

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide_acetic acid (1/1)

Gao-Zhang Gou,^a Rui Ma,^b Qing-Di Zhou^c and Shao-Ming Chi^a*

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China, ^bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and ^cSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

Correspondence e-mail: chishaoming@gmail.com

Received 19 February 2013; accepted 23 February 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.160; data-to-parameter ratio = 15.1.

In the title adduct, $C_{11}H_{11}N_3O \cdot C_2H_4O_2$, all non-H atoms of the acetamide molecule are roughly coplanar, with an r.m.s. deviation of 0.0720 Å. The dihedral angle between the ring plane and the acetamide group is 8.5 (2)°. In the crystal, $O - H \cdot \cdot \cdot N$ and $N - H \cdot \cdot \cdot O$ hydrogen bonds link the acetamide and acetic acid molecules.

Related literature

For the synthesis of 7-amino-2-methyl-1,8-naphthyridine, see: Brown (1965); Henry & Hammond (1977). For the coordination modes of 1,8-naphthyridine ligands, see: Zong *et al.* (2004); Zúñiga *et al.* (2011); Li *et al.* (2011); Gan *et al.* (2011). For their biological activity, see: Sivakumar *et al.* (2011); Roma *et al.* (2000); Badawneh *et al.* (2001); Nagasawa *et al.* (2011); Capozzi *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{l} {\rm C}_{11}{\rm H}_{11}{\rm N}_3{\rm O}{\rm \cdot}{\rm C}_2{\rm H}_4{\rm O}_2\\ M_r=261.28\\ {\rm Triclinic}, P\overline{1}\\ a=8.3628 \ (17) \ {\rm \mathring{A}}\\ b=9.0904 \ (18) \ {\rm \mathring{A}}\\ c=9.5093 \ (19) \ {\rm \mathring{A}}\\ \alpha=71.30 \ (3)^\circ\\ \beta=76.43 \ (3)^\circ \end{array}$

$\gamma = 78.64(3)^{-1}$
$V = 659.8 (2) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 K
$0.15 \times 0.10 \times 0.07~\mathrm{mm}$

70 (1 (2))

organic compounds

5757 measured reflections

 $R_{\rm int} = 0.058$

2591 independent reflections 1014 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.986, \ T_{\max} = 0.993$

Refinement

I V S

2

$R[F^2 > 2\sigma(F^2)] = 0.047$ 172 para	ameters
$wR(F^2) = 0.160$ H-atom	parameters constrained
$\Delta P_{\rm max} =$	• 0.21 e Å ⁻³
591 reflections $\Delta \rho_{\min} =$	$-0.20 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots N2^{i}$	0.82	1.96	2.774 (3)	173
$N1 - H1A \cdots O2^{ii}$	0.86	2.07	2.931 (3)	178

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge support from the 'Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2092).

References

Badawneh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Mori, C., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 925–934.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, E. V. (1965). J. Org. Chem. **30**, 1607–1610.

- Capozzi, A., Mantuano, E., Matarrese, P., Saccomanni, G., Manera, C., Mattei, V., Gambardella, L., Malorni, W., Sorice, M. & Misasi, R. (2012). Anticancer Agents Med. Chem. 12, 653–662.
- Gan, X., Chi, S. M., Mu, W. H., Yao, J. C., Quan, L., Li, C., Bian, Z. Y., Chen, Y. & Fu, W. F. (2011). *Dalton Trans.* **40**, 7365–7374.

