organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-4-(4-chlorophenyl)-4Hchromeno[8,7-b]pyridine-3-carbonitrile

Abd El-Galil E. Amr,^{a,b}⁺ Ahmed M. El-Agrody,^c Nermien M. Sabry,^c Seik Weng Ng^{d,e} and Edward R. T. Tiekink^d*

^aDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: edward.tiekink@gmail.com

Received 19 February 2013; accepted 22 February 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.164; data-to-parameter ratio = 16.3.

The asymmetric unit of the title compound, $C_{19}H_{12}ClN_3O$, contains two molecules with similar conformations. The 14 non-H atoms comprising the 4H-chromeno[8,7-b]pyridine residue are essentially coplanar (r.m.s. deviations = 0.037and 0.042 Å for the two molecules) and the main difference between them is seen in the twist about the bond linking the main residue to the attached chlorobenzene rings [dihedral angles = 79.01 (12) and $76.22 (11)^{\circ}$ for the two molecules]. Zigzag supramolecular chains along the *a*-axis direction mediated by amino-pyridine N-H···N hydrogen bonds feature in the crystal packing; these are connected into a three-dimensional architecture by $C-H\cdots\pi$ interactions and $Cl \cdot \cdot \cdot Cl$ contacts $[Cl \cdot \cdot \cdot Cl = 3.3896 (14) Å]$.

Related literature

For background to the chemistry and biological activity of 4Hpyran derivatives, see: Al-Ghamdi et al. (2012); El-Agrody et al. (2012). For the structure of the 2-chloro analogue, see: Wang et al. (2003).

Experimental

Crystal data

C19H12ClN3O $M_r = 333.77$ Monoclinic, $P2_1/n$ a = 6.5311 (8) Å b = 35.129(3) Å c = 14.0903 (14) Å $\beta = 101.740 \ (11)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.833, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.164$ S = 1.017326 reflections 450 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.20 \times 0.05 \text{ mm}$

V = 3165.2 (6) Å³

Z = 8

20646 measured reflections 7326 independent reflections 3471 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.068$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Cg1 and Cg2 are the centroids of the N4,C20-C23,C28 and C33-C38 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H1\cdots N4^{i}$	0.84 (3)	2.34 (4)	3.172 (4)	174 (3)
$N2 - H2 \cdots N5^{4}$	0.89 (3)	2.61 (3)	3.308 (5)	136 (2)
$N5 - H3 \cdots N1$	0.87 (3)	2.15 (3)	3.014 (3)	173 (3)
$C18-H18\cdots Cg1^{ii}$	0.93	2.80	3.650 (3)	152
$C24-H24\cdots Cg2^{iii}$		2.74	3.668 (3)	174

Symmetry codes: (i) x - 1, y, z; (ii) $-x - \frac{3}{2}$, $y - \frac{1}{2}$, $-z - \frac{1}{2}$; (iii) -x + 2, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[‡] Additional correspondence author, e-mail: aamr1963@yahoo.com.

We thank the Research Center of the College of Pharmacy and Deanship of Scientific Research of King Saud University for supporting this study. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7046).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Al-Ghamdi, A. M., Abd EL-Wahab, A. H. F., Mohamed, H. M. & El-Agrody, A. M. (2012). *Lett. Drug. Des. Discov.* 9, 459–470.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. El-Agrody, A. M., Khattab, E. S. A. E. H., Fouda, A. M. & Al-Ghamdi, A. M.
- (2012). Med. Chem. Res. 22, 1339–1355.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model., 19, 557-559.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X.-S., Shi, D.-Q. & Tu, S.-J. (2003). Chin. J. Chem. 21, 1114-1117.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, 0462-0463 [doi:10.1107/S1600536813005217]

2-Amino-4-(4-chlorophenyl)-4H-chromeno[8,7-b]pyridine-3-carbonitrile

Abd El-Galil E. Amr, Ahmed M. El-Agrody, Nermien M. Sabry, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Motivated by their biological activities and in continuation of an on-going programme on the chemistry of 4*H*-pyran derivatives (Al-Ghamdi *et al.*, 2012; El-Agrody *et al.*, 2012), the synthesis and crystal structure determination of (I) is reported.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As illustrated in Fig. 2, where the O2containing molecule is super-imposed upon the inverse of the O1-containing molecule, the molecules are virtually superimposable with differences apparent in the relationship between the 4*H*-chromeno[8,7-*b*]pyridine residue and the attached benzene ring. For the O1-containing molecule, the r.m.s. deviation of the 14 non-hydrogen atoms comprising the fused ring system is 0.037 Å, the dihedral angle between this and the benzene ring is 79.01 (12)° and the twist between these groups is manifested in the C7—C12—C14—C15 torsion angle of -132.9 (3)°. The comparable values for the second molecule are 0.042 Å, 76.22 (11)° and 149.0 (3)°, respectively. The observed conformation is in accord with that established previously for the 2-chloro analogue (Wang *et al.*, 2003).

