Structure Reports

Online
ISSN 1600-5368

Diaquabis[bis(pyrazin-2-yl) sulfide- $\left.\kappa N^{4}\right]$ -bis(thiocyanato-кN)iron(II) monohydrate

Susanne Wöhlert,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-
Strasse 2, 24118 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 4 March 2013; accepted 5 March 2013

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=15.1$.

In the title compound $\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Fe}^{\mathrm{II}}$ cation is coordinated by two N -bonded thiocyanate anions, two N^{4}-bonded bis(pyrazin-2-yl) sulfide ligands and two water molecules in an slightly distorted octahedral geometry. The $\mathrm{Fe}^{\mathrm{II}}$ cation is located on a center of inversion and the lattice water molecule on a twofold rotation axis. The thiocyanate anions, the coordinating water molecules and the sulfide ligands occupy general positions. The complex molecules and lattice water molecules are linked into a threedimensional network by $\mathrm{O}-\mathrm{H}-\mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the background to this work, see: Wöhlert \& Näther (2013).

Experimental

Crystal data

$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$b=15.8583(9) \AA$
$M_{r}=606.51$	$c=14.8025(12) \AA$
Monoclinic, $C 2 / c$	$\beta=109.770(8)^{\circ}$
$a=11.5110(8) \AA$	$V=2542.9(3) \AA^{3}$

$Z=4$
$T=200 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.96 \mathrm{~mm}^{-1}$
Data collection
Stoe IPDS-1 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.690, T_{\text {max }}=0.859$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 165$ parameters
$w R\left(F^{2}\right)=0.090 \quad \mathrm{H}$-atom parameters constrained
$S=1.05$
2496 reflections
$0.25 \times 0.15 \times 0.09 \mathrm{~mm}$
$\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{O} 1$	$2.0965(17)$	$\mathrm{Fe} 1-\mathrm{N} 10$	$2.235(2)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.101(2)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H1O2 $\cdots \mathrm{N} 11$	0.84	2.00	$2.834(3)$	171
O1-H1O1 $\cdots \mathrm{N} 20^{\mathrm{i}}$	0.84	1.94	$2.765(3)$	165
$\mathrm{O}^{\text {I }}-\mathrm{H} 2 O 1 \cdots \mathrm{O} 2^{1}$	0.84	1.94	$2.749(3)$	162

Symmetry codes: (i) $x+1, y, z$; (ii) $x+\frac{1}{2}, y+\frac{1}{2}, z$.
Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL and publCIF (Westrip, 2010).

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6895).

References

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S. \& Näther, C. (2013). Eur. J. Inorg. Chem. doi:10.1002/ ejic. 201201486.

supporting information

Diaquabis[bis(pyrazin-2-yl) sulfide- $\left.\kappa \mathrm{N}^{4}\right]$ bis(thiocyanato- κN)iron(II) monohydrate

Susanne Wöhlert, Inke Jess and Christian Näther

S1. Comment

Recently we have reported on the synthesis and characterization of transition metal thiocyanato compounds with 2chloropyrazine as neutral co-ligand (Wöhlert \& Näther, 2013). In the course of these investigations, we have reacted iron(II)sulfate with potassium thiocyanate and 2-chloropyrazine under hydrothermal conditions, which accidently lead to the formation of single crystals of the title compound that were characterized by single-crystal X-ray diffraction. In the crystal structure, each iron(II) cation is coordinated by two N-bonded thiocyanato anions, two $2,2^{\prime}$-dipyrazinesulfide ligands and two water molecules within a slightly distorted octahedra (Fig. 1 and Tab. 1). The $\mathrm{Fe}-\mathrm{N}$ and $\mathrm{Fe}-\mathrm{O}$ distances range from $2.0965(17) \AA$ to 2.235 (2) \AA with angles arround the iron(II) cation between 87.98 (8) ${ }^{\circ}$ to 92.02 (8) ${ }^{\circ}$ and of 180° (Tab. 1). The asymmetric unit consists of one iron(II) cation located on a center of inversion, one water molecule on a 2-fold axis as well as of one $2,2^{\prime}$-dipyrazinesulfide ligand, one thiocyanato anion and one water molecule all of them located in general position. The discrete complexes are connected by the non-coordinating water molecules into a threedimensional network through intermolecular $\mathrm{O}-\mathrm{H}-\mathrm{N}$ and $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bonding (Fig. 2). In this arrangement each non-coordinating water molecule acts as acceptor in two $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bonds and as a donor in two $\mathrm{O}-\mathrm{H}-$ N hydrogen bonds (Fig. 2 and Tab.2).

