahedral coordination geometry. The macrocyclic ligand is coordinated to the $\mathrm{Co}^{\mathrm{III}}$ atom within a $5,6,5$ arrangement of chelate rings in the equatorial plane of the four N atoms. Due to symmetry, the configuration of the chiral N atoms is $1 R S, 4 S R, 10 R S, 13 S R$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the complex cation, anions and lattice water molecules generate a three-dimensional network.

## Related literature

For background to metal complexes with azamacrocycles, see: Mewis \& Archida (2010). For related structures, see: Curtis et al. (1987a,b); Eigenbrot et al. (1988); Tahirov et al. (1993); Bombieri et al. (1982). For the synthesis of the macrocyclic ligand, see: Richman \& Atkins (1974).


## Experimental

## Crystal data

$\left[\mathrm{CoBr}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right] \mathrm{Br}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad V=1955.2(7) \AA^{3}$
$M_{r}=564.07$
Orthorhombic, Pnma
$a=13.139$ (3) A
$b=9.6674$ (18) $\AA$
$c=15.393$ (3) $\AA$
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.02 \mathrm{~mm}^{-1}$
$0.40 \times 0.22 \times 0.14 \mathrm{~mm}$

## Data collection

Rigaku Saturn724+ diffractometer
Absorption correction: numerical (NUMABS; Rigaku, 1999)
$T_{\text {min }}=0.189, T_{\text {max }}=0.501$
28744 measured reflections 2370 independent reflections 1964 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.075$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.076$
$S=1.02$
2370 reflections
109 parameters

4 restraints
H -atom parameters constrained
$\Delta \rho_{\max }=0.89 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.88$ e $\AA^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Br} 2$ | 0.91 | 2.5 | 3.303 (3) | 147 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Br} 3$ | 0.91 | 2.57 | 3.415 (2) | 155 |
| N3-H3 $\cdots$ O $W^{\text {i }}$ | 0.91 | 2.24 | 3.060 (4) | 150 |
| $\mathrm{O} W-\mathrm{H} W 2 \cdots \mathrm{Br} 2$ | 0.87 | 2.64 | 3.491 (3) | 168 |
| $\mathrm{O} W-\mathrm{H} W 1 \cdots \mathrm{Br}^{3 i}{ }^{\text {ii }}$ | 0.82 | 2.67 | 3.489 (3) | 170 |

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

This work was partially supported by Grants-in-Aid for Scientific Research (C) 22550088 and (B) 23300319 from the Japan Society for the Promotion of Science.

[^0]
## metal-organic compounds

## References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bombieri, G., Forsellini, E., Delpra, A., Cooksey, C. J., Humanes, M. \& Tobe, M. L. (1982). Inorg. Chim. Acta, 61, 43-49.

Curtis, N. F., Gainsford, G. J., Osvath, P. \& Weatherburn, D. C. (1987b). Aust. J. Chem. 40, 829-839.
Curtis, N. F., Osvath, P. \& Weatherburn, D. C. (1987a). Aust. J. Chem. 40, 811827.

Eigenbrot, C., Osvath, P., Lappin, A. G., Curtis, N. F. \& Weatherburn, D. C. (1988). Acta Cryst. C44, 2085-2087.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Mewis, R. E. \& Archida, S. J. (2010). Coord. Chem. Rev. 254, 1686-1712.
Richman, J. E. \& Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268-2270.
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tahirov, T. H., Lu, T.-H., Chen, B.-H., Lai, C.-Y. \& Chung, C.-S. (1993). Acta Cryst. C49, 1910-1912.

## supporting information

Acta Cryst. (2013). E69, m179-m180 [doi:10.1107/S1600536813004947]

# Bromido(1,4,7,10,13-pentaazacyclohexadecane)cobalt(III) dibromide dihydrate Tsutomu Kurisaki, Makoto Hamano and Hisanobu Wakita 