The most prominent feature of the crystal packing is the formation of supramolecular zigzag chains along the *a* axis mediated by (amino)N—H···N(pyridyl) hydrogen bonding, Fig. 3 and Table 1. Whereas the second N1-bound H2 atom forms a weak interaction to the N5 atom, Table 1, reinforcing the chain, the second N2-bound H4 atom does not form a significant intermolecular interaction. The chains are connected into a three-dimensional architecture by C—H··· π interactions along with Cl2···Cl2ⁱ contacts [Cl2···Cl2ⁱ = 3.3896 (14) Å for *i*: 2 - *x*, 1 - *y*, 2 - *z*], Fig. 4.

S2. Experimental

A solution of 8-hydroxyquinoline (0.01 mol) in EtOH (30 ml) was treated with α -cyano-*p*-chlorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated for 60 minutes by which time complete precipitation occurred. The solid product was collected by filtration and recrystallized from ethanol to give yellow prisms of the title compound, (I); *M*.pt: 522–523 K.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The N-bound-H atoms were refined freely.

Figure 1

The molecular structures of the two independent molecules comprising the asymmetric unit in (I) showing displacement ellipsoids at the 35% probability level.

Figure 2

Overlay diagram of the two independent molecules in (I) with the inverted N1-containing molecule illustrated in red. The molecules are overlaid so that the pyridyl rings are superimposed.

Figure 3

A view of the supramolecular chain along the *a* axis in (I) sustained by N—H…N hydrogen bonding, shown as blue dashed lines.

Figure 4

A view in projection down the *a* axis of the crystal packing in (I). The N—H···N, C—H··· π and Cl···Cl interactions are shown as blue, purple and orange dashed lines, respectively.

2-Amino-4-(4-chlorophenyl)-4H-chromeno[8,7-b]pyridine-3-carbonitrile

Crystal data

C₁₉H₁₂ClN₃O $M_r = 333.77$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.5311 (8) Å b = 35.129 (3) Å c = 14.0903 (14) Å $\beta = 101.740$ (11)° V = 3165.2 (6) Å³ Z = 8

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.833, T_{\max} = 1.000$
diffractometer with an Atlas detector	20646 measured reflections
Radiation source: SuperNova (Mo) X-ray	7326 independent reflections
Source	3471 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.068$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
ω scan	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -44 \rightarrow 45$
(CrysAlis PRO; Agilent, 2011)	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of independent
$u^{D}(E^{2}) = 0.164$	and constrained refinement

F(000) = 1376

 $\theta = 2.9 - 27.5^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$

Prism, yellow

 $0.30 \times 0.20 \times 0.05 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.401 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2452 reflections

	2 1
$wR(F^2) = 0.164$	and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2]$
7326 reflections	where $P = (F_0^2 + 2F_c^2)/3$
450 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.21 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.0023 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.14716 (19)	0.04691 (3)	0.61417 (7)	0.0887 (4)	
Cl2	0.8629 (2)	0.47842 (3)	0.89931 (6)	0.1067 (5)	

