Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (E)-N-[(E)-3-(4-Nitrophenyl)allylidene]naphthalen-1-amine

### Kee Dal Nam,<sup>a</sup> Joo Hwan Cha,<sup>b</sup> Yong Seo Cho,<sup>c</sup> Jae Kyun Lee<sup>c</sup>\* and Ae Nim Pae<sup>c</sup>

<sup>a</sup>Chemical Kinomics Research Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, <sup>b</sup>Advanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and <sup>c</sup>Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea Correspondence e-mail: j9601@kist.re.kr

Received 28 February 2013; accepted 6 March 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 15.6.

In the title compound,  $C_{19}H_{14}N_2O_2$ , the dihedral angle between the mean planes of the 4-nitrophenyl ring and the naphthalene ring system is 12.79 (2)°. The imine group displays a C-C-N=C torsion angle of 41.0 (2)° and the C=N group has an *E* conformation. In the crystal, weak C-H···O hydrogen bonds link molecules into layers parallel to the *b* axis.

### **Related literature**

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya *et al.* (2010); Rokade & Sayyed (2009). For a related structure, see: Yang *et al.* (2012).



### Experimental

#### Crystal data

### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Rigaku, 1995)  $T_{\rm min} = 0.714, T_{\rm max} = 0.991$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ |  |
|---------------------------------|--|
| $vR(F^2) = 0.125$               |  |
| S = 1.00                        |  |
| 3426 reflections                |  |
| 220 parameters                  |  |

#### **Table 1** Hydrogen-bond geometry (Å, °).

| , , ,                                      |              |                         |                        |                                      |
|--------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $D - H \cdots A$                           | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $C5-H5\cdotsO1^{i}$ $C15-H15\cdotsO2^{ii}$ | 0.93<br>0.93 | 2.66<br>2.46            | 3.422 (3)<br>3.326 (3) | 139<br>155                           |
|                                            |              |                         |                        |                                      |

14376 measured reflections

 $R_{\rm int} = 0.038$ 

refinement  $\Delta \rho_{\text{max}} = 0.16 \text{ e } \text{ Å}^{-3}$  $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{ Å}^{-3}$ 

3426 independent reflections 1824 reflections with  $F^2 > 2\sigma(F^2)$ 

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) x - 1, y, z + 1; (ii) x - 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2100).

### References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rokade, Y. B. & Sayyed, R. Z. (2009). RASAYAN J. Chem. 2, 972–980.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). *Eur. J. Med. Chem.* **2**, 1854–1867.
- Yang, P., Ding, B. & Du, G.-X. (2012). Acta Cryst. E68, o2966.

# supporting information

Acta Cryst. (2013). E69, o548 [doi:10.1107/S1600536813006417]

# (E)-N-[(E)-3-(4-Nitrophenyl)allylidene]naphthalen-1-amine

# Kee Dal Nam, Joo Hwan Cha, Yong Seo Cho, Jae Kyun Lee and Ae Nim Pae

## S1. Comment

Naphthalene derivatives has been identified as new range of potent antimicrobials effective against wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and interesting antibiotic properties with minimum toxicity. (Rokade & Sayyed, 2009; Upadhayaya *et al.* 2010). In this paper, the title compound was synthesized and characterized by X-ray diffraction. Crystal structure of a similar compound, *N*-(Naphthalen-1-yl­methyl­idene)-4*H*-1,2,4-triazol-4-amine, was described previously by Yang *et al.* (2012).

In the title compound (Fig. 1),  $C_{19}H_{14}N_2O_2$ , the dihedral angle between the mean planes of the 4-nitrophenyl ring (C14— C19) and the naphthalene ring (C1—C10) is 12.79 (2)°. The imine group displays a torsion angle [C1–C10–N1–C11 = 41.0 (2)°] and the imine [C11 = N1] group has an (*E*) configuration. In the crystal, weak intermolecular C—H…O hydrogen bonds link molecules into layers parallel to the *b* axis.

### **S2. Experimental**

To a solution of 1-naphthylamine (2.0 mmol) in anhydrous ethanol (40 ml) was treated with equimolar quantities of substituted 4-nitrocinnamaldehydes. The mixture was refluxed for 3 days, and the progress of reaction was monitored by TLC. After completion of reaction, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound as a yellow solid in yield 88%. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

## **S3. Refinement**

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).



# Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.

# (E)-N-[(E)-3-(4-Nitrophenyl)allylidene]naphthalen-1-amine

| Crystal data                   |                                                       |
|--------------------------------|-------------------------------------------------------|
| $C_{19}H_{14}N_2O_2$           | V = 1507.8 (2) Å <sup>3</sup>                         |
| $M_r = 302.33$                 | Z = 4                                                 |
| Monoclinic, $P2_1/c$           | F(000) = 632.00                                       |
| Hall symbol: -P 2ybc           | $D_{\rm x} = 1.332 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 7.7021 (5)  Å              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71075$ Å |
| b = 13.8713 (12)  Å            | Cell parameters from 7945 reflections                 |
| c = 14.2554 (10)  Å            | $\theta = 3.1 - 27.5^{\circ}$                         |
| $\beta = 98.096 \ (2)^{\circ}$ | $\mu=0.09~\mathrm{mm^{-1}}$                           |
|                                |                                                       |