## S1. Comment

Azamacrocycles are popular ligands for the preparation of metal complexes because of their stability and defined geometry. These ligands often possess enough conformational freedom for their intended functionalities (Mewis \& Archida, 2010). The coordination of pentaaza macrocycles to the cobalt(III) ion can result in a number of isomeric forms. The complexes formed between cobalt(III) and a series of eight pentaaza macrocycles with ring sizes varying from 15-to 20-membered rings have been investigated (Curtis et al., 1987a,b). These cobalt(III) complexes may exist as three diastereoisomers, i.e. meso-syn, meso-anti, and the racemic isomer. For the cobalt(III) complex of 1,4,7,11,14-pentaazacycloheptadecane $\left([17] a n e N_{5}\right)$ it has been reported that two isomeric forms could be isolated. The crystal structures of these two isomers, $\left[\mathrm{CoBr}\left([17] \mathrm{aneN}_{5}\right)\right]\left[\mathrm{ZnBr}_{4}\right]\left(\right.$ Eigenbrot et al., 1988) and $\left[\mathrm{CoCl}\left([17] \mathrm{aneN}_{5}\right)\right] \mathrm{Cl}\left(\mathrm{ClO}_{4}\right)($ Tahirov et al., 1993), have been determined as the racemic and the meso-anti isomer, respectively. Furthermore, the cobalt(III) complex of 1,4,7,11,14-pentaazacyclohexadecane $\left([16] \operatorname{aneN}_{5}\right),\left[\mathrm{CoCl}\left([16] \mathrm{aneN}_{5}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, crystallized as the meso-syn isomer (Bombieri et al., 1982).
In the title complex, $\left[\mathrm{CoBr}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right] \mathrm{Br}_{2} 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\text {III }}$ atom is surrounded by one $\mathrm{Br}^{-}$anion and N atoms of the macrocyclic ligand to form a distorted octahedral environment (Fig.1). The $\mathrm{Co}-\mathrm{N}$ (axial) bond in the complex is longer than the $\mathrm{Co}-\mathrm{N}$ (equatorial) bonds, presumably caused by the trans effect of the Br atom. The average $\mathrm{Co}-\mathrm{N}$ (equatorial) distance of $1.967 \AA$ is shorter than that in cobalt(III) complexes of 1,4,7,11,14-pentaazacycloheptadecane (Eigenbrot et al., 1988) and 1,4,7,11,15-pentaazacyclooctadecane (Curtis et al., 1987a). The macrocyclic ligand adopts a stable conformation with the one six-membered chelate ring in chair form and four five-membered chelate rings in gauche forms. The macrocyclic ligand is coordinated in a configuration with five-, six-, and five-membered chelate rings in the equatorial plane. The deviation of the $\mathrm{Co}^{\text {IIII }}$ atom from the equatorial plane is 0.03 A . The N 3 and $\mathrm{N} 3^{*}$ atoms have opposite chirality giving the meso-syn diastereoisomer. The macrocyclic ligand coordinates in the meso-syn configuration with hydrogen atoms on $\mathrm{N} 2, \mathrm{~N} 2 *, \mathrm{~N} 3$, and $\mathrm{N} 3^{*}$ on the same side of the equatorial plane relative to the axially coordinating bromide anion. Due to mirror symmetry of the entire complec cation, the configurations of the four chiral amine N atoms are 1RS, 4SR, 10RS, and 13SR. Hydrogen bonds between N atoms of the macrocyclic ligand, water molecules and bromide counter anions exists (Fig. 2; Table 1), stabilizing the crystal packing within a three-dimensional network.

## S2. Experimental

The ligand 1,4,7,10,13-pentaazacyclohexadecane pentahydrobromide was prepared according to the literature method (Richman \& Atkins, 1974). The ligand ( $1.26 \mathrm{~g}, 2 \mathrm{mmol}$ ) was dissolved in water and treated with freshly prepared $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] 3 \mathrm{H}_{2} \mathrm{O}(0.72 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was refluxed for 1 h and filtered. To the filtrate was added $\mathrm{NH}_{4} \mathrm{Br}$ in excess and the solution allowed to stand for several days whereupon dark violet crystals of the title compound were formed.

## S3. Refinement

All H atoms attached to C and N atoms were placed geometrically $(\mathrm{C}-\mathrm{H}=0.97$ and $\mathrm{N}-\mathrm{H}=0.91 \AA$ ) and were refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$. The water H atoms were located in difference Fourier maps and were refined initially with restrains $\mathrm{O}-\mathrm{H}=0.85$ (2) $\AA$. In the last cycles of refinement, they were eventually refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.