01	0.1506 (3)	0.25977 (5)	0.34064 (13)	0.0470 (5)
02	0.6996 (3)	0.35767 (5)	0.38366 (13)	0.0464 (5)
N1	0.4684 (4)	0.27492 (6)	0.25590 (15)	0.0455 (6)
N2	-0.0484 (5)	0.28690 (7)	0.43039 (19)	0.0494 (7)
N3	-0.3636 (5)	0.21391 (8)	0.5043 (2)	0.0800 (10)
N4	1.0071 (4)	0.35491 (6)	0.28969 (16)	0.0475 (6)
N5	0.4811 (5)	0.31956 (7)	0.4397 (2)	0.0500 (7)
N6	0.2277 (5)	0.37488 (8)	0.5911 (2)	0.0873 (11)
C1	0.6186 (5)	0.28248 (8)	0.2095 (2)	0.0512 (8)
H1A	0.6696	0.3073	0.2126	0.061*
C2	0.7079 (5)	0.25603 (9)	0.15559 (19)	0.0528 (8)
H2A	0.8134	0.2632	0.1237	0.063*
C3	0.6363 (5)	0.21963 (9)	0.15116 (19)	0.0511 (8)
H3A	0.6953	0.2014	0.1171	0.061*
C4	0.4729 (5)	0.20941 (8)	0.19792 (18)	0.0445 (7)
C5	0.3886 (5)	0.17228 (8)	0.1979 (2)	0.0549 (9)
H5	0.4396	0.1529	0.1641	0.066*
C6	0.2346 (5)	0.16457 (8)	0.2465 (2)	0.0542 (8)
H6	0.1832	0.1399	0.2458	0.065*
C7	0.1495 (5)	0.19300 (7)	0.29835 (18)	0.0421 (7)
C8	0.2278 (5)	0.22901 (7)	0.29687 (18)	0.0403 (7)
C9	0.3921 (5)	0.23850 (7)	0.24918 (17)	0.0407 (7)
C10	-0.0007(5)	0.25317 (8)	0.39165 (18)	0.0409 (7)
C11	-0.0810(5)	0.21862 (8)	0.40245 (19)	0.0437 (7)
C12	-0.0248(5)	0.18351(7)	0.35028 (19)	0.0458 (7)
H12	-0.1477	0.1772	0.3003	0.055*
C13	-0.2384(6)	0.21591 (8)	0.4580(2)	0.0531 (8)
C14	0.0212 (5)	0.14887 (8)	0.4167(2)	0.0453 (7)
C15	-0.1253(6)	0.12104 (9)	0.4144(2)	0.0702 (10)
H15	-0.2530	0.1233	0.3712	0.084*
C16	-0.0887(7)	0.08930 (9)	0.4751(3)	0.0751 (11)
H16	-0.1905	0.0706	0.4728	0.090*
C17	0.0984(7)	0.08624 (9)	0.5375(2)	0.0579 (9)
C18	0.2466 (6)	0.11359 (10)	0.5426(2)	0.0690 (10)
H18	0.3736	0.1113	0.5863	0.083*
C19	0.2072 (6)	0.14497 (9)	0.4821 (2)	0.0637 (9)
H19	0.3086	0.1638	0.4858	0.076*
C20	1.1555 (5)	0.35407 (9)	0.2385 (2)	0.0552 (9)
H20	1.1859	0.3308	0.2131	0.066*
C21	1.2701 (5)	0.38601 (10)	0.2201 (2)	0.0584 (9)
H21	1.3715	0.3838	0.1827	0.070*
C22	1.2309 (5)	0.42014 (9)	0.2577(2)	0.0562 (9)
H22	1.3058	0.4416	0.2461	0.067*
C23	1.0766 (5)	0.42312 (8)	0.31426 (19)	0.0464 (8)
C24	1.0277 (5)	0.45694 (8)	0.3591 (2)	0.0540 (9)
H24	1.0983	0.4793	0.3510	0.065*
C25	0.8789 (5)	0.45719 (7)	0.4137 (2)	0.0482 (8)
H25	0.8528	0.4797	0.4439	0.058*
-	· · · · · ·	· · · · ·		