| T = 296  K<br>Chunk, yellow                                                                                                                                                                                                                                | $0.20 \times 0.20 \times 0.10 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rigaku R-AXIS RAPID<br>diffractometer<br>Detector resolution: 10.000 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>ABSCOR</i> ; Rigaku, 1995)<br>$T_{min} = 0.714, T_{max} = 0.991$<br>14376 measured reflections | 3426 independent reflections<br>1824 reflections with $F^2 > 2\sigma(F^2)$<br>$R_{int} = 0.038$<br>$\theta_{max} = 27.5^{\circ}$<br>$h = -8 \rightarrow 9$<br>$k = -18 \rightarrow 17$<br>$l = -18 \rightarrow 18$                                                                                                                                                                                                  |
| Refinement                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Refinement on $F^2$<br>$R[F^2 > 2\sigma(F^2)] = 0.044$<br>$wR(F^2) = 0.125$<br>S = 1.00<br>3426 reflections<br>220 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                         | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0632P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.16$ e Å <sup>-3</sup><br>$\Lambda\rho_{min} = -0.24$ e Å <sup>-3</sup> |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on  $F^2$ . *R*-factor (gt) are based on *F*. The threshold expression of  $F^2 > 2.0 \sigma(F^2)$  is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| 01  | 0.83231 (18) | 0.69908 (11) | 0.01889 (9)  | 0.0893 (5)                  |  |
| O2  | 1.04049 (17) | 0.66549 (11) | 0.13076 (10) | 0.0912 (5)                  |  |
| N1  | 0.28674 (17) | 0.58150 (9)  | 0.58185 (9)  | 0.0559 (4)                  |  |
| N2  | 0.8861 (2)   | 0.68108 (10) | 0.10197 (11) | 0.0639 (4)                  |  |
| C1  | -0.0251 (2)  | 0.57846 (11) | 0.60108 (11) | 0.0571 (4)                  |  |
| C2  | -0.1560 (2)  | 0.57496 (12) | 0.65987 (13) | 0.0646 (5)                  |  |
| C3  | -0.1124 (3)  | 0.57509 (12) | 0.75554 (13) | 0.0650 (5)                  |  |
| C4  | 0.0649 (2)   | 0.57721 (10) | 0.79753 (11) | 0.0531 (4)                  |  |
| C5  | 0.1143 (3)   | 0.57601 (12) | 0.89707 (12) | 0.0656 (5)                  |  |
| C6  | 0.2852 (3)   | 0.57557 (13) | 0.93612 (12) | 0.0708 (5)                  |  |
| C7  | 0.4176 (3)   | 0.57612 (12) | 0.87819 (12) | 0.0667 (5)                  |  |
| C8  | 0.3764 (2)   | 0.57776 (11) | 0.78197 (11) | 0.0566 (4)                  |  |
| C9  | 0.19908 (19) | 0.57918 (10) | 0.73900 (10) | 0.0478 (4)                  |  |
| C10 | 0.1495 (2)   | 0.58192 (10) | 0.63815 (10) | 0.0493 (4)                  |  |
| C11 | 0.2713 (3)   | 0.63110 (12) | 0.50566 (11) | 0.0548 (4)                  |  |
|     |              |              |              |                             |  |

| C12 | 0.4042 (3)   | 0.62977 (12) | 0.44420 (11) | 0.0560 (4) |
|-----|--------------|--------------|--------------|------------|
| C13 | 0.3893 (3)   | 0.67568 (12) | 0.36151 (11) | 0.0548 (4) |
| C14 | 0.5200 (2)   | 0.67695 (10) | 0.29619 (10) | 0.0486 (4) |
| C15 | 0.4674 (2)   | 0.69629 (11) | 0.20060 (10) | 0.0562 (4) |
| C16 | 0.5861 (2)   | 0.69706 (11) | 0.13708 (11) | 0.0546 (4) |
| C17 | 0.75962 (19) | 0.67906 (10) | 0.16958 (10) | 0.0494 (4) |
| C18 | 0.8178 (2)   | 0.66060 (11) | 0.26364 (11) | 0.0571 (5) |
| C19 | 0.6975 (2)   | 0.65988 (11) | 0.32628 (11) | 0.0562 (4) |
| H1  | -0.0568      | 0.5784       | 0.5357       | 0.0685*    |
| H2  | -0.2733      | 0.5725       | 0.6333       | 0.0775*    |
| H3  | -0.2005      | 0.5738       | 0.7939       | 0.0780*    |
| Н5  | 0.0277       | 0.5755       | 0.9364       | 0.0787*    |
| H6  | 0.3146       | 0.5749       | 1.0017       | 0.0850*    |
| H7  | 0.5346       | 0.5754       | 0.9055       | 0.0801*    |
| H8  | 0.4655       | 0.5779       | 0.7442       | 0.0679*    |
| H15 | 0.3498       | 0.7089       | 0.1793       | 0.0674*    |
| H16 | 0.5497       | 0.7095       | 0.0732       | 0.0655*    |
| H18 | 0.9359       | 0.6489       | 0.2843       | 0.0686*    |
| H19 | 0.7353       | 0.6478       | 0.3901       | 0.0674*    |
| H13 | 0.284 (3)    | 0.7118 (12)  | 0.3417 (11)  | 0.064 (5)* |
| H12 | 0.507 (3)    | 0.5928 (12)  | 0.4638 (12)  | 0.072 (6)* |
| H11 | 0.169 (3)    | 0.6735 (11)  | 0.4877 (11)  | 0.062 (5)* |
|     |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| 01  | 0.0896 (10) | 0.1221 (13) | 0.0611 (8)  | 0.0165 (8)   | 0.0280 (8)  | 0.0112 (8)  |
| O2  | 0.0506 (8)  | 0.1242 (12) | 0.1018 (11) | 0.0034 (8)   | 0.0215 (8)  | 0.0112 (9)  |
| N1  | 0.0591 (8)  | 0.0612 (9)  | 0.0492 (8)  | 0.0021 (7)   | 0.0141 (7)  | -0.0007 (7) |
| N2  | 0.0625 (10) | 0.0652 (10) | 0.0666 (10) | -0.0003 (8)  | 0.0182 (8)  | 0.0005 (8)  |
| C1  | 0.0591 (10) | 0.0585 (10) | 0.0523 (9)  | 0.0027 (8)   | 0.0032 (8)  | -0.0049 (8) |
| C2  | 0.0506 (10) | 0.0699 (12) | 0.0729 (12) | 0.0021 (9)   | 0.0070 (9)  | -0.0074 (9) |
| C3  | 0.0546 (10) | 0.0716 (12) | 0.0732 (12) | -0.0002 (9)  | 0.0235 (9)  | -0.0052 (9) |
| C4  | 0.0587 (10) | 0.0492 (9)  | 0.0541 (10) | 0.0008 (7)   | 0.0171 (8)  | -0.0025 (7) |
| C5  | 0.0788 (13) | 0.0671 (11) | 0.0552 (10) | -0.0008 (10) | 0.0247 (10) | -0.0015 (9) |
| C6  | 0.0938 (15) | 0.0728 (12) | 0.0456 (9)  | -0.0023 (11) | 0.0087 (10) | 0.0031 (8)  |
| C7  | 0.0653 (11) | 0.0727 (12) | 0.0591 (10) | -0.0018 (9)  | -0.0020 (9) | 0.0068 (9)  |
| C8  | 0.0553 (10) | 0.0576 (10) | 0.0572 (10) | 0.0014 (8)   | 0.0094 (8)  | 0.0050 (8)  |
| C9  | 0.0510 (9)  | 0.0427 (8)  | 0.0506 (9)  | 0.0012 (7)   | 0.0099 (8)  | 0.0001 (7)  |
| C10 | 0.0545 (9)  | 0.0465 (9)  | 0.0483 (9)  | 0.0029 (7)   | 0.0116 (8)  | -0.0019 (7) |
| C11 | 0.0607 (10) | 0.0556 (10) | 0.0487 (9)  | 0.0012 (9)   | 0.0103 (8)  | -0.0024 (8) |
| C12 | 0.0608 (11) | 0.0573 (10) | 0.0510 (10) | 0.0006 (9)   | 0.0116 (9)  | -0.0004 (8) |
| C13 | 0.0578 (10) | 0.0553 (10) | 0.0518 (10) | 0.0021 (8)   | 0.0096 (8)  | 0.0003 (8)  |
| C14 | 0.0532 (9)  | 0.0456 (9)  | 0.0469 (9)  | 0.0002 (7)   | 0.0064 (7)  | 0.0010 (7)  |
| C15 | 0.0486 (9)  | 0.0686 (11) | 0.0504 (9)  | 0.0068 (8)   | 0.0040 (8)  | 0.0046 (8)  |
| C16 | 0.0551 (10) | 0.0633 (10) | 0.0444 (9)  | 0.0030 (8)   | 0.0039 (8)  | 0.0037 (8)  |
| C17 | 0.0494 (9)  | 0.0478 (9)  | 0.0525 (9)  | -0.0008 (7)  | 0.0121 (8)  | 0.0011 (7)  |
| C18 | 0.0479 (9)  | 0.0620 (11) | 0.0594 (10) | 0.0011 (8)   | 0.0003 (8)  | 0.0054 (8)  |