Henry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem. pp. 1109–1114.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Li, Z. X., Li, C., Mu, W. H., Xiong, S. X. & Fu, W. F. (2011). Inorg. Chim. Acta, 379, 7–15.
- Nagasawa, J. Y., Song, J., Chen, H., Kim, H. W., Blazel, J., Ouk, S., Groschel, B., Borges, V., Ong, V., Yeh, L. T., Girardet, J. L., Vernier, J. M., Raney, A. K. & Pinkerton, A. B. (2011). *Bioorg. Med. Chem. Lett.* 21, 760–763.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivakumar, P., Iyer, G. & Doble, M. (2011). Med. Chem. Res. pp. 1-8.
- Zong, R. F., Naud, F., Segal, C., Burke, J., Wu, F. Y. & Thummel, R. (2004). Inorg. Chem. 43, 6195–6202.
- Zúñiga, C., Moya, S. A., Fuentealba, M., Aranda, B. & Aguirre, P. (2011). Inorg. Chem. Commun. 14, 964–967.

supporting information

Acta Cryst. (2013). E69, o489 [doi:10.1107/S1600536813005242]

N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide-acetic acid (1/1)

Gao-Zhang Gou, Rui Ma, Qing-Di Zhou and Shao-Ming Chi

S1. Comment

The structure and chemical properties of the 1,8-naphthyridine ring system are interesting to both synthetic and pharmaceutical organic chemists. They can act as monodendate, chelating bidendate and dinuclear bridging ligands(Zong *et al.*, 2004; Zúñiga *et al.*, 2011; Li *et al.*, 2011; Gan *et al.*, 2011). They have also found use as anti-bacterial(Sivakumar *et al.*, 2011), anti-inflammatory(Roma *et al.*, 2000), anti-hypertensive(Badawneh *et al.*, 2001) and anti-cancer drugs(Nagasawa *et al.*, 2011; Capozzi *et al.*, 2012). Herein we report the synthesis and structure of the title co-crystal, $C_{11}H_{11}N_3O.C_2H_4O_2$.

The structure of the title complex is shown in Fig. 1 and Fig. 2 and the hydrogen-bond geometry is given in Table. 1. The planes defined by 7-acetamino-2–methyl-1,8-naphthyridine and acetic acid have root mean square (r.m.s.) deviations of 0.0720 Å and 0.0014 Å and the angle between the planes is 8.66 (19) °. There are two, O—H…N and N—H…O, intermolecular hydrogen bonds between 7-acetamino-2-methyl-1,8-naphthyridine and acetic acid, which link the molecules to form layered units. The O(3)…N(2) and N(1)…O(2) distances are 2.782 (4) and 2.941 (4) Å and the angles O(3)—H(3A)…N(2) and N(1)—H(1A)…O(2) are 173.1 (4)° and 178.0 (2)°. The complementarity of the hydrogenbonding interactions make the hydrogen-bonded units stable. The stability of these units may explain the difficulty in separating the two components *via* chromatography. The distances between the adjacent parallel planes are 2.960 (4) and 3.349 (4) Å. The weak C—H…N contacts have a H…N distance of 2.666 (3) Å.

S2. Experimental

7-amino-2-methyl-1,8-naphthyridine(Brown, 1965; Henry & Hammond, 1977)(4.00 g, 0.025 mol) was added to an acetic anhydride (15 ml) solution in an atmosphere of nitrogen. The mixture was stirred at room temperature for 1 h. Followed by slow cooling to room temperature which gave flaky straw-colored crystals. Yield: 3.97 g (78%). In the co-crystal complex, the acetic acid component is formed from the reagent (acetic anhydride) used.

S3. Refinement

H atoms were placed in calculated positions. The H atoms were constrained to an ideal geometry (C—H =0.96 Å, N—H =0.86 Å and O—H = 0.85 Å) and refined as riding atoms with $U_{iso}(H) = 1.2Ueq(C)$ or 1.5Ueq(methyl C), $U_{iso}(H) = 1.2Ueq(N)$ and $U_{iso}(H) = 1.5Ueq(O)$.

Figure 1

The molecular structure of the title complex with atom labels and 30% probability displacement ellipsoids.

Figure 2

A view of the crystal packing. Hydrogen bonds are shown as black dashed lines, while weak contacts as blue ones.