C26	0.7618 (5)	0.42418 (7)	0.42611 (17)	0.0394 (7)
C27	0.8066 (5)	0.39158 (7)	0.38100 (18)	0.0381 (7)
C28	0.9661 (5)	0.38958 (7)	0.32597 (17)	0.0400 (7)
C29	0.5538 (5)	0.35562 (7)	0.43977 (18)	0.0404 (7)
C30	0.5022 (5)	0.38585 (7)	0.48884 (18)	0.0401 (7)
C31	0.5956 (5)	0.42540 (7)	0.48574 (18)	0.0405 (7)
H31	0.4841	0.4422	0.4525	0.049*
C32	0.3499 (6)	0.37995 (8)	0.5446 (2)	0.0537 (8)
C33	0.6695 (5)	0.44071 (7)	0.5878 (2)	0.0434 (7)
C34	0.5327 (6)	0.46012 (8)	0.6330(2)	0.0602 (9)
H34	0.3988	0.4657	0.5987	0.072*
C35	0.5929 (7)	0.47155 (9)	0.7299 (3)	0.0708 (11)
H35	0.4991	0.4845	0.7599	0.085*
C36	0.7888 (7)	0.46368 (9)	0.7799 (2)	0.0644 (10)
C37	0.9283 (6)	0.44463 (8)	0.7368 (2)	0.0613 (9)
H37	1.0626	0.4395	0.7713	0.074*
C38	0.8671 (5)	0.43299 (8)	0.6410 (2)	0.0521 (8)
H38	0.9613	0.4197	0.6120	0.063*
H1	-0.032 (6)	0.3060 (10)	0.397 (2)	0.081 (12)*
H2	-0.157 (5)	0.2859 (8)	0.460 (2)	0.064 (11)*
H3	0.469 (5)	0.3081 (9)	0.384 (2)	0.073 (11)*
H4	0.369 (5)	0.3152 (8)	0.467 (2)	0.061 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1187 (10)	0.0705 (6)	0.0826 (6)	0.0147 (6)	0.0336 (6)	0.0305 (5)
Cl2	0.1573 (13)	0.1087 (8)	0.0572 (5)	-0.0307 (8)	0.0293 (6)	-0.0242 (5)
01	0.0519 (15)	0.0330 (10)	0.0612 (11)	-0.0010 (10)	0.0238 (11)	-0.0079 (8)
O2	0.0496 (14)	0.0337 (10)	0.0638 (12)	-0.0065 (10)	0.0302 (11)	-0.0081 (9)
N1	0.0483 (18)	0.0410 (13)	0.0499 (13)	-0.0018 (12)	0.0161 (13)	-0.0042 (11)
N2	0.059 (2)	0.0390 (14)	0.0557 (15)	0.0046 (14)	0.0237 (15)	-0.0015 (12)
N3	0.074 (2)	0.085 (2)	0.090 (2)	-0.0125 (19)	0.038 (2)	-0.0017 (17)
N4	0.0521 (18)	0.0416 (13)	0.0539 (14)	0.0040 (13)	0.0228 (13)	0.0030 (11)
N5	0.058 (2)	0.0373 (13)	0.0627 (16)	-0.0117 (13)	0.0308 (16)	-0.0083 (12)
N6	0.093 (3)	0.0567 (18)	0.135 (3)	0.0027 (18)	0.077 (2)	0.0025 (18)
C1	0.053 (2)	0.0495 (17)	0.0538 (17)	-0.0009 (16)	0.0169 (17)	0.0005 (14)
C2	0.052 (2)	0.064 (2)	0.0446 (15)	0.0023 (18)	0.0150 (15)	0.0032 (15)
C3	0.057 (2)	0.0555 (19)	0.0419 (15)	0.0101 (17)	0.0140 (16)	-0.0029 (14)
C4	0.050(2)	0.0438 (16)	0.0388 (14)	0.0091 (15)	0.0070 (14)	-0.0051 (12)
C5	0.064 (3)	0.0407 (16)	0.0620 (18)	0.0061 (17)	0.0180 (18)	-0.0129 (14)
C6	0.062 (2)	0.0406 (16)	0.0614 (18)	-0.0049 (17)	0.0148 (18)	-0.0123 (14)
C7	0.044 (2)	0.0355 (14)	0.0461 (15)	0.0006 (14)	0.0074 (14)	-0.0048 (12)
C8	0.043 (2)	0.0335 (14)	0.0431 (14)	0.0026 (14)	0.0069 (14)	-0.0067 (12)
C9	0.041 (2)	0.0410 (15)	0.0395 (14)	0.0021 (14)	0.0073 (14)	-0.0007 (12)
C10	0.041 (2)	0.0410 (15)	0.0413 (14)	0.0035 (15)	0.0103 (14)	-0.0009 (12)
C11	0.038 (2)	0.0440 (16)	0.0491 (16)	0.0006 (15)	0.0102 (15)	0.0001 (13)
C12	0.042 (2)	0.0415 (15)	0.0502 (16)	-0.0049 (15)	0.0015 (15)	-0.0017 (13)