S2. Experimental

$\mathrm{FeSO}_{4} \times 7 \mathrm{H}_{2} \mathrm{O}$, KNCS and 2-chloropyrazine were obtained from Alfa Aesar. All chemicals were used without further purification. $0.15 \mathrm{mmol}(41.7 \mathrm{mg}) \mathrm{FeSO}_{4} \mathrm{x}^{2} \mathrm{H}_{2} \mathrm{O}, 0.3 \mathrm{mmol}(29.1 \mathrm{mg}) \mathrm{KNCS}$ and $0.3 \mathrm{mmol}(26.4 \mu \mathrm{~L})$ 2-chloropyrazine were reacted in 1 ml water in a closed test-tube at $120^{\circ} \mathrm{C}$ for 3 days. Red single crystals of the title compound were obtained after two days on cooling.

S3. Refinement

All C-H H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ for aromatic H atoms. The water H atoms were located in a difference map, their bond lenghts were set to ideal values of $0.84 \AA$ and finally they were refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: $\mathrm{i}=-x+3 / 2,-y+3 / 2,-z$.

Figure 2
Crystal structure of the title compound with view along the a-axis (orange $=$ iron, blue $=$ nitrogen, yellow $=$ sulfur, red $=$ oxygen, grey $=$ carbon, white $=$ hydrogen $)$. Intermolecular hydrogen bonding is shown as dashed lines.

Diaquabis[bis(pyrazin-2-yl) sulfide- $\left.\kappa N^{4}\right]$ bis(thiocyanato- κN)iron(II) monohydrate
Crystal data
$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=606.51$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=11.5110$ (8) \AA
$b=15.8583$ (9) \AA
$c=14.8025$ (12) \AA
$\beta=109.770(8)^{\circ}$

$$
\begin{aligned}
& V=2542.9(3) \AA^{3} \\
& Z=4 \\
& F(000)=1240 \\
& D_{\mathrm{x}}=1.584 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 10774 \text { reflections } \\
& \theta=2.3-26.0^{\circ} \\
& \mu=0.96 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=200 \mathrm{~K}$
Block, red

Data collection

Stoe IPDS-1
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi scan
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\min }=0.690, T_{\text {max }}=0.859$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=1.05$
2496 reflections
165 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.25 \times 0.15 \times 0.09 \mathrm{~mm}$

10774 measured reflections
2496 independent reflections
2012 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-14 \rightarrow 13$
$k=-19 \rightarrow 19$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& \text { Secondary atom site location: difference Fourier } \\
& \quad \text { map } \\
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0412 P)^{2}+5.1033 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.52 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \text { e } \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fe1	0.7500	0.7500	0.0000	$0.01850(14)$
N1	$0.6524(2)$	$0.83973(14)$	$0.05049(17)$	$0.0283(5)$
C1	$0.5978(2)$	$0.88512(16)$	$0.08281(19)$	$0.0250(6)$
S1	$0.51942(8)$	$0.94785(6)$	$0.12789(7)$	$0.0495(3)$
N10	$0.68155(19)$	$0.64769(13)$	$0.07296(16)$	$0.0217(4)$
C10	$0.5612(2)$	$0.63655(16)$	$0.05785(19)$	$0.0231(5)$
H10	0.5030	0.6753	0.0184	0.028^{*}
C11	$0.5199(2)$	$0.56900(16)$	$0.09904(19)$	$0.0221(5)$
C12	$0.7178(3)$	$0.52477(18)$	$0.1702(2)$	$0.0309(6)$
H12	0.7760	0.4863	0.2100	0.037^{*}
C13	$0.7596(2)$	$0.59152(17)$	$0.1297(2)$	$0.0275(6)$
H13	0.8458	0.5978	0.1424	0.033^{*}
N11	$0.5975(2)$	$0.51276(14)$	$0.15487(16)$	$0.0265(5)$
S2	$0.36039(6)$	$0.54851(4)$	$0.07358(6)$	$0.03024(18)$

