Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N-(2,4-Dichlorobenzylidene)-2,5dimethoxyaniline

Yong Pan,^{a,b} Hai-Fu Guo^b* and De-Yun Ma^b

^aCollege of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia 010051, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China

Correspondence e-mail: guohaifu@zqu.edu.cn

Received 26 January 2013; accepted 26 February 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.093; data-to-parameter ratio = 13.9.

In the title compound, $C_{15}H_{13}Cl_2NO_2$, which was obtained by a condensation reaction of 2,5-dimethoxyaniline and 2,4dichlorobenzaldehyde, the dihedral angle between the benzene rings is 51.94 (2)°. The 2,5-dimethoxyphenyl and 2,4-dichlorophenyl groups are attached to the ends of the N=C group in an *E* conformation. Intramolecular $C-H \cdots Cl$ and $C-H \cdots N$ contacts are observed. In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, forming chains parallel to the b axis.

Related literature

For the synthesis and applications of Schiff base-metal complexes, see: Jin et al. (2011). For the preparation of Schiff base compounds by the condensation reaction between 2,4dichlorobenzaldehyde with organic amines, see: Guo et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data C₁₅H₁₃Cl₂NO₂

 $M_r = 310.16$

Monoclinic, $P2_1/n$	Z = 4
a = 13.2879 (12) Å	Mo $K\alpha$ radiation
b = 5.1329 (5) Å	$\mu = 0.45 \text{ mm}^{-1}$
c = 21.1490 (18) Å	T = 296 K
$\beta = 96.622 \ (2)^{\circ}$	$0.33 \times 0.27 \times 0.22 \text{ mm}$
V = 1432.9 (2) Å ³	

Data collection

Bruker APEXII area-detector	7646 measured reflections
diffractometer	2545 independent reflections
Absorption correction: multi-scan	2166 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.020$
$T_{\min} = 0.875, \ T_{\max} = 0.917$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	183 parameters
$vR(F^2) = 0.093$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2545 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots O1^{i}$	0.93	2.62	3.357 (2)	137
$C7 - H7 \cdot \cdot \cdot Cl1$	0.93	2.72	3.100(1)	106
C13−H13···N1	0.93	2.52	2.826 (6)	100

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported financially by the Science and Technology Planning Project of Zhaoqing City (2012 G030), the Science and Technology Innovation Planning Project of Zhaoqing City (2012 G013) and the Distinguished Young Talents in Higher Education of Guangdong Province (2012LYM_0134).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CQ2001).

References

Allen, F.-H., Kennard, O., Watson, D.-G., Brammer, L., Orpen, A.-G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2004). APEX2 and SAINT. Burker AXS Inc., Madison, Wisconsin, USA.

Guo, H.-F., Pan, Y., Ma, D.-Y., Lu, K. & Qin, L. (2012). Transition Met. Chem. 37, 661-669.

Jin, X.-D., Jin, Y.-H., Zou, Z.-Y., Cui, Z.-G., Wang, H.-B., Kang, P.-L., Ge, C.-H. & Li, K. (2011). J. Coord. Chem. 64, 1533-1543.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o469 [doi:10.1107/S1600536813005552]

(E)-N-(2,4-Dichlorobenzylidene)-2,5-dimethoxyaniline

Yong Pan, Hai-Fu Guo and De-Yun Ma

S1. Comment

The field of Schiff bases and their complexes is rapidly developing mainly owing to facile synthesis and technological applications in many areas, such as biological activity (Jin *et al.*, 2011). As an extension of our work in the structural characterization of Schiff base compounds (Guo *et al.*, 2012), we synthesized the title compound. The title molecule, Fig. 1, has an *E* conformation around C=N double bond with a C8—C7—N1—C1 torsion angle = -174.5 (6) Å. The phenyl moiety (C1—C6/O1/O2) [maximum deviation of 0.052 (2) Å for the O2 atom] is almost planar with distances of 0.118 (3) Å (C14) and 0.298 (2) Å (C15) from the plane defined by the atoms C1—C6/O1/O2, respectively. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to those reported for related structures (Guo *et al.*, 2012). The dihedral angle between the substituted phenyl rings is 51.94 (2) Å. In the crystal, molecules are linked through C13—H13…O1 hydrogen bonds forming one-dimensional chains parallel to the *b* axis (Fig. 2). Moreover, intramolecular hydrogen bonding interactions are also observed (Table 1).