| C19    | 0.0580 (10)                 | 0.0645 (11) | 0.0437 (9) | 0.0002 (8)                 | -0.0014 (8) | 0.0050 (8) |  |
|--------|-----------------------------|-------------|------------|----------------------------|-------------|------------|--|
| Geomet | Geometric parameters (Å, °) |             |            |                            |             |            |  |
| 01—N2  | 2                           | 1.224 (2)   |            | C14—C19                    |             | 1.395 (3)  |  |
| O2—N2  | 2                           | 1.222 (2)   |            | C15—C16                    |             | 1.375 (3)  |  |
| N1—C1  | 10                          | 1.414 (3)   |            | C16—C17                    |             | 1.374 (2)  |  |
| N1—C1  | 11                          | 1.277 (2)   |            | C17—C18                    |             | 1.377 (2)  |  |
| N2—C1  | 17                          | 1.464 (3)   |            | C18—C19                    |             | 1.374 (3)  |  |
| C1C2   | 2                           | 1.400 (3)   |            | C1—H1                      |             | 0.930      |  |
| C1—C1  | 10                          | 1.375 (2)   |            | С2—Н2                      |             | 0.930      |  |
| C2—C3  | 3                           | 1.358 (3)   |            | С3—Н3                      |             | 0.930      |  |
| C3—C4  | 1                           | 1.412 (3)   |            | С5—Н5                      |             | 0.930      |  |
| C4—C5  | 5                           | 1.416 (3)   |            | С6—Н6                      |             | 0.930      |  |
| C4—C9  | )                           | 1.417 (3)   |            | С7—Н7                      |             | 0.930      |  |
| C5—Cé  | 5                           | 1.355 (3)   |            | C8—H8                      |             | 0.930      |  |
| C6—C7  | 7                           | 1.400 (3)   |            | C11—H11                    |             | 0.989 (16) |  |
| С7—С8  | 3                           | 1.364 (3)   |            | C12—H12                    |             | 0.953 (17) |  |
| C8—C9  | )                           | 1.416 (2)   |            | C13—H13                    |             | 0.959 (17) |  |
| C9—C1  | 10                          | 1.435 (2)   |            | C15—H15                    |             | 0.930      |  |
| С11—С  | C12                         | 1.438 (3)   |            | C16—H16                    |             | 0.930      |  |
| C12—C  | C13                         | 1.330 (3)   |            | C18—H18                    |             | 0.930      |  |
| C13—C  | C14                         | 1.464 (3)   |            | C19—H19                    |             | 0.930      |  |
| C14—C  | 215                         | 1.392 (2)   |            |                            |             |            |  |
| 01…C1  | 6                           | 2.708 (3)   |            | C7···H13 <sup>viii</sup>   |             | 3.134 (17) |  |
| 01…C1  | 8                           | 3.547 (2)   |            | C8…H3 <sup>v</sup>         |             | 3.2394     |  |
| O2…C1  | 6                           | 3.540 (2)   |            | C8…H15 <sup>viii</sup>     |             | 3.2947     |  |
| O2…C1  | 8                           | 2.729 (3)   |            | C8…H13 <sup>viii</sup>     |             | 3.148 (17) |  |
| N1…C8  |                             | 2.840 (2)   |            | C9…H15 <sup>viii</sup>     |             | 3.3151     |  |
| N1…C1  | 3                           | 3.591 (3)   |            | C9…H18 <sup>iv</sup>       |             | 3.3321     |  |
| C1…C4  |                             | 2.789 (3)   |            | C9…H13 <sup>viii</sup>     |             | 3.272 (16) |  |
| C1…C1  | 1                           | 2.910 (3)   |            | C10····H1 <sup>xi</sup>    |             | 3.3316     |  |
| C2…C9  |                             | 2.808 (2)   |            | C10···H15 <sup>viii</sup>  |             | 3.2996     |  |
| C3…C1  | 0                           | 2.798 (3)   |            | C10···H18 <sup>iv</sup>    |             | 3.4799     |  |
| C4…C7  |                             | 2.797 (3)   |            | C10H19 <sup>iv</sup>       |             | 3.3466     |  |
| C5…C8  |                             | 2.775 (3)   |            | C11…H1 <sup>xi</sup>       |             | 3.3541     |  |
| C6…C9  |                             | 2.795 (3)   |            | C11····H2 <sup>xi</sup>    |             | 3.4512     |  |
| C9…C1  | 1                           | 3.523 (3)   |            | C11…H15 <sup>viiii</sup>   |             | 3.3164     |  |
| C12…C  | 19                          | 3.029 (3)   |            | C11…H16 <sup>viii</sup>    |             | 3.1354     |  |
| C14…C  | 17                          | 2.758 (3)   |            | $C11 \cdots H12^{iv}$      |             | 3.540 (17) |  |
| C15…C  | 18                          | 2.767 (3)   |            | $C12 \cdots H2^{v}$        |             | 3.4901     |  |
| C16…C  | 19                          | 2.761 (3)   |            | C12····H2 <sup>xi</sup>    |             | 3.1301     |  |
| 01…C1  | i                           | 3.426 (3)   |            | C12····H16 <sup>viii</sup> |             | 3.0046     |  |
| 01…C5  | ii                          | 3.422 (3)   |            | $C12\cdots H12^{iv}$       |             | 3.386 (17) |  |
| 01…C1  | 9 <sup>iii</sup>            | 3.412 (2)   |            | C13····H2 <sup>xi</sup>    |             | 3.5604     |  |
| O2…C5  | iv                          | 3.559 (3)   |            | C13····H16 <sup>viii</sup> |             | 3.4816     |  |
| 02…C1  | 5 <sup>v</sup>              | 3.326 (2)   |            | C13…H18 <sup>ix</sup>      |             | 3.5298     |  |