C13	0.052 (2)	0.0469 (18)	0.0615 (19)	-0.0057 (17)	0.0152 (18)	0.0030 (14)
C14	0.043 (2)	0.0384 (15)	0.0537 (17)	-0.0019 (15)	0.0079 (16)	-0.0024 (13)
C15	0.061 (3)	0.057 (2)	0.085 (2)	-0.016 (2)	-0.004 (2)	0.0148 (18)
C16	0.079 (3)	0.054 (2)	0.089 (2)	-0.025 (2)	0.009 (2)	0.0132 (19)
C17	0.074 (3)	0.0490 (18)	0.0531 (18)	0.004 (2)	0.0177 (19)	0.0036 (15)
C18	0.065 (3)	0.068 (2)	0.067 (2)	-0.003 (2)	-0.0054 (19)	0.0121 (18)
C19	0.055 (2)	0.0527 (19)	0.077 (2)	-0.0133 (18)	-0.0028 (19)	0.0052 (17)
C20	0.059 (2)	0.0555 (19)	0.0569 (17)	0.0111 (18)	0.0257 (18)	0.0023 (15)
C21	0.053 (2)	0.072 (2)	0.0566 (18)	0.0007 (19)	0.0259 (17)	0.0088 (17)
C22	0.052 (2)	0.060 (2)	0.0598 (18)	-0.0096 (18)	0.0187 (17)	0.0118 (16)
C23	0.049 (2)	0.0456 (16)	0.0460 (15)	-0.0031 (16)	0.0127 (15)	0.0086 (13)
C24	0.065 (3)	0.0423 (17)	0.0570 (17)	-0.0141 (17)	0.0172 (18)	0.0074 (14)
C25	0.056 (2)	0.0326 (15)	0.0572 (17)	-0.0037 (15)	0.0137 (17)	-0.0016 (13)
C26	0.0399 (19)	0.0338 (14)	0.0451 (14)	-0.0006 (14)	0.0100 (14)	0.0026 (12)
C27	0.0391 (19)	0.0304 (13)	0.0464 (15)	-0.0025 (13)	0.0122 (14)	0.0030 (11)
C28	0.044 (2)	0.0383 (14)	0.0390 (14)	0.0003 (14)	0.0103 (14)	0.0042 (12)
C29	0.041 (2)	0.0349 (14)	0.0480 (15)	-0.0028 (14)	0.0147 (14)	-0.0002 (12)
C30	0.0402 (19)	0.0363 (14)	0.0468 (15)	-0.0034 (14)	0.0158 (14)	-0.0042 (12)
C31	0.0400 (19)	0.0319 (13)	0.0505 (15)	0.0037 (14)	0.0118 (14)	-0.0024 (12)
C32	0.058 (2)	0.0343 (15)	0.076 (2)	-0.0001 (16)	0.0303 (19)	-0.0032 (14)
C33	0.049 (2)	0.0294 (13)	0.0554 (16)	0.0000 (15)	0.0186 (16)	-0.0050 (12)
C34	0.053 (2)	0.0528 (18)	0.079 (2)	-0.0001 (18)	0.0229 (19)	-0.0214 (16)
C35	0.080 (3)	0.061 (2)	0.083 (2)	-0.015 (2)	0.046 (2)	-0.0294 (19)
C36	0.084 (3)	0.058 (2)	0.0573 (19)	-0.017 (2)	0.028 (2)	-0.0092 (16)
C37	0.075 (3)	0.0530 (18)	0.0532 (18)	-0.0008 (19)	0.0072 (18)	0.0023 (15)
C38	0.059 (2)	0.0430 (16)	0.0554 (18)	0.0070 (17)	0.0150 (17)	-0.0033 (14)

Geometric parameters (Å, °)

Cl1—C17	1.743 (3)	C14—C19	1.374 (4)
Cl2—C36	1.732 (3)	C15—C16	1.396 (4)
O1-C10	1.355 (3)	C15—H15	0.9300
O1—C8	1.389 (3)	C16—C17	1.357 (5)
O2—C29	1.358 (3)	C16—H16	0.9300
O2—C27	1.385 (3)	C17—C18	1.355 (4)
N1-C1	1.312 (3)	C18—C19	1.385 (4)
N1—C9	1.369 (3)	C18—H18	0.9300
N2-C10	1.367 (3)	C19—H19	0.9300
N2—H1	0.84 (3)	C20—C21	1.402 (4)
N2—H2	0.89 (3)	C20—H20	0.9300
N3—C13	1.147 (4)	C21—C22	1.356 (4)
N4—C20	1.321 (3)	C21—H21	0.9300
N4—C28	1.368 (3)	C22—C23	1.411 (4)
N5-C29	1.353 (3)	C22—H22	0.9300
N5—H3	0.87 (3)	C23—C28	1.409 (4)
N5—H4	0.91 (3)	C23—C24	1.412 (4)
N6—C32	1.145 (4)	C24—C25	1.357 (4)
C1—C2	1.400 (4)	C24—H24	0.9300