## Figure 1

The molecular structure of the title compound, with $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
Crystal Structure of the title compound with view along the $b$ axis. Intermolecular hydrogen bonding is shown as dashed lines.

## Bromido(1,4,7,10,13-pentaazacyclohexadecane)cobalt(III) dibromide dihydrate

## Crystal data

$\left[\mathrm{CoBr}\left(\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5}\right)\right] \mathrm{Br}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=564.07$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=13.139$ (3) Å
$b=9.6674(18) \AA$
$c=15.393$ (3) $\AA$
$V=1955.2(7) \AA^{3}$
$Z=4$

## Data collection

Rigaku Saturn724+
diffractometer
Radiation source: rotating anode
Graphite monochromator
Detector resolution: 28.5714 pixels $\mathrm{mm}^{-1}$
dtprofit.ref scans
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
$F(000)=1120$
$D_{\mathrm{x}}=1.916 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4654 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=7.02 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, dark violet
$0.40 \times 0.22 \times 0.14 \mathrm{~mm}$

28744 measured reflections
2370 independent reflections
1964 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-17 \rightarrow 17$
$k=-12 \rightarrow 12$
$l=-19 \rightarrow 19$
$T_{\text {min }}=0.189, T_{\text {max }}=0.501$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.076$
$S=1.02$
2370 reflections
109 parameters
4 restraints
Primary atom site location: structure-invariant direct methods

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Br} 1$ | $0.97038(3)$ | 0.25 | $0.51348(3)$ | $0.04287(14)$ |
| $\operatorname{Br} 2$ | $0.44795(3)$ | 0.25 | $0.38291(3)$ | $0.04299(14)$ |
| $\operatorname{Br3}$ | $0.89341(4)$ | 0.25 | $0.77417(3)$ | $0.04833(15)$ |
| Co | $0.78735(4)$ | 0.25 | $0.50953(3)$ | $0.02053(13)$ |