# supporting information

| N1…C19iv $3.591 (2)$ C14…H8ivN2…C1i $3.405 (2)$ C14…H8iiiN2…C2i $3.509 (3)$ C15…H6xN2…C5iv $3.566 (3)$ C15…H8iiiC1…O1vi $3.426 (3)$ C16…H2iC1…N2vi $3.405 (2)$ C16…H6xC2…N2vi $3.509 (3)$ C17…H2iC2…C17vi $3.480 (3)$ C19…H1vC4…C18iv $3.559 (3)$ H1…N1xiC5…O1vii $3.422 (3)$ H1…N1xiC5…O2iv $3.566 (3)$ H1…C1xiC7…C13viii $3.456 (3)$ H1…C10xiC8…C14viii $3.575 (2)$ H1…C11xiC8…C15viii $3.448 (3)$ H1…C19ixC9…C18iv $3.329 (2)$ H1…H1xi                                                                                                                                                                                                                                     | 3.5866<br>3.4924<br>3.3647<br>3.1933<br>3.3773<br>3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| N2···C1i $3.405(2)$ $C14H8^{iii}$ N2···C2i $3.509(3)$ $C15H6^x$ N2···C5iv $3.566(3)$ $C15H8^{iii}$ C1···01^{vi} $3.426(3)$ $C16H2^i$ C1···N2^{vi} $3.405(2)$ $C16H6^x$ C2···N2^{vi} $3.509(3)$ $C17H2^i$ C2···C17^{vi} $3.480(3)$ $C19H1^v$ C4···C18^{iv} $3.561(3)$ $H1N1^{xi}$ C5···O1^{vii} $3.422(3)$ $H1N2^{vi}$ C5···O2^{iv} $3.559(3)$ $H1N2^{vi}$ C5···N2^{iv} $3.566(3)$ $H1C1^{xi}$ C7···C13^{viii} $3.456(3)$ $H1C10^{si}$ C8···C14^{viii} $3.575(2)$ $H1C19^{ix}$ C9···C18^{iv} $3.329(2)$ $H1H1^{xi}$                                                                                                                                                            | 3.4924<br>3.3647<br>3.1933<br>3.3773<br>3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465           |
| N2…C2i $3.509(3)$ C15…H6xN2…C5iv $3.566(3)$ C15…H8iiiC1…O1vi $3.426(3)$ C16…H2iC1…N2vi $3.405(2)$ C16…H6xC2…N2vi $3.509(3)$ C17…H2iC2…C17vi $3.480(3)$ C19…H1vC4…C18iv $3.561(3)$ H1…O1viC5…O1vii $3.422(3)$ H1…N1xiC5…O2iv $3.559(3)$ H1…N2viC5…N2iv $3.566(3)$ H1…C1xiC7…C13viii $3.456(3)$ H1…C10xiC8…C14viii $3.575(2)$ H1…C11xiC8…C15viii $3.448(3)$ H1…C19ixC9…C18iv $3.329(2)$ H1…H1xi                                                                                                                                                                                                                                                                                 | 3.3647<br>3.1933<br>3.3773<br>3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                     |
| N2···C5 <sup>iv</sup> $3.566$ (3) $C15 \cdots H8^{iii}$ C1···O1 <sup>vi</sup> $3.426$ (3) $C16 \cdots H2^i$ C1···N2 <sup>vi</sup> $3.405$ (2) $C16 \cdots H6^s$ C2···N2 <sup>vi</sup> $3.509$ (3) $C17 \cdots H2^i$ C2···C17 <sup>vi</sup> $3.480$ (3) $C19 \cdots H1^v$ C4···C18 <sup>iv</sup> $3.561$ (3) $H1 \cdots O1^{vi}$ C5···O1 <sup>vii</sup> $3.422$ (3) $H1 \cdots N1^{xi}$ C5···O2 <sup>iv</sup> $3.559$ (3) $H1 \cdots N2^{vi}$ C5···N2 <sup>iv</sup> $3.566$ (3) $H1 \cdots C1^{xi}$ C7···C13 <sup>viii</sup> $3.456$ (3) $H1 \cdots C10^{xi}$ C8···C14 <sup>viii</sup> $3.575$ (2) $H1 \cdots C19^{ix}$ C9···C18 <sup>iv</sup> $3.329$ (2) $H1 \cdots H1^{xi}$ | 3.1933<br>3.3773<br>3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                               |
| $C1\cdots O1^{vi}$ $3.426$ (3) $C16\cdots H2^{i}$ $C1\cdots N2^{vi}$ $3.405$ (2) $C16\cdots H6^{x}$ $C2\cdots N2^{vi}$ $3.509$ (3) $C17\cdots H2^{i}$ $C2\cdots C17^{vi}$ $3.480$ (3) $C19\cdots H1^{v}$ $C4\cdots C18^{iv}$ $3.561$ (3) $H1\cdots O1^{vi}$ $C5\cdots O1^{vii}$ $3.422$ (3) $H1\cdots N1^{xi}$ $C5\cdots O2^{iv}$ $3.559$ (3) $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566$ (3) $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456$ (3) $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575$ (2) $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448$ (3) $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329$ (2) $H1\cdots H1^{xi}$                                       | 3.3773<br>3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                                         |
| $C1 \cdots N2^{vi}$ $3.405 (2)$ $C16 \cdots H6^{x}$ $C2 \cdots N2^{vi}$ $3.509 (3)$ $C17 \cdots H2^{i}$ $C2 \cdots C17^{vi}$ $3.480 (3)$ $C19 \cdots H1^{v}$ $C4 \cdots C18^{iv}$ $3.561 (3)$ $H1 \cdots O1^{vi}$ $C5 \cdots O1^{vii}$ $3.422 (3)$ $H1 \cdots N1^{xi}$ $C5 \cdots O2^{iv}$ $3.559 (3)$ $H1 \cdots N2^{vi}$ $C5 \cdots N2^{iv}$ $3.566 (3)$ $H1 \cdots C1^{xi}$ $C7 \cdots C13^{viii}$ $3.456 (3)$ $H1 \cdots C10^{xi}$ $C8 \cdots C14^{viii}$ $3.575 (2)$ $H1 \cdots C11^{xi}$ $C8 \cdots C15^{viii}$ $3.448 (3)$ $H1 \cdots C19^{ix}$ $C9 \cdots C18^{iv}$ $3.329 (2)$ $H1 \cdots H1^{xi}$                                                                   | 3.1359<br>3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                                                   |
| $C2\cdots N2^{vi}$ $3.509(3)$ $C17\cdots H2^{i}$ $C2\cdots C17^{vi}$ $3.480(3)$ $C19\cdots H1^{v}$ $C4\cdots C18^{iv}$ $3.561(3)$ $H1\cdots O1^{vi}$ $C5\cdots O1^{vii}$ $3.422(3)$ $H1\cdots N1^{xi}$ $C5\cdots O2^{iv}$ $3.559(3)$ $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566(3)$ $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456(3)$ $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575(2)$ $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448(3)$ $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329(2)$ $H1\cdots H1^{xi}$                                                                                                                                                     | 3.4883<br>3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                                                             |
| $C2\cdots C17^{vi}$ $3.480$ (3) $C19\cdots H1^v$ $C4\cdots C18^{iv}$ $3.561$ (3) $H1\cdots O1^{vi}$ $C5\cdots O1^{vii}$ $3.422$ (3) $H1\cdots N1^{xi}$ $C5\cdots O2^{iv}$ $3.559$ (3) $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566$ (3) $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456$ (3) $H1\cdots C1^{xi}$ $C8\cdots C14^{viii}$ $3.575$ (2) $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448$ (3) $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329$ (2) $H1\cdots H1^{xi}$                                                                                                                                                                                                | 3.4892<br>3.2020<br>3.1668<br>3.5116<br>3.0465                                                                       |
| $C4\cdots C18^{iv}$ $3.561 (3)$ $H1\cdots O1^{vi}$ $C5\cdots O1^{vii}$ $3.422 (3)$ $H1\cdots N1^{xi}$ $C5\cdots O2^{iv}$ $3.559 (3)$ $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566 (3)$ $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456 (3)$ $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575 (2)$ $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448 (3)$ $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329 (2)$ $H1\cdots H1^{xi}$                                                                                                                                                                                                                                                | 3.2020<br>3.1668<br>3.5116<br>3.0465                                                                                 |
| $C5\cdots O1^{vii}$ $3.422 (3)$ $H1\cdots N1^{xi}$ $C5\cdots O2^{iv}$ $3.559 (3)$ $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566 (3)$ $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456 (3)$ $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575 (2)$ $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448 (3)$ $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329 (2)$ $H1\cdots H1^{xi}$                                                                                                                                                                                                                                                                                                   | 3.1668<br>3.5116<br>3.0465                                                                                           |
| $C5\cdots O2^{iv}$ $3.559 (3)$ $H1\cdots N2^{vi}$ $C5\cdots N2^{iv}$ $3.566 (3)$ $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456 (3)$ $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575 (2)$ $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448 (3)$ $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329 (2)$ $H1\cdots H1^{xi}$                                                                                                                                                                                                                                                                                                                                                      | 3.5116<br>3.0465                                                                                                     |
| $C5\cdots N2^{iv}$ $3.566 (3)$ $H1\cdots C1^{xi}$ $C7\cdots C13^{viii}$ $3.456 (3)$ $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575 (2)$ $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448 (3)$ $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329 (2)$ $H1\cdots H1^{xi}$                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0465                                                                                                               |