N 20	$0.1422(2)$	$0.71530(17)$	$0.13551(19)$	$0.0365(6)$
C 20	$0.1863(2)$	$0.64829(19)$	$0.1039(2)$	$0.0323(6)$
H 20	0.1322	0.6031	0.0752	0.039^{*}
C21	$0.3091(2)$	$0.64298(17)$	$0.1120(2)$	$0.0264(6)$
C22	$0.3399(4)$	$0.7716(3)$	$0.1788(6)$	$0.129(3)$
H 22	0.3930	0.8179	0.2049	0.155^{*}
C23	$0.2211(3)$	$0.7764(2)$	$0.1745(3)$	$0.0604(12)$
H23	0.1938	0.8244	0.2000	0.072^{*}
N21	$0.3859(3)$	$0.7044(2)$	$0.1476(4)$	$0.0998(19)$
O1	$0.90576(16)$	$0.76058(11)$	$0.12427(13)$	$0.0264(4)$
H1O1	0.9775	0.7416	0.1362	0.040^{*}
H2O1	0.9184	0.8036	0.1593	0.040^{*}
O2	0.5000	$0.39109(15)$	0.2500	$0.0247(5)$
H1O2	0.5302	0.4227	0.2182	0.037^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.0136(2)$	$0.0178(2)$	$0.0259(3)$	$0.00060(19)$	$0.00904(18)$	$-0.0007(2)$
N 1	$0.0268(12)$	$0.0247(11)$	$0.0384(13)$	$0.0029(9)$	$0.0175(11)$	$-0.0019(10)$
C 1	$0.0210(13)$	$0.0266(13)$	$0.0261(13)$	$0.0013(11)$	$0.0064(11)$	$-0.0026(11)$
S 1	$0.0410(5)$	$0.0572(5)$	$0.0516(5)$	$0.0152(4)$	$0.0173(4)$	$-0.0235(4)$
N 10	$0.0191(10)$	$0.0198(10)$	$0.0292(11)$	$0.0009(8)$	$0.0118(9)$	$0.0004(9)$
C 10	$0.0185(12)$	$0.0223(12)$	$0.0305(14)$	$0.0012(10)$	$0.0110(10)$	$0.0006(10)$
C11	$0.0210(12)$	$0.0224(12)$	$0.0266(13)$	$-0.0022(10)$	$0.0129(10)$	$-0.0066(10)$
C12	$0.0261(14)$	$0.0291(14)$	$0.0359(15)$	$0.0035(11)$	$0.0083(12)$	$0.0092(12)$
C13	$0.0193(12)$	$0.0259(13)$	$0.0369(15)$	$0.0013(10)$	$0.0091(11)$	$0.0041(11)$
N11	$0.0298(12)$	$0.0236(11)$	$0.0283(12)$	$-0.0014(9)$	$0.0128(10)$	$0.0030(9)$
S2	$0.0229(3)$	$0.0244(3)$	$0.0485(4)$	$-0.0060(3)$	$0.0187(3)$	$-0.0088(3)$
N20	$0.0220(12)$	$0.0396(14)$	$0.0479(15)$	$0.0046(11)$	$0.0118(11)$	$-0.0067(12)$
C20	$0.0200(13)$	$0.0348(15)$	$0.0402(16)$	$-0.0011(11)$	$0.0075(12)$	$-0.0097(12)$
C21	$0.0240(13)$	$0.0259(13)$	$0.0332(14)$	$-0.0038(11)$	$0.0149(11)$	$-0.0040(11)$
C22	$0.058(3)$	$0.081(3)$	$0.285(9)$	$-0.046(3)$	$0.104(4)$	$-0.123(5)$
C23	$0.043(2)$	$0.0392(18)$	$0.115(4)$	$-0.0091(15)$	$0.046(2)$	$-0.034(2)$
N21	$0.0447(19)$	$0.068(2)$	$0.215(5)$	$-0.0369(17)$	$0.080(3)$	$-0.092(3)$
O1	$0.0163(8)$	$0.0269(9)$	$0.0335(10)$	$0.0015(7)$	$0.0054(7)$	$-0.0062(8)$
O2	$0.0325(14)$	$0.0181(12)$	$0.0282(14)$	0.000	$0.0166(11)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.0965(17)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.0965(17)$	$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.101(2)$	$\mathrm{S} 2-\mathrm{C} 21$	$1.773(3)$
$\mathrm{Fe} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.101(2)$	$\mathrm{N} 20-\mathrm{C} 23$	$1.319(4)$
$\mathrm{Fe} 1-\mathrm{N} 10$	$2.235(2)$	$\mathrm{N} 20-\mathrm{C} 20$	$1.329(4)$
$\mathrm{Fe} 1-\mathrm{N} 10^{\mathrm{i}}$	$2.235(2)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.381(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.160(3)$	$\mathrm{C} 20-\mathrm{H} 20$	0.9500
$\mathrm{C} 1-\mathrm{S} 1$	$1.630(3)$	$\mathrm{C} 21-\mathrm{N} 21$	$1.302(4)$