| OW | $0.4692(2)$ | $0.0362(3)$ | $0.20106(17)$ | $0.0743(9)$ |
| :--- | :--- | :--- | :--- | :--- |
| HW1 | 0.5085 | -0.0263 | 0.2156 | $0.111^{*}$ |
| HW2 | 0.4701 | 0.0986 | 0.2416 | $0.111^{*}$ |
| N1 | $0.6374(2)$ | 0.25 | $0.5240(2)$ | $0.0227(7)$ |
| H1 | 0.6083 | 0.25 | 0.4703 | $0.027^{*}$ |
| N2 | $0.78844(16)$ | $0.0990(2)$ | $0.59473(15)$ | $0.033^{*}$ |
| H2 | 0.8333 | 0.1219 | 0.6374 | $0.0298(5)$ |
| N3 | $0.79176(17)$ | $0.1035(2)$ | $0.42054(15)$ | $0.036^{*}$ |
| H3 | 0.8556 | 0.1076 | 0.3977 | $0.037^{*}$ |
| C1 | $0.60554(19)$ | $0.1226(3)$ | $0.57002(19)$ | $0.037^{*}$ |
| H1A | 0.5957 | 0.0482 | 0.5286 | $0.0344(7)$ |
| H1B | 0.5416 | 0.1385 | 0.5998 | $0.041^{*}$ |
| C2 | $0.6869(2)$ | $0.0825(3)$ | $0.63512(19)$ | $0.0395(7)$ |
| H2A | 0.6818 | 0.1408 | 0.6862 | $0.047^{*}$ |
| H2B | 0.6773 | -0.0129 | 0.653 | $0.047^{*}$ |
| C3 | $0.8268(2)$ | $-0.0279(3)$ | $0.5511(2)$ | $0.0396(7)$ |
| H3A | 0.8063 | -0.109 | 0.5838 | $0.047^{*}$ |
| H3B | 0.9006 | -0.0258 | 0.5488 | $0.047^{*}$ |
| C4 | $0.7838(2)$ | $-0.0351(3)$ | $0.4602(2)$ | $0.0369(7)$ |
| H4A | 0.8217 | -0.1018 | 0.4259 | $0.044^{*}$ |
| H4B | 0.7132 | -0.0641 | 0.4621 | $0.044^{*}$ |
| C5 | $0.7214(2)$ | $0.1176(3)$ | $0.34490(19)$ | $0.0452(12)$ |
| H5A | 0.6517 | 0.1154 | 0.3656 | $0.054^{*}$ |
| H5B | 0.7309 | 0.0392 | 0.3064 |  |
| C6 | $0.7384(4)$ | 0.25 | $0.2943(3)$ | 0.2445 |
| H6A | 0.6932 | 0.25 | 0.2724 |  |
| H6B | 0.8076 | 0.25 |  |  |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.0225(2)$ | $0.0483(3)$ | $0.0578(3)$ | 0 | $0.00093(19)$ | 0 |
| Br2 | $0.0392(3)$ | $0.0353(3)$ | $0.0546(3)$ | 0 | $-0.0198(2)$ | 0 |
| Br3 | $0.0605(3)$ | $0.0443(3)$ | $0.0402(3)$ | 0 | $-0.0220(2)$ | 0 |
| Co | $0.0186(3)$ | $0.0205(3)$ | $0.0225(3)$ | 0 | $0.00025(19)$ | 0 |
| OW | $0.082(2)$ | $0.087(2)$ | $0.0533(17)$ | $0.0336(16)$ | $-0.0023(14)$ | $0.0002(15)$ |
| N1 | $0.0247(16)$ | $0.0235(16)$ | $0.0198(16)$ | 0 | $0.0005(13)$ | 0 |
| N2 | $0.0270(12)$ | $0.0243(12)$ | $0.0301(13)$ | $-0.0013(9)$ | $-0.0066(10)$ | $0.0031(10)$ |
| N3 | $0.0284(12)$ | $0.0313(13)$ | $0.0297(13)$ | $0.0026(10)$ | $0.0031(10)$ | $-0.0055(11)$ |
| C1 | $0.0261(14)$ | $0.0318(16)$ | $0.0349(16)$ | $-0.0057(11)$ | $0.0035(12)$ | $0.0017(12)$ |
| C2 | $0.0421(17)$ | $0.0318(16)$ | $0.0293(16)$ | $-0.0035(13)$ | $0.0006(13)$ | $0.0094(13)$ |
| C3 | $0.0450(18)$ | $0.0248(15)$ | $0.049(2)$ | $0.0108(13)$ | $-0.0048(15)$ | $0.0010(14)$ |
| C4 | $0.0480(19)$ | $0.0256(16)$ | $0.0451(18)$ | $0.0056(13)$ | $0.0024(16)$ | $-0.0090(14)$ |
| C5 | $0.0392(17)$ | $0.0436(18)$ | $0.0280(15)$ | $0.0022(14)$ | $0.0001(13)$ | $-0.0145(14)$ |
| C6 | $0.049(3)$ | $0.062(3)$ | $0.025(2)$ | 0 | $0.000(2)$ | 0 |

Geometric parameters (A, ${ }^{\circ}$ )