| $C7\cdots C13^{viii}$ $3.456$ (3) $H1\cdots C10^{xi}$ $C8\cdots C14^{viii}$ $3.575$ (2) $H1\cdots C11^{xi}$ $C8\cdots C15^{viii}$ $3.448$ (3) $H1\cdots C19^{ix}$ $C9\cdots C18^{iv}$ $3.329$ (2) $H1\cdots H1^{xi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| $C8 \cdots C14^{viii}$ $3.575 (2)$ $H1 \cdots C11^{xi}$ $C8 \cdots C15^{viii}$ $3.448 (3)$ $H1 \cdots C19^{ix}$ $C9 \cdots C18^{iv}$ $3.329 (2)$ $H1 \cdots H1^{xi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3316                                                                                                               |
| $C8 \cdots C15^{viii}$ $3.448 (3)$ $H1 \cdots C19^{ix}$ $C9 \cdots C18^{iv}$ $3.329 (2)$ $H1 \cdots H1^{xi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3541                                                                                                               |
| C9…C18 <sup>iv</sup> 3.329 (2) H1…H1 <sup>xi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4892                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6052                                                                                                               |
| C9C19 <sup>iv</sup> $3.564(3)$ H1H19 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6192                                                                                                               |
| $C10C19^{iv}$ 3.567 (2) $H1H12^{ix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3760                                                                                                               |
| C13C7 <sup>iii</sup> 3.456 (3) $H2N1^{ix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3669                                                                                                               |
| C14C8 <sup>iii</sup> $3.575(2)$ H2C11 <sup>xi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4512                                                                                                               |
| $C15O2^{ix}$ 3.326 (2) $H2C12^{ix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4901                                                                                                               |
| C15C8 <sup>iii</sup> $3.448(3)$ H2C12 <sup>xi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1301                                                                                                               |
| C17C2 <sup>i</sup> $3.480(3)$ H2C13 <sup>xi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5604                                                                                                               |
| C18···C4 <sup>iv</sup> $3.561(3)$ H2···C16 <sup>vi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3773                                                                                                               |
| C18···C9 <sup>iv</sup> $3.329(2)$ H2···C17 <sup>vi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4883                                                                                                               |
| C19O1 <sup>viii</sup> $3.412(2)$ $H2H8^{ix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7294                                                                                                               |
| C19N1 <sup>iv</sup> $3.591(2)$ H2H16 <sup>vi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3765                                                                                                               |
| C19C9 <sup>iv</sup> $3.564(3)$ H2H12 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7617                                                                                                               |
| C19C10 <sup>iv</sup> $3.567(2)$ H2H12 <sup>xi</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1167                                                                                                               |
| Q1H16 2.4154 H3C7 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3298                                                                                                               |
| O2…H18 2.4477 H3…C8 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2394                                                                                                               |
| N1…H1 2.6358 H3…H7 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7580                                                                                                               |
| N1···H8 2.5219 H3···H8 <sup>ix</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5703                                                                                                               |
| N1···H12 2.558 (19) H5···O1 <sup>vii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6614                                                                                                               |
| N2…H16 2.5955 H5…O2 <sup>vii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0276                                                                                                               |
| N2…H18 2.6122 H5…O2 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4966                                                                                                               |
| C1···H3 3.2302 H5···N2 <sup>vii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1031                                                                                                               |
| C1···H11 2.695 (17) H5···C5 <sup>xii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4610                                                                                                               |
| C3···H1 3.2230 H5···H5 <sup>xii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8416                                                                                                               |
| C3···H5 2.6512 H5···H6 <sup>xii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5690                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2431                                                                                                               |
| $J_{112}$ $J_{12}$ $J_{12}$ $J_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2526                                                                                                               |
| C4···H6 3.2546 H6···C7 <sup>xiii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3647                                                                                                               |
| C4···H6     3.25460     H6···C2       C4···H8     3.2801     H6···C15 <sup>xiv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| C4···H2       3.2400       H0···O2         C4···H6       3.2546       H6···C7 <sup>xiii</sup> C4···H8       3.2801       H6···C15 <sup>xiv</sup> C5···H3       2.6530       H6···C16 <sup>xiv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1359                                                                                                               |
| C4···H2       3.2460       H0···O2         C4···H6       3.2546       H6···C7 <sup>xiii</sup> C4···H8       3.2801       H6···C15 <sup>xiv</sup> C5···H3       2.6530       H6···C16 <sup>xiv</sup> C5···H7       3.2228       H6···H5 <sup>xii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1359<br>3.5690                                                                                                     |
| C4···H2       3.2460       H0···O2         C4···H6       3.2546       H6···C7 <sup>xiii</sup> C4···H8       3.2801       H6···C15 <sup>xiv</sup> C5···H3       2.6530       H6···C16 <sup>xiv</sup> C5···H7       3.2228       H6···H5 <sup>xii</sup> C6···H8       3.2377       H6···H6 <sup>xiii</sup>                                                                                                                                                                                                                                                                                                                                                                      | 3.1359<br>3.5690<br>3.5374                                                                                           |
| C4 ···H2       3.2460       H0···O2         C4···H6       3.2546       H6···C7 <sup>xiii</sup> C4···H8       3.2801       H6···C15 <sup>xiv</sup> C5···H3       2.6530       H6···C16 <sup>xiv</sup> C5···H7       3.2228       H6···H5 <sup>xii</sup> C6···H8       3.2377       H6···H6 <sup>xiii</sup> C7···H5       3.2269       H6···H7 <sup>xiii</sup>                                                                                                                                                                                                                                                                                                                  | 3.1359<br>3.5690<br>3.5374<br>2.6476                                                                                 |