C1—H1A	0.9300	C25—C26	1.419 (4)
C2—C3	1.359 (4)	C25—H25	0.9300
C2—H2A	0.9300	C26—C27	1.370 (3)
C3—C4	1.410 (4)	C26—C31	1.502 (4)
С3—НЗА	0.9300	C27—C28	1.421 (4)
C4—C9	1.414 (3)	C29—C30	1.347 (3)
C4—C5	1.416 (4)	C30—C32	1.403 (4)
C5—C6	1.354 (4)	C30—C31	1.522 (3)
С5—Н5	0.9300	C31—C33	1.520 (4)
C6—C7	1.416 (4)	C31—H31	0.9800
С6—Н6	0.9300	C33—C34	1.378 (4)
C7—C8	1.366 (4)	C33—C38	1.381 (4)
C7-C12	1 510 (4)	C_{34} C 35	1401(5)
C8-C9	1.310(1) 1 417(4)	C34—H34	0.9300
C10-C11	1.117(1) 1.343(4)	C35-C36	1 358 (5)
C11-C13	1.313(1) 1.417(4)	C35—H35	0.9300
	1.510 (4)	C_{36} C_{37}	1 368 (5)
C12-C14	1.517(4) 1.527(4)	$C_{30} - C_{37}$	1.300(3) 1 390(4)
C12 H12	0.9800	$C_{37} H_{37}$	0.9300
C_{12} -112 C_{14} C_{15}	1.364(4)	$C_{3}^{28} H_{38}^{28}$	0.9300
014-013	1.304 (4)	038-1138	0.9300
C10—O1—C8	118.2 (2)	C17—C18—H18	120.3
C29—O2—C27	118.59 (19)	C19—C18—H18	120.3
C1—N1—C9	116.9 (2)	C14—C19—C18	121.4 (3)
C10—N2—H1	114 (2)	C14—C19—H19	119.3
C10—N2—H2	115 (2)	C18—C19—H19	119.3
H1—N2—H2	120 (3)	N4—C20—C21	124.2 (3)
$C_{20} - N_{4} - C_{28}$	1164(2)	N4—C20—H20	117.9
C29—N5—H3	114 (2)	C21—C20—H20	117.9
$C_{29} N_{5} H_{4}$	1183(19)	$C^{22} - C^{21} - C^{20}$	119.0(3)
H3N5H4	111 (3)	C22 C21 C20	120.5
N1-C1-C2	1249(3)	C20—C21—H21	120.5
N1 - C1 - H1A	117.5	$C_{20} = C_{21} = C_{23}$	120.0(3)
$C_2 - C_1 - H_1 A$	117.5	C21 C22 C23	120.0 (3)
$C_2 = C_1$	117.5 118.2(3)	C23_C22_H22	120.0
C_{3} C_{2} H_{2}	120.9	$C_{23} = C_{22} = 1122$ $C_{28} = C_{23} = C_{22}$	120.0 116.5(3)
C1 - C2 - H2A	120.9	C_{28} C_{23} C_{24}	110.5(3) 1189(3)
$C_1 - C_2 - M_2 A$	120.9 120.3(3)	$C_{20} = C_{23} = C_{24}$	110.9(3)
$C_2 = C_3 = C_4$	110.0	$C_{22} = C_{23} = C_{24}$	124.0(3) 120.8(3)
$C_2 = C_3 = H_3 \Lambda$	119.9	$C_{25} = C_{24} = C_{25}$	120.8 (3)
$C_1 = C_2 = H_2 A$	116.8 (3)	$C_{23} = C_{24} = H_{24}$	119.0
$C_{3}^{-} C_{4}^{-} C_{5}^{-}$	110.8(3) 1245(3)	$C_{23} - C_{24} - H_{24}$	119.0
C_{3}	124.3(3) 1187(3)	$C_{24} = C_{25} = C_{20}$	122.0(3)
$C_{1} = C_{1} = C_{1}$	120.0(3)	$C_{24} = C_{23} = 1123$ $C_{26} = C_{25} = 1125$	119.0
C6 C5 ^{U5}	120.7 (3)	C_{20} C_{23} C_{1123} C_{27} C_{26} C_{25}	117.0 117.0(2)
$C_0 = C_0 = 113$	117.0	$C_{27} = C_{20} = C_{23}$	117.0(2) 122.0(2)
C_{+} C_{5} C_{6} C_{7}	119.0	$C_2 = C_2 = C_3 = C_3 = C_2 = C_3 $	122.0(2)
$C_{5} = C_{6} = U_{6}$	122.0 (3)	$C_{25} - C_{20} - C_{51}$	120.9(2)
СЭ-СО-ПО	119.0	$C_{20} - C_{2} - C_{2}$	123.4 (2)