N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide-acetic acid (1/1)

Crystal data	
$C_{11}H_{11}N_3O \cdot C_2H_4O_2$	Z = 2
$M_r = 261.28$	F(000) = 276
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.315 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.3628 (17) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.0904 (18) Å	Cell parameters from 25 reflections
c = 9.5093 (19) Å	$\theta = 3.1 - 26.0^{\circ}$
$\alpha = 71.30 \ (3)^{\circ}$	$\mu=0.10~\mathrm{mm^{-1}}$
$\beta = 76.43 \ (3)^{\circ}$	T = 293 K
$\gamma = 78.64 \ (3)^{\circ}$	Flaky, yellow
$V = 659.8 (2) \text{ Å}^3$	$0.15 \times 0.10 \times 0.07 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.986, T_{max} = 0.993$ <i>Refinement</i>	5757 measured reflections 2591 independent reflections 1014 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 10$ $l = -11 \rightarrow 11$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 0.91	H-atom parameters constrained
2591 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.21$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.0316 (3)	0.2121 (2)	0.5279 (2)	0.0452 (6)	
N3	0.2361 (3)	0.1068 (3)	0.3663 (3)	0.0504 (7)	
03	0.9707 (3)	-0.5868 (2)	0.2515 (2)	0.0681 (7)	
H3A	0.9822	-0.6417	0.3366	0.102*	
C6	0.1937 (4)	-0.0352 (3)	0.6338 (3)	0.0449 (8)	
C10	0.1549 (4)	0.0928 (3)	0.5099 (3)	0.0462 (8)	
C3	-0.0509 (4)	0.2067 (3)	0.6651 (3)	0.0476 (8)	
C4	-0.0218 (4)	0.0819 (3)	0.7965 (3)	0.0551 (9)	
H4A	-0.0838	0.0818	0.8915	0.066*	
O2	0.7624 (3)	-0.4612 (2)	0.3776 (3)	0.0735 (8)	
C5	0.1006 (4)	-0.0375 (3)	0.7772 (3)	0.0541 (9)	
H5A	0.1223	-0.1213	0.8603	0.065*	
N1	-0.1743 (3)	0.3336 (3)	0.6728 (3)	0.0537 (8)	
H1A	-0.1948	0.3949	0.5872	0.064*	
01	-0.2586 (3)	0.2989 (3)	0.9261 (2)	0.0799 (8)	
C7	0.3229 (4)	-0.1511 (3)	0.6026 (4)	0.0559 (9)	