| С9…Н1                                                                                  | 3.2677              | H6…H16 <sup>xiv</sup>         | 2.6995           |
|----------------------------------------------------------------------------------------|---------------------|-------------------------------|------------------|
| С9…Н3                                                                                  | 3.2819              | H7…O1 <sup>xiv</sup>          | 3.1257           |
| С9…Н5                                                                                  | 3.2729              | H7····C6 <sup>xiii</sup>      | 3.2438           |
| С9…Н7                                                                                  | 3.2542              | H7····H3 <sup>v</sup>         | 2.7580           |
| С10…Н2                                                                                 | 3.2503              | H7…H6 <sup>xiii</sup>         | 2.6476           |
| С10…Н8                                                                                 | 2.6791              | H7…H7 <sup>xiii</sup>         | 3.5092           |
| C10…H11                                                                                | 2.515 (16)          | H7···H16 <sup>xiv</sup>       | 3.0192           |
| С11…Н1                                                                                 | 2 7219              | H7···H13 <sup>viii</sup>      | 3 5723           |
| C11····H8                                                                              | 3 5939              | H8····C2 <sup>v</sup>         | 3 3067           |
| C11H13                                                                                 | 2 607 (16)          | H8···C3 <sup>v</sup>          | 3 2321           |
| C12H19                                                                                 | 2.007 (10)          | H8···C14 <sup>iv</sup>        | 3 5866           |
| C12H15                                                                                 | 2.1179              | H8···C14 <sup>viii</sup>      | 3 4924           |
| C13H10                                                                                 | 2.0129              |                               | 3.1023           |
| C13H11                                                                                 | 2.0070<br>2.642(17) | По <sup>те</sup> ст5<br>Ц8Ц2v | 2 7204           |
|                                                                                        | 2.042(17)           |                               | 2.7234           |
| C14H18                                                                                 | 3.2301              |                               | 2.3703           |
| C14H18                                                                                 | 3.2332              |                               | 3.18/3           |
| C14H12                                                                                 | 2.6/3 (1/)          |                               | 3.5949           |
| С15…Н19                                                                                | 3.2306              |                               | 2.4604           |
| С15…Н13                                                                                | 2.622 (17)          |                               | 3.2294           |
| С16…Н18                                                                                | 3.2430              | H15C8 <sup>m</sup>            | 3.2947           |
| С17…Н15                                                                                | 3.2058              | H15…C9 <sup>m</sup>           | 3.3151           |
| С17…Н19                                                                                | 3.2044              | H15…C10 <sup>m</sup>          | 3.2996           |
| C18…H16                                                                                | 3.2425              | H15…C11 <sup>iii</sup>        | 3.3164           |
| С19…Н15                                                                                | 3.2315              | H15…H6 <sup>x</sup>           | 3.1225           |
| С19…Н13                                                                                | 3.300 (18)          | H15…H8 <sup>iii</sup>         | 3.1875           |
| С19…Н12                                                                                | 2.769 (18)          | H15…H11 <sup>iii</sup>        | 3.3154           |
| H1…H2                                                                                  | 2.3187              | H16…N1 <sup>iii</sup>         | 3.5481           |
| H1…H11                                                                                 | 2.3587              | H16···C6 <sup>x</sup>         | 3.2099           |
| Н2…Н3                                                                                  | 2.2795              | H16····C7 <sup>x</sup>        | 3.3756           |
| Н3…Н5                                                                                  | 2.4921              | H16…C11 <sup>iii</sup>        | 3.1354           |
| Н5…Н6                                                                                  | 2.2740              | H16…C12 <sup>iii</sup>        | 3.0046           |
| H6…H7                                                                                  | 2.3246              | H16…C13 <sup>iii</sup>        | 3.4816           |
| H7…H8                                                                                  | 2.2861              | H16…H2 <sup>i</sup>           | 3.3765           |
| H15…H16                                                                                | 2.3051              | H16…H6 <sup>x</sup>           | 2.6995           |
| H15…H13                                                                                | 2.4371              | H16…H7 <sup>x</sup>           | 3.0192           |
| H18…H19                                                                                | 2.3055              | H16…H12 <sup>iii</sup>        | 3.1495           |
| H19…H13                                                                                | 3.5569              | H16…H11 <sup>iii</sup>        | 3.4229           |
| H19…H12                                                                                | 2.3008              | H18····C1 <sup>iv</sup>       | 3.5734           |
| H13···H12                                                                              | 2.80(3)             | H18····C2 <sup>iv</sup>       | 3 5731           |
| H13···H11                                                                              | 2.00(3)<br>2 44 (3) | H18····C3 <sup>iv</sup>       | 3 4701           |
| H12···H11                                                                              | 2.00(3)             | H18····C4 <sup>iv</sup>       | 3 3461           |
| 01···H1 <sup>i</sup>                                                                   | 3 2020              | H18Coiv                       | 3 3321           |
| 01H5 <sup>ii</sup>                                                                     | 2 6614              | H18····C10 <sup>iv</sup>      | 3 4799           |
| $01 \cdots H7^{x}$                                                                     | 3 1257              | H18C13 <sup>v</sup>           | 3 5208           |
| $01 \dots H10^{iii}$                                                                   | 2 8 3 8 7           | H18H12v                       | 2.2270<br>2.8215 |
| $01 \dots 1117$                                                                        | 2.0307              | ш18Ш11v                       | 2.0313           |
| $O_1 IIII$                                                                             | 3.217(17)           |                               | 2.2024<br>2.2024 |
| $O_2 II_3 O_2 II_3 O_2 II_3 O_2 II_3 O_2 II_3 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$ | 3.0270              |                               | 2.030/           |
| 04 113                                                                                 | J.+700              | 1117 TINI                     | J.414/           |