S2. Experimental

Title compound was by prepared by the condensation of 2,5-dimethoxyaniline (4.60 g, 30 mmol) with 2,4-dichlorobenzaldehyde (5.25 g, 30 mmol) in ethanol (20 ml) as the reaction medium. The solution was refluxed for 3–4 h and then allowed to cool to room temperature. The yellow precipitate was recrystallized from ethanol to give the title compound as yellow crystals. Yield 6.20 g (66.7%). [m.p. 363–365 K; ¹H NMR(CDCl₃, delta, p.p.m.) 8.26 (s, 1H, HC=N), 6.90–7.88 (m, 6H, Ar—H), 3.74–3.86 (m, 6H); ¹³C NMR (CDCl₃, delta, p.p.m.) 171.5, 153.5, 144.3, 140.0, 139.7, 137.4, 131.6, 130.3, 130.5, 129.8, 127.8, 115.5, 114.1, 111.5, 58.3, 57.1, 56.7, 55.9, 55.8, 55.7].

S3. Refinement

All H atoms were located on the difference maps, and were treated as riding atoms with C—H distances of 0.93 and 0.96 Å, for aryl and methyl, respectively, with $U_{iso}(H) = 1.5U_{eq}$ (methyl C-atoms) and $1.2U_{eq}$ (non-methyl C-atoms). The hightest peak is located 0.99 Å from Cl2 and the deepest hole is located 0.80 Å from Cl1.

Figure 1

The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view parallel to the *a* axis of crystal packing of the title compound, showing how the molecules are linked *via* hydrogen bonds (dashed lines). Only the H atoms involved in these interactions are shown.

(E)-N-(2,4-Dichlorobenzylidene)-2,5-dimethoxyaniline

Crystal data	
$C_{15}H_{13}Cl_2NO_2$	F(000) = 640
$M_r = 310.16$	$D_{\rm x} = 1.438 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5300 reflections
a = 13.2879 (12) Å	$\theta = 1.3 - 28.0^{\circ}$
b = 5.1329 (5) Å	$\mu=0.45~\mathrm{mm^{-1}}$
c = 21.1490 (18) Å	T = 296 K
$\beta = 96.622 \ (2)^{\circ}$	Block, yellow
$V = 1432.9(2) \text{ Å}^3$	$0.33 \times 0.27 \times 0.22 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.875, T_{\max} = 0.917$	7646 measured reflections 2545 independent reflections 2166 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -15 \rightarrow 15$ $k = -6 \rightarrow 6$ $l = -25 \rightarrow 25$
Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.04	H-atom parameters constrained
2545 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.4104P]$
183 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	r	v	7	Uine*/Une	·
<u></u>	0.22047 (12)	<u> </u>	0.00147.(8)		
CI	0.23947 (13)	0.0920 (3)	0.90147 (8)	0.0410 (4)	
C2	0.31359 (13)	-0.0886(4)	0.88812 (8)	0.0445 (4)	
C3	0.29198 (16)	-0.2578 (4)	0.83778 (9)	0.0534 (5)	
H3	0.3401	-0.3811	0.8295	0.064*	
C4	0.20020 (16)	-0.2487 (4)	0.79912 (9)	0.0531 (5)	
H4	0.1869	-0.3651	0.7655	0.064*	
C5	0.12894 (14)	-0.0656 (4)	0.81105 (8)	0.0479 (4)	
C6	0.14928 (14)	0.1034 (4)	0.86207 (8)	0.0449 (4)	
H6	0.1010	0.2270	0.8699	0.054*	
C7	0.19243 (13)	0.3032 (4)	0.98933 (8)	0.0413 (4)	
H7	0.1331	0.2057	0.9830	0.050*	
C8	0.20445 (12)	0.4962 (3)	1.04073 (7)	0.0384 (4)	
C9	0.13326 (13)	0.5323 (3)	1.08379 (8)	0.0395 (4)	
C10	0.14630 (14)	0.7172 (4)	1.13174 (8)	0.0448 (4)	
H10	0.0982	0.7379	1.1600	0.054*	
C11	0.23178 (15)	0.8692 (4)	1.13661 (8)	0.0460 (4)	