С7—С6—Н6	119.0	C26—C27—C28	123.0 (2)
C8—C7—C6	117.2 (3)	O2—C27—C28	113.7 (2)
C8—C7—C12	122.2 (2)	N4—C28—C23	123.8(2)
C6-C7-C12	120.5 (2)	N4—C28—C27	118.0 (2)
C7-C8-01	122.9(2)	C_{23} C_{28} C_{27}	118.2(2)
C7 - C8 - C9	122.9(2) 123.2(2)	$C_{20} = C_{20} = C_{20}$	127.9(3)
01 - C8 - C9	123.2(2) 1140(2)	$C_{30} - C_{29} - O_{2}^{29}$	127.9(3) 1224(2)
N1 - C9 - C4	$122 \ 8 \ (3)$	$N_{2} = C_{2} = C_{2}$	122.1(2) 109.7(2)
N1 - C9 - C8	122.0(3) 1191(2)	C_{29} C_{30} C_{32}	105.7(2)
C_{4}	119.1(2) 118.0(2)	$C_{29} = C_{30} = C_{32}$	110.0(2) 124.2(2)
C_{11} C_{10} C_{10} C_{10}	110.0(2) 123.0(2)	$C_{22} = C_{30} = C_{31}$	124.2(2)
C_{11} C_{10} N_2	123.7(2) 127.7(3)	$C_{32} = C_{30} = C_{31}$	117.0(2) 114.4(2)
C11 - C10 - N2	127.7(3) 108.2(2)	$C_{20} = C_{31} = C_{33}$	114.4(2) 100.2(2)
$C_{10} = C_{10} = N_2$	100.3(2) 117.0(2)	$C_{20} = C_{31} = C_{30}$	109.2(2)
C10 - C11 - C13	117.9(3)	$C_{33} = C_{31} = C_{30}$	110.4 (2)
C10-C11-C12	122.8(2)	С20—С31—Н31	107.5
C13 - C12 - C12	119.1 (3)	C33—C31—H31	107.5
$C_{}C_{12}$	109.6 (2)	C30—C31—H31	107.5
C/C12C14	113.5 (2)	$N_{0} = C_{32} = C_{30}$	1/8.9 (4)
C11—C12—C14	112.8 (2)	C34—C33—C38	118.0 (3)
С/—С12—Н12	106.8	C34—C33—C31	120.1 (3)
СП—С12—Н12	106.8	C38—C33—C31	121.7 (2)
С14—С12—Н12	106.8	C33—C34—C35	120.8 (3)
N3—C13—C11	178.9 (4)	C33—C34—H34	119.6
C15—C14—C19	117.7 (3)	С35—С34—Н34	119.6
C15—C14—C12	120.4 (3)	C36—C35—C34	119.7 (3)
C19—C14—C12	121.8 (3)	С36—С35—Н35	120.2
C14—C15—C16	121.7 (4)	С34—С35—Н35	120.2
C14—C15—H15	119.1	C35—C36—C37	120.8 (3)
C16—C15—H15	119.1	C35—C36—Cl2	119.4 (3)
C17—C16—C15	118.7 (3)	C37—C36—Cl2	119.8 (3)
С17—С16—Н16	120.7	C36—C37—C38	119.3 (3)
C15—C16—H16	120.7	С36—С37—Н37	120.3
C16—C17—C18	121.2 (3)	С38—С37—Н37	120.3
C16—C17—Cl1	119.4 (3)	C33—C38—C37	121.4 (3)
C18—C17—Cl1	119.4 (3)	С33—С38—Н38	119.3
C17—C18—C19	119.3 (3)	С37—С38—Н38	119.3
C9—N1—C1—C2	-1.2 (4)	C28—N4—C20—C21	0.1 (5)
N1—C1—C2—C3	-0.6 (5)	N4—C20—C21—C22	1.0 (5)
C1—C2—C3—C4	1.5 (4)	C20—C21—C22—C23	-0.1 (5)
C2—C3—C4—C9	-0.7 (4)	C21—C22—C23—C28	-1.8(4)
C2—C3—C4—C5	-179.6 (3)	C21—C22—C23—C24	178.1 (3)
C3—C4—C5—C6	178.5 (3)	C28—C23—C24—C25	0.9 (5)
C9—C4—C5—C6	-0.5 (5)	C22—C23—C24—C25	-178.9 (3)
C4—C5—C6—C7	0.7 (5)	C23—C24—C25—C26	-1.9 (5)
C5—C6—C7—C8	0.6 (5)	C24—C25—C26—C27	0.6 (4)
C5—C6—C7—C12	178.9 (3)	C24—C25—C26—C31	-179.0 (3)
C6—C7—C8—O1	176.7 (3)	C25—C26—C27—O2	-177.5 (2)
	× /		···· (=/