| 02…H6 <sup>ii</sup>      | 3 2431               | H19C1 <sup>v</sup>                          | 3 4374                   |
|--------------------------|----------------------|---------------------------------------------|--------------------------|
| $02 \cdot H0$            | 2 4604               | H19····C10 <sup>iv</sup>                    | 3 3466                   |
| $02^{\circ}$ H13         | 3 375 (15)           | H19H1v                                      | 2 6192                   |
| $02H11^{i}$              | 3 269 (16)           | H19H11 <sup>v</sup>                         | 3 4503                   |
| N1H1 <sup>xi</sup>       | 3 1668               | $H13O2^{ix}$                                | 3,375 (15)               |
| N1H2v                    | 3 3660               | H13C/ <sup>iii</sup>                        | 3.375(17)                |
| N1H15 <sup>viii</sup>    | 3 2294               | H13C5 <sup>iii</sup>                        | 3.394(17)                |
| N1H16 <sup>viii</sup>    | 3 5/81               | H13C6 <sup>iii</sup>                        | 3.300(17)                |
|                          | 3.3401               | H13 C0                                      | 3.241(10)<br>3.134(17)   |
| N1H12iv                  | 3.2127               | H13·C8iii                                   | 3.134(17)                |
| N2H1i                    | 3 5116               |                                             | 3.140(17)<br>3.272(16)   |
| N2U5 <sup>ii</sup>       | 2 1021               | H13 C9<br>H13H7 <sup>iii</sup>              | 3.272 (10)               |
| N2U11 <sup>i</sup>       | 3,530 (17)           |                                             | 3.5725                   |
| $112^{-11111}$           | 3.0465               | П15 <sup></sup> 116<br>Ц12Ц19 <sup>ix</sup> | 2 8215                   |
|                          | 2 5724               | 1115 <sup></sup> 1118                       | 2.0313                   |
|                          | 2 4274               |                                             | 3.013(17)                |
|                          | 2.20(7               |                                             | 5.545 (10)<br>2.540 (17) |
| $C_2 = H_1 e_{ix}$       | 3.300/               |                                             | 3.340(17)                |
| C2H18 <sup>in</sup>      | 5.5/51<br>2.545 (1() |                                             | 3.386 (17)               |
| C2. Usix                 | 5.545 (10)<br>2.2221 |                                             | 3.3760                   |
|                          | 3.2321               |                                             | 2.7617                   |
|                          | 3.4701               |                                             | 3.1167                   |
|                          | 3.3461               |                                             | 3.1495                   |
|                          | 3.394 (17)           |                                             | 2.78 (3)                 |
|                          | 3.4610               |                                             | 3.219 (17)               |
| C5H13vm                  | 3.360 (17)           |                                             | 3.269 (16)               |
| C6···H7 <sup>xm</sup>    | 3.2438               | H11N2 <sup>v1</sup>                         | 3.530 (17)               |
| C6…H16 <sup>xiv</sup>    | 3.2099               | H11····H15 <sup>viii</sup>                  | 3.3154                   |
| C6···H13 <sup>viii</sup> | 3.241 (16)           | H11···H16 <sup>viii</sup>                   | 3.4229                   |
| С7…Н3 <sup>v</sup>       | 3.3298               | H11···H18 <sup>ix</sup>                     | 3.2054                   |
| C7···H6 <sup>xiii</sup>  | 3.2526               | H11···H19 <sup>ix</sup>                     | 3.4503                   |
| C7···H16 <sup>xiv</sup>  | 3.3756               |                                             |                          |
| C10—N1—C11               | 119.53 (14)          | C17—C18—C19                                 | 118.51 (15)              |
| O1—N2—O2                 | 122.81 (17)          | C14—C19—C18                                 | 121.37 (14)              |
| 01—N2—C17                | 118.37 (14)          | C2-C1-H1                                    | 119.358                  |
| O2—N2—C17                | 118.82 (15)          | С10—С1—Н1                                   | 119.366                  |
| C2-C1-C10                | 121.28 (15)          | С1—С2—Н2                                    | 119.856                  |
| C1—C2—C3                 | 120.30 (15)          | C3—C2—H2                                    | 119.847                  |
| C2—C3—C4                 | 120.87 (17)          | С2—С3—Н3                                    | 119.562                  |
| C3—C4—C5                 | 122.11 (17)          | C4—C3—H3                                    | 119.566                  |
| C3—C4—C9                 | 119.53 (15)          | C4—C5—H5                                    | 119.342                  |
| C5-C4-C9                 | 118.36 (15)          | С6—С5—Н5                                    | 119.342                  |
| C4—C5—C6                 | 121.32 (18)          | C5—C6—H6                                    | 119.866                  |
| C5—C6—C7                 | 120.27 (16)          | C7—C6—H6                                    | 119.866                  |
| C6-C7-C8                 | 120.49 (16)          | C6—C7—H7                                    | 119.748                  |
| C7-C8-C9                 | 120.61 (16)          | C8—C7—H7                                    | 119 758                  |
| C4-C9-C8                 | 118 94 (14)          | C7—C8—H8                                    | 119 691                  |
| C4-C9-C10                | 118 51 (13)          | C9 - C8 - H8                                | 119 700                  |
|                          | 110.01 (10)          | 07 00 110                                   | 117.700                  |