H7A	0.3533	-0.2369	0.6808	0.067*
C12	0.8447 (4)	-0.4767 (3)	0.2609 (4)	0.0577 (9)
C8	0.4028 (4)	-0.1383 (3)	0.4598 (4)	0.0564 (9)
H8A	0.4878	-0.2153	0.4384	0.068*
C1	-0.3839 (4)	0.5235 (3)	0.7581 (3)	0.0659 (10)
H1B	-0.4453	0.5463	0.8492	0.099*
H1C	-0.4594	0.5117	0.7016	0.099*
H1D	-0.3215	0.6079	0.6984	0.099*
C9	0.3559 (4)	-0.0064 (3)	0.3426 (3)	0.0504 (8)
C11	0.4429 (5)	0.0117 (4)	0.1835 (4)	0.0734 (11)
H11A	0.3959	0.1073	0.1191	0.110*
H11B	0.4302	-0.0754	0.1526	0.110*
H11C	0.5587	0.0150	0.1761	0.110*
C2	-0.2675 (4)	0.3748 (3)	0.7971 (4)	0.0549 (9)
C13	0.8161 (5)	-0.3725 (4)	0.1088 (4)	0.0802 (12)
H13A	0.7230	-0.2939	0.1209	0.120*
H13B	0.7938	-0.4339	0.0519	0.120*
H13C	0.9131	-0.3229	0.0561	0.120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0466 (16)	0.0427 (13)	0.0422 (14)	0.0025 (11)	-0.0123 (12)	-0.0088 (10)
N3	0.0497 (17)	0.0534 (14)	0.0479 (15)	-0.0011 (13)	-0.0106 (13)	-0.0165 (11)
O3	0.0696 (17)	0.0648 (13)	0.0544 (14)	0.0067 (12)	-0.0116 (12)	-0.0051 (10)
C6	0.049 (2)	0.0403 (15)	0.0454 (17)	0.0008 (14)	-0.0183 (15)	-0.0089 (13)
C10	0.046 (2)	0.0418 (16)	0.0518 (19)	0.0017 (14)	-0.0195 (16)	-0.0124 (14)
C3	0.050(2)	0.0474 (16)	0.0463 (18)	0.0025 (14)	-0.0161 (15)	-0.0150 (13)
C4	0.069 (2)	0.0499 (16)	0.0403 (16)	0.0040 (16)	-0.0168 (16)	-0.0073 (13)
O2	0.0814 (19)	0.0733 (15)	0.0530 (15)	0.0150 (13)	-0.0145 (14)	-0.0142 (12)
C5	0.063 (2)	0.0435 (16)	0.0499 (19)	0.0003 (15)	-0.0160 (17)	-0.0061 (13)
N1	0.0588 (19)	0.0493 (13)	0.0455 (14)	0.0120 (13)	-0.0159 (13)	-0.0103 (11)
01	0.093 (2)	0.0765 (15)	0.0464 (14)	0.0227 (14)	-0.0069 (12)	-0.0092 (11)
C7	0.055 (2)	0.0464 (17)	0.063 (2)	0.0073 (15)	-0.0226 (17)	-0.0115 (14)
C12	0.061 (2)	0.0537 (18)	0.052 (2)	-0.0009 (17)	-0.0167 (18)	-0.0058 (15)
C8	0.054 (2)	0.0514 (17)	0.065 (2)	0.0060 (16)	-0.0167 (18)	-0.0213 (15)
C1	0.062 (2)	0.0562 (19)	0.063 (2)	0.0124 (17)	-0.0070 (18)	-0.0096 (16)
C9	0.047 (2)	0.0543 (18)	0.0519 (19)	-0.0030 (15)	-0.0084 (16)	-0.0209 (15)
C11	0.068 (3)	0.079 (2)	0.070 (2)	0.007 (2)	-0.007(2)	-0.0303 (18)
C2	0.052 (2)	0.0570 (18)	0.0480 (19)	0.0035 (16)	-0.0085 (16)	-0.0122 (15)
C13	0.083 (3)	0.076 (2)	0.064 (2)	0.000 (2)	-0.024 (2)	0.0049 (18)

Geometric parameters (Å, °)

N2—C3	1.315 (3)	O1—C2	1.211 (3)
N2—C10	1.365 (3)	C7—C8	1.344 (4)
N3—C9	1.322 (3)	C7—H7A	0.9300
N3—C10	1.353 (3)	C12—C13	1.497 (4)