C12	0.30436 (16)	0.8415 (4)	1.09520 (9)	0.0526 (5)
H12	0.3621	0.9453	1.0993	0.063*
C13	0.28939 (14)	0.6569 (4)	1.04783 (8)	0.0480 (4)
H13	0.3377	0.6390	1.0196	0.058*
C14	0.47361 (16)	-0.2867 (5)	0.92139 (12)	0.0679 (6)
H14A	0.4417	-0.4528	0.9253	0.102*
H14B	0.5300	-0.2699	0.9538	0.102*
H14C	0.4971	-0.2736	0.8802	0.102*
C15	0.0017 (2)	-0.2339 (6)	0.73297 (11)	0.0803 (8)
H15A	0.0448	-0.2478	0.6996	0.121*
H15B	-0.0663	-0.1967	0.7148	0.121*
H15C	0.0028	-0.3952	0.7560	0.121*
C11	0.02571 (3)	0.33712 (10)	1.08021 (2)	0.05366 (16)
C12	0.24982 (5)	1.10453 (10)	1.19606 (2)	0.06520 (19)
N1	0.26115 (11)	0.2661 (3)	0.95328 (7)	0.0441 (4)
O1	0.40247 (10)	-0.0847 (3)	0.92844 (7)	0.0575 (4)
O2	0.03701 (11)	-0.0305 (3)	0.77496 (7)	0.0662 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0453 (9)	0.0381 (10)	0.0413 (9)	-0.0026 (7)	0.0125 (7)	0.0004 (7)
C2	0.0446 (10)	0.0457 (11)	0.0454 (9)	0.0017 (8)	0.0139 (7)	0.0044 (8)
C3	0.0615 (12)	0.0460 (11)	0.0561 (11)	0.0066 (9)	0.0211 (9)	-0.0026 (9)
C4	0.0670 (13)	0.0485 (12)	0.0461 (10)	-0.0092 (9)	0.0164 (9)	-0.0087 (9)
C5	0.0491 (10)	0.0535 (12)	0.0421 (9)	-0.0095 (9)	0.0100 (8)	-0.0005 (8)
C6	0.0436 (10)	0.0477 (11)	0.0449 (9)	0.0010 (8)	0.0113 (7)	-0.0028 (8)
C7	0.0404 (9)	0.0417 (10)	0.0413 (8)	0.0014 (7)	0.0034 (7)	0.0020 (8)
C8	0.0423 (9)	0.0361 (9)	0.0365 (8)	0.0048 (7)	0.0024 (7)	0.0037 (7)
C9	0.0400 (9)	0.0377 (9)	0.0403 (8)	0.0047 (7)	0.0016 (7)	0.0062 (7)
C10	0.0535 (11)	0.0430 (10)	0.0376 (9)	0.0129 (8)	0.0046 (7)	0.0027 (8)
C11	0.0643 (12)	0.0354 (10)	0.0357 (8)	0.0070 (8)	-0.0054 (8)	0.0023 (7)
C12	0.0587 (11)	0.0481 (11)	0.0491 (10)	-0.0106 (9)	-0.0019 (8)	0.0025 (9)
C13	0.0496 (10)	0.0517 (12)	0.0435 (9)	-0.0029 (9)	0.0090 (8)	0.0014 (8)
C14	0.0483 (12)	0.0714 (15)	0.0875 (16)	0.0155 (10)	0.0219 (11)	0.0111 (13)
C15	0.0758 (16)	0.102 (2)	0.0615 (13)	-0.0301 (15)	0.0016 (11)	-0.0213 (14)
Cl1	0.0457 (3)	0.0577 (3)	0.0593 (3)	-0.0027 (2)	0.0129 (2)	-0.0005 (2)
Cl2	0.0955 (4)	0.0480 (3)	0.0478 (3)	0.0076 (3)	-0.0101 (2)	-0.0082(2)
N1	0.0450 (8)	0.0451 (9)	0.0425 (8)	0.0008 (7)	0.0065 (6)	-0.0023 (7)
01	0.0463 (7)	0.0635 (9)	0.0628 (8)	0.0102 (6)	0.0072 (6)	-0.0008 (7)
O2	0.0571 (9)	0.0824 (11)	0.0569 (8)	-0.0062 (8)	-0.0026 (6)	-0.0149 (8)