| 122.54 (15)  | N1—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.1 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 123.40 (13)  | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.4 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 116.99 (13)  | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.6 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 119.47 (15)  | C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 121.48 (16)  | С12—С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.4 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123.62 (16)  | C14—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115.6 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 126.01 (16)  | C14—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 119.57 (14)  | C16—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 122.30 (14)  | С15—С16—Н16                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 118.13 (15)  | C17—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 121.15 (14)  | C17—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 118.83 (14)  | C19—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 118.69 (13)  | C14—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 119.29 (14)  | C18—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 122.01 (15)  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -177.42 (12) | C6—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 41.0 (2)     | C7—C8—C9—C4                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -143.39 (13) | C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.35 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2 (2)      | C4—C9—C10—N1                                                                                                                                                                                                                                                                                                                                                                                                                                | -178.53 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -178.89 (13) | C4—C9—C10—C1                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.72 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 179.70 (13)  | C8—C9—C10—N1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6 (2)      | C8—C9—C10—C1                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.87 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 177.29 (13)  | N1-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                              | 175.92 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.8 (3)      | C11—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                             | 179.95 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.1 (3)      | C12—C13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                             | 156.74 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -1.0 (3)     | C12—C13—C14—C19                                                                                                                                                                                                                                                                                                                                                                                                                             | -23.6 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -179.08 (14) | C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                             | -179.30 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -0.0 (3)     | C13—C14—C19—C18                                                                                                                                                                                                                                                                                                                                                                                                                             | 179.44 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 178.28 (14)  | C15—C14—C19—C18                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -177.73 (12) | C19—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.9 (2)      | C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.4 (2)      | C15—C16—C17—N2                                                                                                                                                                                                                                                                                                                                                                                                                              | -179.27 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -179.04 (12) | C15—C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0.8 (3)     | N2-C17-C18-C19                                                                                                                                                                                                                                                                                                                                                                                                                              | 179.39 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.1 (3)     | C16—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4 (3)      | C17—C18—C19—C14                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 122.54 (15) $123.40 (13)$ $116.99 (13)$ $119.47 (15)$ $121.48 (16)$ $123.62 (16)$ $126.01 (16)$ $119.57 (14)$ $122.30 (14)$ $118.13 (15)$ $121.15 (14)$ $118.83 (14)$ $118.69 (13)$ $119.29 (14)$ $122.01 (15)$ $-177.42 (12)$ $41.0 (2)$ $-143.39 (13)$ $0.2 (2)$ $-178.89 (13)$ $179.70 (13)$ $0.6 (2)$ $177.29 (13)$ $1.8 (3)$ $0.1 (3)$ $-179.08 (14)$ $-0.0 (3)$ $178.28 (14)$ $-177.73 (12)$ $1.9 (2)$ $1.4 (2)$ $-0.1 (3)$ $0.4 (3)$ | 122.54 (15)       N1—C11—H11 $123.40 (13)$ C12—C11—H11 $116.99 (13)$ C11—C12—H12 $119.47 (15)$ C13—C12—H12 $119.47 (15)$ C13—C12—H12 $121.48 (16)$ C12—C13—H13 $123.62 (16)$ C14—C15—H15 $119.57 (14)$ C16—C15—H15 $122.30 (14)$ C15—C16—H16 $118.13 (15)$ C17—C16—H16 $121.15 (14)$ C17—C18—H18 $118.69 (13)$ C14—C19—H19 $122.01 (15)$ C6—C7—C8—C9 $-177.42 (12)$ C6—C7—C8—C9—C10 $0.2 (2)$ C4—C9—C10—N1 $-178.89 (13)$ C4—C9—C10—N1 $-178.89 (13)$ C4—C9—C10—N1 $-177.29 (13)$ N1—C11—C12—C13 $1.8 (3)$ C11—C12—C13—C14 $0.1 (3)$ C12—C13—C14—C15 $-1.0 (3)$ C12—C13—C14—C19 $-177.73 (12)$ C19—C14—C15—C16 $-179.04 (12)$ C15—C16—C17—N2 $-179.04 (12)$ C15—C16—C17—C18 $-18.(3)$ N2—C17—C18—C19 $-0.1 (3)$ C16—C17—C18—C19 $-0.1 (3)$ C16—C17—C18—C1 |

Symmetry codes: (i) x+1, -y+3/2, z-1/2; (ii) x+1, y, z-1; (iii) x, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) x-1, -y+3/2, z+1/2; (vii) x-1, y, z; (vi) x-1, -y+3/2, z+1/2; (vii) x, -y+1, -z+1; (vii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (viii) -x, -y+1; (viii) -x, -

### *Hydrogen-bond geometry* (Å, °)

| D—H···A                    | D—H  | H···A | $D \cdots A$ | D—H···A |
|----------------------------|------|-------|--------------|---------|
| C5—H5····O1 <sup>vii</sup> | 0.93 | 2.66  | 3.422 (3)    | 139     |
| C15—H15…O2 <sup>ix</sup>   | 0.93 | 2.46  | 3.326 (3)    | 155     |

Symmetry codes: (vii) x-1, y, z+1; (ix) x-1, y, z.