C12—C7—C8—O1	-1.6 (4)	C31—C26—C27—O2	2.2 (4)
C6—C7—C8—C9	-2.1 (4)	C25—C26—C27—C28	1.8 (4)
C12—C7—C8—C9	179.6 (3)	C31—C26—C27—C28	-178.6 (3)
C10—O1—C8—C7	3.9 (4)	C29—O2—C27—C26	-5.2 (4)
C10—O1—C8—C9	-177.2 (2)	C29—O2—C27—C28	175.5 (2)
C1—N1—C9—C4	2.1 (4)	C20-N4-C28-C23	-2.2 (4)
C1—N1—C9—C8	-179.1 (3)	C20—N4—C28—C27	179.7 (3)
C3—C4—C9—N1	-1.2 (4)	C22—C23—C28—N4	3.0 (4)
C5—C4—C9—N1	177.8 (3)	C24—C23—C28—N4	-176.8 (3)
C3—C4—C9—C8	180.0 (3)	C22—C23—C28—C27	-178.8 (3)
C5—C4—C9—C8	-1.0 (4)	C24—C23—C28—C27	1.3 (4)
C7—C8—C9—N1	-176.5 (3)	C26-C27-C28-N4	175.5 (3)
O1—C8—C9—N1	4.6 (4)	O2—C27—C28—N4	-5.2 (4)
C7—C8—C9—C4	2.3 (4)	C26—C27—C28—C23	-2.7 (4)
O1—C8—C9—C4	-176.6 (2)	O2—C27—C28—C23	176.6 (2)
C8-01-C10-C11	-0.1 (4)	C27—O2—C29—C30	3.4 (4)
C8—O1—C10—N2	178.2 (2)	C27—O2—C29—N5	-174.5 (2)
O1—C10—C11—C13	179.8 (3)	N5-C29-C30-C32	-2.3 (5)
N2-C10-C11-C13	1.9 (5)	O2—C29—C30—C32	-179.7 (3)
O1—C10—C11—C12	-6.0 (5)	N5-C29-C30-C31	178.9 (3)
N2-C10-C11-C12	176.0 (3)	O2—C29—C30—C31	1.4 (5)
C8—C7—C12—C11	-3.7 (4)	C27—C26—C31—C33	126.5 (3)
C6—C7—C12—C11	178.1 (3)	C25—C26—C31—C33	-53.9 (3)
C8—C7—C12—C14	-130.8 (3)	C27—C26—C31—C30	2.3 (4)
C6—C7—C12—C14	51.0 (4)	C25—C26—C31—C30	-178.1 (2)
C10—C11—C12—C7	7.4 (4)	C29—C30—C31—C26	-4.0 (4)
C13—C11—C12—C7	-178.5 (3)	C32—C30—C31—C26	177.1 (3)
C10-C11-C12-C14	134.9 (3)	C29—C30—C31—C33	-130.6(3)
C13—C11—C12—C14	-51.0 (4)	C32—C30—C31—C33	50.5 (4)
C7—C12—C14—C15	-132.9 (3)	C26—C31—C33—C34	149.0 (3)
C11—C12—C14—C15	101.7 (3)	C30—C31—C33—C34	-87.4 (3)
C7—C12—C14—C19	48.7 (4)	C26—C31—C33—C38	-36.7 (4)
C11—C12—C14—C19	-76.7 (4)	C30—C31—C33—C38	87.0 (3)
C19—C14—C15—C16	-0.7 (5)	C38—C33—C34—C35	-0.1 (4)
C12—C14—C15—C16	-179.2 (3)	C31—C33—C34—C35	174.5 (3)
C14—C15—C16—C17	-0.3 (5)	C33—C34—C35—C36	0.4 (5)
C15—C16—C17—C18	1.1 (5)	C34—C35—C36—C37	-0.1 (5)
C15—C16—C17—Cl1	179.8 (3)	C34—C35—C36—C12	179.2 (2)
C16—C17—C18—C19	-0.9 (5)	C35—C36—C37—C38	-0.6 (5)
Cl1—C17—C18—C19	-179.5 (2)	C12—C36—C37—C38	-179.9 (2)
C15—C14—C19—C18	1.0 (5)	C34—C33—C38—C37	-0.6 (4)
C12—C14—C19—C18	179.5 (3)	C31—C33—C38—C37	-175.1 (2)
C17—C18—C19—C14	-0.3 (5)	C36—C37—C38—C33	0.9 (5)
			(-)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the	centroids of the 1	N4.C20-C23	3.C28 and C	33-C38 rings	. respectively.

D—H	H···A	$D^{\dots}A$	D—H···A
0.84 (3)	2.34 (4)	3.172 (4)	174 (3)
0.89 (3)	2.61 (3)	3.308 (5)	136 (2)
0.87 (3)	2.15 (3)	3.014 (3)	173 (3)
0.93	2.80	3.650 (3)	152
0.93	2.74	3.668 (3)	174
	<i>D</i> —H 0.84 (3) 0.89 (3) 0.87 (3) 0.93 0.93	D—H H···A 0.84 (3) 2.34 (4) 0.89 (3) 2.61 (3) 0.87 (3) 2.15 (3) 0.93 2.80 0.93 2.74	D—HH···AD···A0.84 (3)2.34 (4)3.172 (4)0.89 (3)2.61 (3)3.308 (5)0.87 (3)2.15 (3)3.014 (3)0.932.803.650 (3)0.932.743.668 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-3/2, *y*-1/2, -*z*-1/2; (iii) -*x*+2, -*y*+1, -*z*+1.