| Br1-Co | 2.4056 (8) | C1-C2 | 1.516 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co}-\mathrm{N}^{2}{ }^{\text {i }}$ | 1.962 (2) | C1-H1A | 0.97 |
| Co-N2 | 1.962 (2) | C1-H1B | 0.97 |
| Co-N3 | 1.971 (2) | C2-H2A | 0.97 |
| $\mathrm{Co}-\mathrm{N}^{\text {i }}$ | 1.971 (2) | C2-H2B | 0.97 |
| Co-N1 | 1.982 (3) | C3-C4 | 1.512 (4) |
| OW-HW1 | 0.8249 | C3-H3A | 0.97 |
| OW-HW2 | 0.8682 | C3-H3B | 0.97 |
| $\mathrm{N} 1-\mathrm{Cl}^{1}$ | 1.482 (3) | C4-H4A | 0.97 |
| N1-C1 | 1.482 (3) | C4-H4B | 0.97 |
| N1-H1 | 0.91 | C5-C6 | 1.516 (4) |
| N2-C2 | 1.481 (3) | C5-H5A | 0.97 |
| N2-C3 | 1.486 (3) | C5-H5B | 0.97 |
| N2-H2 | 0.91 | C6- $5^{\text {i }}$ | 1.516 (4) |
| N3-C4 | 1.476 (4) | C6-H6A | 0.97 |
| N3-C5 | 1.493 (4) | C6-H6B | 0.97 |
| N3-H3 | 0.91 |  |  |
| N2 ${ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{N} 2$ | 96.11 (14) | N1-C1-H1A | 109.8 |
| N2 ${ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{N} 3$ | 177.03 (10) | C2-C1-H1A | 109.8 |
| $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$ | 85.97 (10) | N1-C1-H1B | 109.8 |
| $\mathrm{N} 2^{i}-\mathrm{Co}-\mathrm{N}^{\text {i }}$ | 85.97 (10) | C2-C1-H1B | 109.8 |
| $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3^{\text {i }}$ | 177.03 (10) | H1A-C1-H1B | 108.3 |
| N3-Co-N3 ${ }^{\text {i }}$ | 91.87 (14) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ | 109.3 (2) |
| N2 ${ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{N} 1$ | 86.12 (9) | N2-C2-H2A | 109.8 |
| $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 1$ | 86.12 (9) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.8 |
| N3-Co-N1 | 96.15 (9) | N2-C2-H2B | 109.8 |
| N3--Co-N1 | 96.15 (9) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.8 |
| $\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{Br} 1$ | 88.61 (6) | H2A-C2-H2B | 108.3 |
| N2-Co-Br1 | 88.61 (6) | N2-C3-C4 | 109.3 (2) |
| N3-Co-Br1 | 89.32 (7) | N2-C3-H3A | 109.8 |
| N 3 - $\mathrm{Co}-\mathrm{Br} 1$ | 89.32 (7) | C4-C3-H3A | 109.8 |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{Br} 1$ | 172.11 (9) | N2-C3-H3B | 109.8 |
| HW1-OW-HW2 | 107.8 | C4-C3-H3B | 109.8 |
| C1-N1-C1 | 112.5 (3) | H3A-C3-H3B | 108.3 |
| C1-N1-Co | 109.54 (16) | N3-C4-C3 | 108.3 (2) |
| C1-N1-Co | 109.54 (16) | N3-C4-H4A | 110 |
| C1-N1-H1 | 108.4 | C3-C4-H4A | 110 |
| C1-N1-H1 | 108.4 | N3-C4-H4B | 110 |
| Co-N1-H1 | 108.4 | C3-C4-H4B | 110 |
| C2-N2-C3 | 113.9 (2) | H4A-C4-H4B | 108.4 |
| C2-N2-Co | 110.77 (16) | N3-C5-C6 | 112.8 (3) |
| C3-N2-Co | 108.34 (18) | N3-C5-H5A | 109 |
| C2-N2-H2 | 107.9 | C6-C5-H5A | 109 |
| C3-N2-H2 | 107.9 | N3-C5-H5B | 109 |
| Co-N2-H2 | 107.9 | C6-C5-H5B | 109 |


| $\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 5$ | $111.2(2)$ | $\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$ | 107.8 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 4-\mathrm{N} 3-\mathrm{Co}$ | $111.29(18)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 5$ | $115.3(4)$ |
| $\mathrm{C} 5-\mathrm{N} 3-\mathrm{Co}$ | $117.28(17)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 108.4 |
| $\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3$ | 105.3 | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 108.4 |
| $\mathrm{C} 5-\mathrm{N} 3-\mathrm{H} 3$ | 105.3 | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 108.4 |
| $\mathrm{Co}-\mathrm{N} 3-\mathrm{H} 3$ | 105.3 | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 108.4 |
| $\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$ | $109.2(2)$ | $\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 107.5 |

Symmetry code: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ( $\hat{A},{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Br} 2$ | 0.91 | 2.5 | $3.303(3)$ | 147 |
| $\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Br} 3$ | 0.91 | 2.57 | $3.415(2)$ | 155 |
| $\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} W^{\text {ii }}$ | 0.91 | 2.24 | $3.060(4)$ | 150 |
| $\mathrm{O} W — \mathrm{H} W 2 \cdots \mathrm{Br} 2$ | 0.87 | 2.64 | $3.491(3)$ | 168 |
| $\mathrm{O} W — \mathrm{H} W 1 \cdots \mathrm{Br} 3^{\mathrm{iii}}$ | 0.82 | 2.67 | $3.489(3)$ | 170 |

Symmetry codes: (ii) $x+1 / 2, y,-z+1 / 2$; (iii) $-x+3 / 2,-y, z-1 / 2$.


[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2723).