O3—C12	1.310 (3)	C8—C9	1.413 (4)
O3—H3A	0.8200	C8—H8A	0.9300
C6—C5	1.399 (4)	C1—C2	1.498 (4)
C6—C7	1.402 (4)	C1—H1B	0.9600
C6—C10	1.414 (3)	C1—H1C	0.9600
C3—N1	1.397 (3)	C1—H1D	0.9600
C3—C4	1 426 (4)	C9—C11	1 489 (4)
C4-C5	1.120(1) 1 364 (4)		0.9600
$C_4 = C_3$	0.0200		0.9000
C4— $n4AO2$ $C12$	0.9300		0.9000
	1.195 (3)		0.9600
C5—H5A	0.9300	CI3—HI3A	0.9600
N1—C2	1.371 (3)	С13—Н13В	0.9600
N1—H1A	0.8600	C13—H13C	0.9600
C3—N2—C10	118.3 (2)	С7—С8—С9	119.2 (3)
C9—N3—C10	117.6 (2)	С7—С8—Н8А	120.4
C12—O3—H3A	109.5	C9—C8—H8A	120.4
$C_{5}-C_{6}-C_{7}$	125.0(3)	C2-C1-H1B	109.5
C_{5} C_{6} C_{10}	125.0(3) 118.0(2)	$C_2 = C_1 = H_1C$	109.5
C_{7} C_{6} C_{10}	117.0(2)		109.5
$N_{2} = C_{10} = N_{2}$	117.0(3) 115.2(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_2 = C_{10} = C_1$	113.3(2)		109.5
N3-C10-C6	123.0 (2)	HIB-CI-HID	109.5
N2-C10-C6	121.7 (3)	HIC—CI—HID	109.5
N2—C3—N1	114.4 (2)	N3—C9—C8	123.1 (3)
N2—C3—C4	124.0 (2)	N3—C9—C11	116.5 (3)
N1—C3—C4	121.7 (3)	C8—C9—C11	120.4 (3)
C5—C4—C3	117.3 (3)	C9—C11—H11A	109.5
C5—C4—H4A	121.3	C9—C11—H11B	109.5
C3—C4—H4A	121.3	H11A—C11—H11B	109.5
C4—C5—C6	120.7 (3)	C9—C11—H11C	109.5
C4—C5—H5A	119.7	H11A—C11—H11C	109.5
С6—С5—Н5А	119.7	H11B—C11—H11C	109.5
C2—N1—C3	129.4 (2)	01—C2—N1	124.0 (3)
C_2 N1—H1A	115.3	01-C2-C1	1228(3)
C_3 —N1—H1A	115.3	N1 - C2 - C1	122.0(3) 113.3(3)
C_{8} C_{7} C_{6}	120 1 (3)	C_{12} C_{13} H_{13A}	109.5
C_{8} C_{7} H_{7}	120.1 (5)	C_{12} C_{13} H_{13} H	109.5
	120.0		109.5
$C_0 - C_1 - H_1 A$	120.0	HI3A—CI3—HI3B	109.5
02-012-03	123.8 (3)	C12—C13—H13C	109.5
02-012-013	123.9 (3)	H13A—C13—H13C	109.5
O3—C12—C13	112.2 (3)	H13B—C13—H13C	109.5
C9—N3—C10—N2	-179.5 (3)	C7—C6—C5—C4	179.3 (3)
C9—N3—C10—C6	0.7 (4)	C10—C6—C5—C4	-1.1 (5)
C3—N2—C10—N3	-179.2 (3)	N2—C3—N1—C2	-170.8(3)
C3—N2—C10—C6	0.6 (4)	C4—C3—N1—C2	10.3 (5)
C5-C6-C10-N3	-179.7 (3)	C5—C6—C7—C8	179.0 (3)
C7-C6-C10-N3	0 0 (4)	C10-C6-C7-C8	-0.6(5)
0, 00 010 103	(1)		0.0 (3)

supporting information

C5—C6—C10—N2	0.6 (4)	C6—C7—C8—C9	0.6 (5)
C7—C6—C10—N2	-179.8 (3)	C10—N3—C9—C8	-0.7 (4)
C10-N2-C3-N1	179.9 (3)	C10—N3—C9—C11	179.8 (3)
C10-N2-C3-C4	-1.3 (5)	C7—C8—C9—N3	0.0 (5)
N2—C3—C4—C5	0.8 (5)	C7—C8—C9—C11	179.5 (3)
N1—C3—C4—C5	179.5 (3)	C3—N1—C2—O1	-2.5 (5)
C3—C4—C5—C6	0.5 (5)	C3—N1—C2—C1	177.9 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H…A
O3—H3A···N2 ⁱ	0.82	1.96	2.774 (3)	173
N1—H1A····O2 ⁱⁱ	0.86	2.07	2.931 (3)	178

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) *x*-1, *y*+1, *z*.