$\mathrm{N} 10-\mathrm{C} 10$	$1.339(3)$
$\mathrm{N} 10-\mathrm{C} 13$	$1.340(3)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.393(4)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 11-\mathrm{N} 11$	$1.333(3)$
$\mathrm{C} 11-\mathrm{S} 2$	$1.775(3)$
$\mathrm{C} 12-\mathrm{N} 11$	$1.339(4)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.381(4)$

O1 ${ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 1$	180.0
O1--Fe1-N1	87.98 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 1$	92.02 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{N} 1^{\mathrm{i}}$	92.02 (8)
O1-Fe1-N1 ${ }^{\text {i }}$	87.98 (8)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 1^{\text {i }}$	180.00 (12)
O1- ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{N} 10$	91.68 (8)
O1-Fe1-N10	88.32 (8)
N1-Fe1-N10	90.08 (8)
N1--Fe1-N10	89.92 (8)
$\mathrm{O} 1^{\text {i }}-\mathrm{Fe} 1-\mathrm{N} 10{ }^{\text {i }}$	88.32 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 10^{\text {i }}$	91.68 (8)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 10{ }^{\text {i }}$	89.92 (8)
N1--Fe1-N10 ${ }^{\text {i }}$	90.08 (8)
$\mathrm{N} 10-\mathrm{Fe} 1-\mathrm{N} 10{ }^{\text {i }}$	180.00 (9)
C1-N1-Fe1	175.3 (2)
N1-C1-S1	179.1 (2)
C10-N10-C13	117.0 (2)
C10-N10-Fe1	121.96 (17)
C13-N10-Fe1	120.93 (17)
N10-C10-C11	121.0 (2)
N10-C10-H10	119.5
C11-C10-H10	119.5
N11-C11-C10	122.0 (2)
N11-C11-S2	115.92 (19)
C10-C11-S2	121.9 (2)

$\mathrm{C} 22-\mathrm{N} 21$	$1.340(5)$
$\mathrm{C} 22-\mathrm{C} 23$	$1.349(5)$
$\mathrm{C} 22-\mathrm{H} 22$	0.9500
$\mathrm{C} 23-\mathrm{H} 23$	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	0.8400
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1$	0.8400
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	0.8400

$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13 \quad 121.9$ (2)
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{H} 12 \quad 119.1$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \quad 119.1$
$\mathrm{N} 10-\mathrm{C} 13-\mathrm{C} 12 \quad 121.5$ (2)
$\mathrm{N} 10-\mathrm{C} 13-\mathrm{H} 13 \quad 119.2$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \quad 119.2$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12 \quad 116.6$ (2)
C21—S2—C11 102.11 (12)
C23-N20-C20 116.9 (3)
$\mathrm{N} 20-\mathrm{C} 20-\mathrm{C} 21 \quad 121.3$ (3)
$\mathrm{N} 20-\mathrm{C} 20-\mathrm{H} 20 \quad 119.3$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \quad 119.3$
N 21 - 221 C20 121.6 (3)
N 21 C21—S2 120.6 (2)
C20-C21—S2 117.8 (2)
N 21 C22-C23 122.7 (3)
N 21 - 22 - $\mathrm{H} 22 \quad 118.6$
$\mathrm{C} 23-\mathrm{C} 22$ - $\mathrm{H} 22 \quad 118.6$
N20-C23-C22 121.1 (3)
$\mathrm{N} 20-\mathrm{C} 23-\mathrm{H} 23 \quad 119.5$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23 \quad 119.5$
C21—N21—C22 116.2 (3)
$\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1 \quad 130.1$
$\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1 \quad 121.7$
$\mathrm{H} 1 \mathrm{O} 1-\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1 \quad 102.0$

Symmetry code: (i) $-x+3 / 2,-y+3 / 2,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots \mathrm{~N} 11$	0.84	2.00	$2.834(3)$	171
$\mathrm{O} 1-\mathrm{H} 1 O 1 \cdots \mathrm{~N} 20^{i i}$	0.84	1.94	$2.765(3)$	165
$\mathrm{O} 1 — \mathrm{H} 2 O 1 \cdots \mathrm{O}^{\mathrm{iii}}$	0.84	1.94	$2.749(3)$	162

Symmetry codes: (ii) $x+1, y, z$; (iii) $x+1 / 2, y+1 / 2, z$.