Geometric parameters (Å, °)

C1—C6	1.380 (2)	C9—C10	1.385 (3)
C1—C2	1.407 (2)	C9—C11	1.7397 (18)
C1—N1	1.416 (2)	C10—C11	1.372 (3)
C2—O1	1.375 (2)	C10—H10	0.9300

C2—C3	1,379 (3)	C11—C12	1.383 (3)
C3—C4	1.389 (3)	C11—Cl2	1.7399 (18)
С3—Н3	0.9300	C12—C13	1.376 (3)
C4—C5	1.378 (3)	С12—Н12	0.9300
C4—H4	0.9300	С13—Н13	0.9300
C5—O2	1.376 (2)	C14—O1	1.423 (2)
C5—C6	1.387 (3)	C14—H14A	0.9600
С6—Н6	0.9300	C14—H14B	0.9600
C7—N1	1.270 (2)	C14—H14C	0.9600
C7—C8	1.466 (2)	C15—O2	1.415 (3)
С7—Н7	0.9300	C15—H15A	0.9600
C8—C13	1.392 (3)	C15—H15B	0.9600
C8—C9	1.399 (2)	C15—H15C	0.9600
C6 C1 C2	110.02 (16)	C11 C10 C0	118 51 (16)
$C_{0} = C_{1} = C_{2}$	119.02(10) 121.81(16)	$C_{11} = C_{10} = C_{9}$	120.7
C_{0} C_{1} N_{1}	121.01(10) 110.12(16)	C_{10} C_{10} H_{10}	120.7
$C_2 = C_1 = N_1$	119.12(10) 125.15(17)	$C_{10} = C_{10} = 1110$	120.7 121.70(17)
01 - 02 - 03	125.15(17) 115.02(16)	$C_{10} = C_{11} = C_{12}$	121.70(17) 110.53(14)
$C_{1}^{}C_{2}^{}C_{1}^{$	113.92(10) 118.01(17)	$C_{10} = C_{11} = C_{12}$	119.33(14) 118.77(15)
$C_2 = C_2 = C_1$	110.91(17) 121.60(18)	$C_{12} = C_{11} = C_{12}$	118.77 (13)
C2_C3_H3	110.2	C_{13} C_{12} H_{12}	120.7
$C_2 = C_3 = H_3$	119.2	$C_{11} = C_{12} = H_{12}$	120.7
$C_{4} = C_{3} = 113$	119.2	$C_{12} = C_{12} = C_{12}$	120.7 122.25(17)
C_{5} C_{4} H_{4}	120.3	C12 - C13 - C8	1122.23 (17)
$C_3 - C_4 - H_4$	120.3	$C_{12} = C_{13} = H_{13}$	118.9
02-C5-C4	124.94 (17)	C_{1} C_{14} H_{14}	109.5
02 - 03 - 04	124.94(17) 115.51(17)	O1 - C14 - H14R	109.5
C_{4} C_{5} C_{6}	119.53 (18)	$H_{14} - C_{14} - H_{14}B$	109.5
$C_{1} - C_{6} - C_{5}$	121 49 (17)	$\Omega_1 - C_1 4 - H_1 4 C$	109.5
C1-C6-H6	119 3	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
C5-C6-H6	119.3	H14B— $C14$ — $H14C$	109.5
N1-C7-C8	121 49 (17)	Ω^2 —C15—H15A	109.5
N1-C7-H7	119 3	02—C15—H15B	109.5
C8—C7—H7	119.3	H15A—C15—H15B	109.5
C13—C8—C9	116.89 (16)	02-C15-H15C	109.5
C13—C8—C7	119.87 (15)	H15A—C15—H15C	109.5
C9—C8—C7	123.23 (16)	H15B—C15—H15C	109.5
C10—C9—C8	122.02 (17)	C7—N1—C1	117.58 (15)
C10-C9-Cl1	117.34 (13)	C2-01-C14	117.26 (17)
C8—C9—C11	120.61 (14)	C5—O2—C15	117.40 (19)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13…O1 ⁱ	0.93	2.62	3.357 (2)	137

			supportin	supporting information	
C7—H7…Cl1	0.93	2.72	3.100 (1)	106	
C13—H13…N1	0.93	2.52	2.826 (6)	100	

Symmetry code: (i) x, y+1, z.